
REVIEW ARTICLE OPEN

Strategies to identify candidate repurposable drugs: COVID-19
treatment as a case example
Ali S. Imami 1, Robert E. McCullumsmith1,2 and Sinead M. O’Donovan 1✉

© The Author(s) 2021

Drug repurposing is an invaluable strategy to identify new uses for existing drug therapies that overcome many of the time and
financial costs associated with novel drug development. The COVID-19 pandemic has driven an unprecedented surge in the
development and use of bioinformatic tools to identify candidate repurposable drugs. Using COVID-19 as a case study, we discuss
examples of machine-learning and signature-based approaches that have been adapted to rapidly identify candidate drugs. The
Library of Integrated Network-based Signatures (LINCS) and Connectivity Map (CMap) are commonly used repositories and have
the advantage of being amenable to use by scientists with limited bioinformatic training. Next, we discuss how these recent
advances in bioinformatic drug repurposing approaches might be adapted to identify repurposable drugs for CNS disorders. As the
development of novel therapies that successfully target the cause of neuropsychiatric and neurological disorders has stalled, there
is a pressing need for innovative strategies to treat these complex brain disorders. Bioinformatic approaches to identify
repurposable drugs provide an exciting avenue of research that offer promise for improved treatments for CNS disorders.
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INTRODUCTION
The outbreak of the COVID-19 pandemic led to an unprecedented
response in the scientific community to rapidly identify, develop
and implement pharmacotherapies for the treatment of COVID-19
and its causative agent, the novel coronaviridae strain severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). In less than two
years, over 6 000 clinical trials related to COVID-19 have been
registered (clinicaltrials.gov) and almost 1 500 articles specifically
related to drug repurposing for COVID-19 treatment can be found
on PubMed (Fig. 1). Despite the massive investment of resources
and a focused global effort, only a single drug, the broad spectrum
antiviral remdesivir, is currently approved by the FDA for the
treatment of COVID-19 [1]. This highlights the significant
challenges to identifying pharmacotherapies for complex, hetero-
geneous diseases and is a familiar scenario to researchers in the
field of neuropsychopharmacology. Although the initial urgency to
identify drug treatments has waned with the development of
effective vaccines, the emergence of new SARS-CoV-2 variants “of
concern,” geographical inequities in vaccine availability and the
predicted need for periodic booster shots ensure that effective
drug treatments for COVID-19 are still an important tool to
overcoming the pandemic. Here, we evaluate in silico approaches
deployed to identify candidate repurposable drugs for the
treatment of COVID-19 to determine what lessons can be gleaned
from the accelerated and concerted efforts during the pandemic,
and whether they can inform shortcomings in the identification of
pharmacotherapies for CNS disorders. Using COVID-19 as a case
study we will (1) summarize in silico methodologies applied to
identify repurposable drugs (Fig. 2) and (2) discuss how they might
inform current drug repurposing efforts for neuropsychiatric

disorders. Selected representative studies will be discussed that
highlight how different drug discovery approaches may be
adapted by neuroscience researchers to address the pressing
need for improved treatments for psychiatric conditions.

COVID-19 CASE STUDY
The focus of drug discovery efforts for COVID-19 has rested on drug
repurposing or repositioning, that is, identifying novel uses for
existing (approved and investigational) drugs that are different from
their original indication [2]. The advantages of this approach include
significant savings in terms of time and cost. Drug repurposing
circumvents some of the safety, drug tolerability and dosage
concerns associated with developing a drug lead from bench to
bedside, shaving years off the drug development pipeline [3].
Within weeks to months of the COVID-19 pandemic, genomic,

transcriptomic, and proteomic profiles were available for the
causative SARS-CoV-2 virus and from infected human tissues. Data
sharing was prioritized by institutions around the world and a
surge of research papers soon followed. In silico approaches were
deployed to mine the available data without the need for
laboratory wet work in an era of quarantine and remote working.
Established bioinformatic workflows were quickly adapted and
applied to identify therapeutic targets and candidate repurpo-
sable drugs for the treatment of COVID-19.

MACHINE LEARNING APPROACHES
The advancement in computer science and data storage have
brought forth what could be easily termed as the “Age of Artificial
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Intelligence (AI).” “Deep Learning,” one of the methods to achieve
AI in a particular system, has become the de-facto standard and is
often used synonymously with AI. The field of biomedical research
is not an exception to this trend. Over the past decade, numerous
attempts have been made to integrate AI systems into
diagnostics, epidemiology, outcome prediction and drug discov-
ery [4–6]. There has been mixed levels of success in these fields
and there is still a long way to go before AI can be used
autonomously for drug discovery. However, at present, Deep
Learning and AI allows for the rapid synthesis of heterogeneous
data sources to narrow down lists of potential compounds of
therapeutic value [4–8]. AI-based approaches have three major
components, all subject to their own constraints and limitations.
First and foremost is data availability. Second is the processing of
the data sources and selection and application of a particular AI

technique. Finally, there is the dual problem of results interpreta-
tion and predictive validity.

Data Sources
Any machine learning (ML) approach requires high quality input
data. This data will not only underlie the inferences that the AI/ML
approach will generate but will also dictate the nature of the
approach that is used [9]. Thus, it is an absolute necessity to
generate databases that are easily accessible. Currently, there are
several databases available online that encompass a variety of
“omics.” These include primary databases like the National Center
for Biotechnology Information’s (NCBIs), Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/), PubChem (https://
pubchem.ncbi.nlm.nih.gov/) and the European Bioinformatics
Institute’s ChEMBL (https://www.ebi.ac.uk/chembl/) as well as
secondary databases such as ExCape-DB [10] and PhIN [11] that
curate data from literature and primary databases creating an
inferential layer of data [12]. In addition, there are other data
sources that generate predictions based on existing datasets.
These can include predicted protein-protein [13] and drug-
receptor [11] interactions. Finally, other resources include data-
bases like DrugR+ [14] where empirically defined and predicted
interactions between drugs and their possible replacements
(candidate repurposable drugs) has been curated. In the wake
of the SARS-CoV-2 pandemic, several of these data sources were
utilized to identify novel drugs and to repurpose existing drugs.
Chief among these were the Library of Interconnected Network-
based Cellular Signatures (LINCS) [15–17], DrugBank [18–20] and
Protein Databank [21–23].

Data processing
Once high-quality data sources have been identified, the next step
is to integrate and process the data. For this purpose, there are
several approaches that can be relied upon, including Logistic
Regression, Support Vector Machines, and Convolutional and
Recurrent Neural Networks [9]. Selection of a particular model is
guided by the availability of appropriate datasets, the nature of
the data itself and the expertize of the team conducting the

Fig. 1 The number of publications referencing “drug repurpos-
ing” has increased year-on-year over the last decade. Psychiatry
and CNS drug repurposing reflect a small proportion of total
publications. By comparison, in under two years, COVID-19 related
drug repurposing efforts have resulted in the generation of a large
number of publications.

Fig. 2 Bioinformatic drug repurposing workflows. Following selection of transcriptomic disease data and drug signature databases, a large
number of publicly available or user-designed tools can be adapted to identify candidate repurpose drugs. Signatures are generated based on
different criteria, including differential gene expression (DEG) cutoff and disease x candidate drug similarity score. Genomic and proteomic
data can also be integrated into the workflow to provide insight into drug-target interactions, for example. Candidate repurposable drugs may
be further filtered by relevance of drug mechanism of action (MOA), using molecular docking to determine how a drug interacts with a target
protein, or to those drugs that are already FDA-approved. Created with BioRender.com.
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analysis. In particular, the Convolutional Neural Networks have
become the de-facto standard for deep learning in recent years
due to their ability to learn necessary parameters from the data
autonomously. The ML models rely on specific parameters that are
unique to each combination of dataset, method, and problem.
These parameters are usually only significant in a mathematical
sense and not interpretable by humans in a meaningful way. In
contrast, “hyperparameter tuning” selects the values for the
parameters that influence how the learning algorithm works. It is a
time-consuming step in the process of building ML/AI based
models, but it is essential to achieve optimal setup of these
“hyperparameters” to generate models that can provide more
accurate results without sacrificing time or computational
efficiency. It is evident that AI/ML has matured significantly over
the past decade [24, 25]. With projects like Virtual Physiological
Human [26, 27] on the horizon, which aim to provide a functioning
in silico simulation of a human that can react to stimuli, we may
look forward to the transition of more in silico identified drugs to
clinical trials soon [28].
For identifying SARS-CoV-2 treatments, deep learning

approaches that relied on convolutional neural networks and that
integrated a varied type of information, including transcriptomics,
drug structure and protein sequences, appeared to work the best
[29]. Other approaches relied on molecular docking simulations in
addition to the above-mentioned datasets [30, 31]. As early as
February 2020, machine learning and AI driven approaches
showed promise in identifying candidate repurposable drugs for
COVID-19. Using BenevolentAI, the numb-associated kinase (NAK)
family was identified as a drug target for the treatment of COVID-
19. The NAK inhibitor Barcitinib has a high affinity for AP2
associated protein kinase 1 (AAK-1) and was identified as the most
promising candidate drug from this AI screen. Inhibition of AAK-1,
a regulator of clathrin-mediated endocytosis, was expected to
inhibit SARS-CoV-2 infection of host cells [32, 33]. Clinical trial
(NCT04401579) of combination therapy remdesivir and barcitinib
found fewer side effects and greater efficacy in reducing COVID-19
patient recovery time than with remdesivir treatment alone [34].
The corticosteroid dexamethasone was also identified by different
groups using AI approaches, like that applied by AI VIVO and [35],
resulting in identification of a therapy that reduced mortality in
ventilated COVID-19 patients in clinical trial [36]. These studies
highlight the utility of in silico and AI/ML based approaches to
successfully identify high yield repurposable drugs.

SIGNATURE-BASED APPROACHES
A gene signature describes the unique pattern of gene expression
in a cell associated with biological or pathological (disease)
processes or in response to genetic or pharmacological perturba-
tion. Highly similar signatures might then represent novel
connections between a drug and protein target, or similar
function of two structurally dissimilar chemical perturbagens.
Conversely, if drug and disease signatures are dissimilar, then that
drug may act to reverse the disease phenotype (signature
reversion principle) [37]. Disease-related transcriptomic data is
most often user-generated and made available through public
repositories like NCBI GEO https://www.ncbi.nlm.nih.gov/geo/).
The need for a systematically generated catalog of cellular
signatures led to the creation of LINCS [38], a product of a
multi-institutional consortium. The LINCS platform (LINCS data
portal 3.0) currently contains data on over 30,000 small molecules
(http://lincsportal.ccs.miami.edu/SmallMolecules/) and over 2 mil-
lion different chemical perturbagen transcriptomic signatures. It
also provides a large range of tools for exploration and analysis of
data. The L1000 is an assay of 978 landmark genes that provides a
reduced representation (approximately 82%) of the transcriptome
[39] and facilitated the systematic generation of gene signatures
for almost 20,000 small molecules. The catalog of signature

connections is the connectivity map (CMap) [39, 40]. Tools for
analysis of the massive L1000 datasets include the L1000
characteristic direction signature search engine (L1000CDS2)
[41], iLINCS, a web platform for analysis of LINCS transcript and
proteomic data and signatures [38], the Connectivity map (CMap),
and LINCS Unified Environment (CLUE; https://clue.io). CLUE is a
cloud-based query infrastructure that allows researchers to
explore and seamlessly incorporate CMap data into their analyses.
In addition, LINCS signature data is easily downloaded and
integrated into user-designed pipelines to fit their experimental
needs. In the hands of individual users, the signature data
provided by the LINCS resources has generated hundreds of
candidate repurposable drugs for the treatment of COVID-19
[17, 42–44]. An advantage of the LINCS and CMap platforms is
their accessibility. With little or no formal bioinformatic training,
the provided tools can be utilized by bench scientists to explore
datasets of interest. With basic R skills, user-generated pipelines
can be designed to interrogate LINCS datasets, as discussed
below.

Examples of signature-based approaches to identify COVID-19
candidate repurposable drugs
Although almost all COVID-19 signature-based analyses use the
same or similar publicly available RNAseq data from SARS-CoV-2
infected cell-lines and infected host tissues and cells [45, 46],
different bioinformatic pipelines have identified hundreds of
candidate drugs, perhaps raising concerns about the specificity
and utility of such approaches. However, although hundreds of
unique candidate drugs have been proposed for repurposing,
these drugs are often members of the same drug class.
Unsurprisingly, antiviral drugs were often reported as top hits,
however, other antimicrobials, immunosuppressants and kinase
inhibitors were also commonly reported [35, 43, 47]. Kinase
inhibitors were of growing interest as antivirals prior to COVID-19
[48, 49]. The identification of drugs with immunosuppressant
properties as top candidates [17, 50], amid the emergence of the
“cytokine storm” as a major treatment concern during COVID-19,
highlights the value of the signature-based approach. Additionally,
signature-based approaches can be adapted for more targeted
search efforts, for example in the case of COVID-19, to find drugs
that act on the ACE2 receptor [51].
Here, we describe how signature-based approaches, in parti-

cular using the LINCS signature database, can be adapted to
identify candidate drugs using publicly available tools or user
generated bioinformatic pipelines (and could be applied to other
disease states). Islam et al identified a set of hub genes from gene
enrichment of SARS-CoV-2 transcriptome data and analysis of
protein-protein interaction networks in lung tissue, for drug
repositioning using LINCS [42]. Hub genes from the protein-
protein interaction networks, generated using DifferentialNet
Database [52] and NetworkAnalyst [52] tool and with a degree
filter (>30), were considered to represent essential biological
signaling molecules. The top 10 hub proteins were used for drug
repurposing. Using the L1000CDS2 search engine, the chemical
perturbagens with the lowest cosine similarity score for the input
targets were identified. The top 10 chemical perturbagens were
carried forward for further consideration; drug mechanism of
action was checked in publicly available databases (e.g., Drug-
bank, IUPHAR) and the literature to ensure specificity. Of the top
10, kinase inhibitors and antimicrobials were represented, with 7
drugs having approval status and the remaining 3 having
investigational status. Molecular docking analyses was carried
out to further validate the bioinformatically determined candidate
drugs.
Others develop bioinformatic pipelines to identify and curate

candidate drugs on specific criteria deemed important for drug
consideration. For example, using the R shiny application
DrugFindR, our group extracted L1000 genes from publicly
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available COVID-19 transcriptome datasets. Candidate repurposa-
ble drugs were identified if 1) they had chemical perturbagen
signatures in at least 5/7 common cell lines in LINCS, 2) if the
chemical perturbagen signature had a minimum discordance
score of <−0.321 with COVID-19 disease signatures and 3) a
concordance score >0.321 with known antivirals in use for COVID-
19 treatment at that time and 4) if candidate drugs were FDA-
approved [17]. Following manual curation of the literature and
candidate drug list, a final “top hit” list was generated containing
drugs that were already undergoing clinical trial for COVID-19,
confirmed to specifically inhibit SARS-CoV-2 in vitro or had known
coronavirus antiviral effects. Using a modified DrugFindR work-
flow, the potential mechanisms of action of two candidate drugs
for the treatment of COVID-19, oxytocin [53] and fluoxetine [54]
were also explored. Analysis of LINCS consensus gene knockdown
signatures found that the oxytocin gene signature is highly
concordant with inflammation knockdown signatures (e.g., IL-6
knockdown) but discordant with signatures of pro-immune
marker knockdown, like CD40. Signature analysis also provided
support for an anti-inflammatory role for the antidepressant
fluoxetine, via the NF-kappB-IL6-ST signal transduction pathway.
Fluoxetine (NCT04377308) is currently undergoing clinical trial for
COVID-19 and is expected to treat the cytokine storm associated
with disease.
Alternative LINCS signature-based workflows include the

DrugRepo pipeline (https://nelhachem.shinyapps.io/DrugRepo/?_
ga=2.78354771.679352558.1592320962-118407775.1587897066)
and [55]. This pipeline integrated LINCS chemical perturbagen
gene signature data with gene and drug set enrichment analysis
and drug-target associations to identify candidate repurposable
drugs [55]. The authors curated drug-target interactions from
DrugBank [18, 19], IUPHAR [56] and CLUE (https://clue.io). Drug set
enrichment, which uses drug-target associations instead of gene
sets, enriched for drug-target interactions among the identified
candidate drugs. As an additional filter, protein targets with fewer
than 3 representative drugs were removed. Importantly, analyzing
a ruxolitinib-treated A549 cell line infected with SARS-CoV-2
(SARS2_A549_ACE2_RUXO; [45]) using this pipeline resulted in
identification of ruxolitinib as a top hit. Drug-set enrichment
analysis then confirmed that drugs of the ruxolitinib drug class,
JAK2 inhibitors, were also overrepresented in their results,
validating their approach and confirming the accuracy of the
L1000 drug identification.
The co-expressed gene set enrichment analysis (cogena) is a

framework that uses the CMap drug induced gene signatures to
identify drugs that reverse differentially expressed and co-
regulated genes [57]. Coexpressed genes are often expressed in
the same biological pathways and are hypothesized as more likely
drivers of the underlying disease biology, adding an extra
dimension to selecting gene sets for targeting drug repositioning.
This approach identified several drugs including two approved
antiviral drugs (saquinavir and ribavirin) that were previously
implicated by molecular docking approaches for the treatment of
COVID-19 [44].
Signature-based analyses are most often based on gene

expression (transcriptome) data, however, integrating protein-
network data can add another dimension to analyses. Zhou et al
devised a drug-target network of human coronavirus (HCoV)-host
protein interactions. A network of 119 proteins that were targets
of HCoV (6 different strains) or in pathways essential for infection
by human coronaviruses were identified [58]. The drug-target
network was compiled from drug-target interaction data from
multiple sources including DrugBank [18, 19] and ChEMBL [59].
Drug-target interaction criteria included binding affinity (EC50 ≤
10 µM) and inclusion of a unique, reviewed accession number for
that protein in UniProt. Druggable proteins were then mapped
into the HCoV-host interactome where the authors found almost
40% of the protein interactome was targeted by at least one

(approved or under clinical trial) drug. To capitalize on the benefits
of a network-based targeting approach [60–63], the human
protein-protein interactome was expanded and a network
proximity measure was applied to quantify connections in the
HCoV-specific subnetwork, resulting in a larger list of 135
candidate repurposable drugs. Additional criteria, including net-
work proximity score, enrichment of GSEA gene signatures from
HCoV transcriptome datasets, drug CMAP signature, and literature
evidence of drug antiviral efficacy and side-effect profile, resulted
in 16 candidate drugs, including anti-inflammatory, immunosup-
pressant and antineoplastic agents, estrogen receptor modulators
and angiotensin receptor blockers. This experimentally validated
drug-target network approach was readily adapted by the group
in response to the COVID-19 outbreak [60–62], has multiple levels
of validation for candidate drug identification and incorporates
transcriptome validation as well as a protein-network focus. Drug
repurposing efforts that integrate multi-omic signatures with
structure data [64] and machine learning approaches have
successfully identified drug candidates with anti-SARS-CoV-2
activity in vitro [65].
Overall, signature analysis using CMap, CLUE and LINCs datasets

and user-developed pipelines have been adapted by many
different groups to identify hundreds of potential candidate
repurposable drugs [66–68]. By prioritizing gene input for disease
signature generation based on pathway analyses and gene-set
enrichment analyses from infected tissues or allowing virus-host
and drug-target associations (DrugBank, ChemBL, IUPHAR) to
inform the selection of drugs, signature-based approaches can be
adapted for targeted (e.g., specific drug class or biological
pathway), biologically relevant candidate repurposable drug
identification. Applying different filtering criteria (signature
similarity scores, FDA approval, drug mechanism of action, manual
curation of drugs in clinical trial) can also improve stringency of
candidate drug identification.
It should be noted that while a number of candidate

repurposable drugs show promise as antivirals in vitro
[43, 69, 70] and many more are under investigation in clinical
trial, safety concerns [71–73] and false positive findings [74] are
common upon deeper exploration. Results from the RECOVERY
(https://www.recoverytrial.net/results) and SOLIDARITY [75] plat-
form clinical trials of drugs that showed early promise, like
hydroxychloroquine and lopinavir, have since proven to have little
or no effect in reducing mortality rates or treating COVID-19 [76].

APPLICATION TO DRUG REPURPOSING FOR CNS DISORDERS
Even in the case of COVID-19, where we have knowledge of the
causative pathogen and sufficient understanding of the molecular
mechanisms of infection to identify the viral proteins that can be
targeted to inhibit viral replication, development of approved
treatments is a challenge. For CNS diseases, a major stumbling
block to the identification of effective therapies remains our
limited understanding of the etiology of these disorders. The
heterogeneity and complexity of CNS disorders undoubtedly
contributes to the very low rates of clinical approval of new drugs,
which often fail in clinical trials due to a lack of efficacy [77]. For
drugs that attempt to treat the causes of neurodegenerative
diseases like Alzheimer’s disease and Parkinson’s disease, the
clinical failure rate has been high [78]. The shortcomings of animal
models [79] and difficulties in designing drugs that have the
physiochemical properties to be successfully delivered across the
blood brain barrier are other limiting factors [80]. The challenges
to successful drug discovery and drug repurposing in the CNS
have been reviewed in detail elsewhere [78, 81–84].
A standard approach to discover new drugs, high-throughput

screening to identify compounds that show activity against a
single target or pathway, has resulted in diminishing success over
the years [85], and has been particularly limited for brain-related
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disorders. For example, for Alzheimer’s disease the “amyloid
hypothesis” led to the identification of a target pathological
pathway and a search for drugs that can inhibit beta-amyloid
aggregation. This has not resulted in successful disease-modifying
treatment [86]. Drug repositioning using signature-based and
machine-learning approaches offers an alternative strategy for
drug identification for brain-related disorders, which to date has
primarily relied on serendipitous findings [87] and incremental
improvements of existing drugs for treatment [78].
Signature-based strategies are already identifying promising

drug leads for different brain disorders. Utilizing a combination of
over 60,000 CMap and L1000 drug signatures, and transcriptomic
and proteomic Alzheimer’s disease signatures, Lee et al devised a
“drug repositioning perturbation score” to measure the inverse
association between drug and disease signatures, weighted by
pharmacogenomic knowledge, to identify candidate repurposable
drugs with high score in both transcriptomic and proteomic data
[88]. Top findings included inhibitors of monoamine oxidase,
which are implicated in the pathology of Alzheimer’s disease [89].
This approach has the advantage of incorporating different
“omics” data types to inform drug discovery. The CMap was also
deployed to identify candidate repurposable drugs for bipolar
disorder, using an approach that focused on similarity with current
indicated drugs for bipolar disorder rather than discordance with
disease signature. Common differentially expressed genes, identi-
fied by RNAseq analysis of models, a neuronal cell line (NT2-N),
and rats treated with a combination of bipolar disorder drugs
(lithium, valproic acid, quetiapine, lamotrigine), were used to
generate the input drug gene signatures. CMap drug signatures of
10 drugs that were concordant with the signatures of known
bipolar disorder drug treatments were identified [90]. As an
alternative to “omics” to generate disease signatures, Sullivan et al
experimentally identified enzymes associated with bioenergetic
deficits in postmortem schizophrenia brain, followed by in silico
confirmation of these target or “seed genes” in other postmortem
datasets [91]. In iLINCs, gene knockdown signatures for each seed
gene were generated. Next, drugs with gene signatures that were
highly discordant to the seed gene signatures were identified,
converging on PPAR agonists as candidate drugs of interest.
Administering the PPAR-gamma agonist pioglitazone to GluN1
knockdown mice reversed cognitive deficits associated with this
phenotype and was proposed as a target drug of interest for
treatment of cognitive symptoms associated with schizophrenia
and other neuropsychiatric conditions [91]. Taking a different
approach to generating disease signatures, a multi-psychiatric
disorder analysis generated signatures from genome wide
association study (GWAS)-imputed transcriptome profiles [92].
GWAS-imputed transcriptome data captures the genetically
regulated part of expression and overcomes some limitations of
transcriptome-only derived signatures, including circumventing
confounding factors like medication effects that are associated
with signatures generated from postmortem tissue datasets.
Applying drug-set enrichment analysis generally supported the
validity of the resulting drug repurposing findings. For example,
known antipsychotic drugs were enriched in schizophrenia and
bipolar disorder analyses and known antidepressant were among
the top findings for MDD. GWAS was also used to generate gene-
set associations with disease phenotype (MDD and schizophrenia)
prior to integration with drug-target relationships and chemical
perturbagen signatures from CMAP [93, 94]. By constructing
bipartite drug-target interaction networks from these analyses,
this approach assesses whether identified drugs interact with
multiple targets, and whether different targets show affinity for
dissimilar drugs, allowing for prioritization of drug-gene sets for
further exploration [95].
One of the major limiting factors when trying to understand the

pathophysiology of psychiatric disorders and identify new
therapeutics is disease heterogeneity. One approach taken to

address this issue is exploring postmortem transcriptome
signatures generated from subjects in depressive and remission
stages of MDD and non-psychiatrically ill controls [96]. Gene co-
expression analysis and Bayesian network modeling identified
gene modules associated with disease state (vs trait) which was
then searched against CMap signatures to identify candidate
repurposable drugs. A subset of the drugs identified are already in
use to treat psychiatric disorders. Such an approach can be used
to identify treatments that can be targeted to clinical phases
of MDD.
An advantage of signature-based approaches is the flexibility to

incorporate emerging “omics” analyses, which will improve our
understanding of disease mechanisms. Single-cell RNAseq studies
offer significant insight into complex tissues like human brain,
identifying altered patterns of cell-type specific gene expression in
cell populations that are associated with neurological [97–99] and
psychiatric [100] disorders. Similarly, transcriptome analysis of
neuronal and glial iPSCs and cerebral organoids [101–104] derived
from patients with neurological and psychiatric disorders is a useful
tool, with some translational potential for interrogating disease
mechanisms [105] and can be incorporated into signature-based
drug repurposing analyses [106]. Although still limited relative to the
available transcriptomic signatures, drug signatures for the P100, the
LINCS proteomic assay platform consisting of approximately 100
representative phosphopeptide probes analyzed by mass spectro-
metry, offers another strand of data for drug signature identification.
A number of logistical hurdles should also be considered prior to

conducting in silico drug repurposing. Many of the analyses reviewed
here require standard computing resources found in most labora-
tories. However, machine learning dependent approaches may
require access to a computer cluster, to provide sufficient processing
power. Additionally, the databases referenced here, including LINCS,
PubChem, GEO, IUPHAR etc. are publicly accessible at no cost to the
user, and provide convenient interfaces for scientists to conduct
analyses. However, some databases, like DrugBank, may require the
creation of an account and verification of academic status prior to
accessing their complete database.
Finally, limiting candidate repurposable drugs from in silico

screens to those that have obtained FDA approval and/or are under
investigation addresses a major concern in drug development,
namely, drug safety. However, further assessment of any candidate
drug is essential to determine if the drug is efficacious for its
purported novel use, within its established safe dosage range. In
addition, a vast array of in silico toxicology resources are available to
assess drug toxicity during the drug development process. In a
recent review, Pawar et al. identified almost 1,000 data resources
including chemical information, and pharmacovigilance and toxicity
data that could inform on toxicology during drug discovery [107].
Projects like the “Enhancing TRANslational SAFEty Assessment
through Integrative Knowledge Management (eTRANSAFE)”
(https://etransafe.eu/) are developing the infrastructure to integrate
analyses of different data types to improve translational safety
assessment during drug development. Integrating computational
toxicology and drug repurposing approaches will undoubtedly
improve the transition of candidate repurposable drugs to the clinic,
by identifying potential safety concerns earlier in the process.
In summary, a large number of bioinformatic workflows and

pipelines have been developed in the last two years to address
the urgent need to identify candidate repurposable drugs for
COVID-19. Many of these workflows may now be adapted to drug
repurposing efforts for neurological and neuropsychiatric dis-
orders, where drug discovery efforts have stagnated. Signature-
based approaches using available CMap and LINCs tools are
particularly amenable to use by those without formal bioinfor-
matic training. Although significant challenges remain to success-
fully translate candidate drugs from bench to bedside, advances in
bioinformatic drug screening may open new avenues for
identifying therapies for CNS disorders.
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