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The explosion and abundance of digital data could facilitate large-scale research for psychiatry and mental health. Research using
so-called “real world data”—such as electronic medical/health records—can be resource-efficient, facilitate rapid hypothesis
generation and testing, complement existing evidence (e.g. from trials and evidence-synthesis) and may enable a route to translate
evidence into clinically effective, outcomes-driven care for patient populations that may be under-represented. However, the
interpretation and processing of real-world data sources is complex because the clinically important ‘signal’ is often contained in
both structured and unstructured (narrative or “free-text”) data. Techniques for extracting meaningful information (signal) from
unstructured text exist and have advanced the re-use of routinely collected clinical data, but these techniques require cautious
evaluation. In this paper, we survey the opportunities, risks and progress made in the use of electronic medical record (real-world)
data for psychiatric research.
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INTRODUCTION
Psychiatry covers a vast heterogeneous group of mental disorders,
manifesting as unusual mental or behavioural patterns that can
impact an individual. Psychiatric research has increased rapidly to
help in understanding the mechanisms of disease and treatments
of multiple mental health and neurological disorders. With the
growth of large-scale data, such as electronic medical records
(EMR), research into psychiatric disorders can benefit from this and
can provide multiple opportunities in psychiatric research that will
produce evidence that could be incorporated into standards and
guidelines. This, in turn, will directly impact clinical decision-
making and, ultimately, the patient benefit.
Electronic medical (health) records (EMR) contain data describ-

ing clinical interactions, administrative, medico-legal, diagnostic,
intervention, prescribing and investigations collected for the
purposes of providing routine clinical care. In psychiatry (unlike
other medical specialities), detailed clinical data is most often in
unstructured, narrative “free text” and depending on the
healthcare system, other clinical data (e.g. structured data
recording the results of investigations and prescribing) will be
available to varying degrees. Rather than representing unadulter-
ated “real world” data, the potential for EMRs to provide relevant,
reliable and rich data varies depending on the application; for
example, reusing EMR data for predicting child and adolescent
mental health problems after first contact with services [1]
demonstrated limited utility. An often unrecognised problem
with EMR data—particularly as a source of observational, retro-
spective cohort data—is that the content reflects treatment as
usual (i.e. extracted prescribing data will likely display indication
biases), the culture of the institution and its practitioners (e.g.

unstructured narrative data might reflect the mixing of adminis-
trative, medico-legal and clinical data) and the institution’s
implementation of an EMR platform [2, 3] (for example, whether
the pathology EMR system in use at the same hospital are linked
meaningfully to the central EMR being used for research data
extraction) [4].
There is still a common consensus that randomised control trials

(RCTs) are the gold standard to provide causal evidence for the
efficacy, effectiveness and benefits of interventions, and for
inferential modelling of risk factors for mental illness. However, RCTs
can be expensive, time-consuming, unethical to conduct and
generally have short follow-up times compared to observational
studies. Some argue that this delivers evidence lacking generalisa-
bility to patients and their presentations in routine clinical care and
excludes those patients whose risk formulation excludes them from
clinical trials. Therefore, evidence derived from EMR-based research
has the potential to complement evidence from controlled trials,
especially when considering health equity and reproducibility [5–7].
Furthermore, causal inference methods are being introduced to
address some of the biases in observational research using EMR data.
This narrative review concentrates on how research on

neuropsychiatric disorders (such as depression, bipolar, schizo-
phrenia, anxiety, eating disorders and dementia) can utilise big
data such as EMRs to generate evidence to inform clinical
decision-making and, importantly, improve patient outcomes.
Examples of types of data that can be utilised, examples of use,
and the benefits and limitations of EMR will be discussed. Finally, a
summary of how EMR can be further advanced, such as the use of
genetics and data triangulation will be discussed to further help
optimise EMR for psychiatry research.
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DATA SOURCES FOR LARGE-SCALE PSYCHIATRIC RESEARCH
There is a vast variety of data sources that can be used for large-
scale research in psychiatry. Before designing a study, it is
important to understand different data sources and their
strengths and limitations to ensure a research question can firstly
be answered and then without significant biases. Broadly speak-
ing, large-scale data resources can be roughly grouped into three
types (Fig. 1).
Disease registries contain patients with a specific condition and

collect patient information longitudinally [8]. As the early and
accurate diagnosis of psychiatric conditions is essential for better
disease monitoring and management, registries represent a
valuable tool for studying the known risk factors, as well as
identifying new risk factors and markers that may help improve
the accuracy of diagnostic procedures in psychiatry [8]. Disease
registries also allow insights into medication use and their
effectiveness and adverse effects in managing mental health
conditions. Therefore, disease registries play an important part in
improving health outcomes for patients and reducing healthcare
costs [9].
Large population cohort studies contain large sample sizes and

extensive phenotypic, imaging and biological measurements,
including genetics [10]. Due to the large number of participants,
this allows researchers to investigate psychiatric conditions with
sufficient statistical power. With genotyping carried out for these
large cohort studies this allows for the complex relationship
of multiple small-effect genetic and environmental influences of
psychiatric conditions to be studied [11]. One of the caveats of
some large population studies is the potential lack of representa-
tiveness [12] and diversity, particularly for those with mental

health conditions [13]. Other data sources that are potentially
important for psychiatry research include data collected from
wearables, mobile phones and social media platforms [14–18].

THE CURRENT USES OF EMR TO ENHANCE PSYCHIATRY
RESEARCH
EMR is used to generate a wide variety of evidence to inform and
improve patient care ranging from using curated EMR data for
epidemiology to identifying novel risk factors, opportunities for
innovation in treatments and predictive analytics for those at risk
and/or treatment response. The main uses related to the
psychiatry field are discussed below.

Comparative effectiveness studies
Comparative effectiveness research using EMR can provide
evidence to improve patient care and reduce healthcare costs.
This is done by comparing the benefits and harms of alternative
treatments or methods to prevent, diagnose, and treat a variety of
health conditions [19, 20]. There are a variety of study designs that
can be implemented to understand the effects of different mental
health disorders, such as anxiety and depression, on quality of life
before and after diagnosis [21], as well as the effectiveness of
different medications [22–24] and different treatment regimes [25]
for a variety of mental illnesses [26–28]. For neurodegenerative
conditions such as dementia, there is also a growing body of
evidence using EMR to investigate the potential benefits and
harms of licensed medications [29–34]. As there is evidence that
common diseases such as diabetes and hypertension are probable
risk factors [35], this suggests that treatments for these conditions
may influence cognitive decline and potentially modify dementia
risk. On the other hand other anticholinergic medications [36, 37]
and benzodiazepines [38, 39], may accelerate decline or increase
the risk of dementia.

Descriptive studies
Descriptive studies quantify features of the health of a population
of interest. This leads to knowledge that could generate
hypotheses for aetiologic research and inform action in the
population it concerns [40, 41]. The use of descriptive studies can
be used to estimate the burden of disease in a population at a
certain point in time or over time (e.g. incidence and prevalence).
For psychiatry, descriptive studies can be used to ascertain if there
have been changes in trends of mental health disorders such as
depression [42] and anxiety [43] as they present to healthcare
services or within certain populations of patients with chronic
diseases, mental health conditions [44] and life-limiting diseases
such as cancer [45]. This can help develop strategies that could
mitigate and treat those with mental health conditions and
descriptive epidemiology has been vital to understanding the
impact of the COVID-19 pandemic on mental health [46–48].
Other types of descriptive studies entail describing drug utilisation
and adverse drug reactions to medications [49, 50]. These studies
can provide information regarding potential over-, under- or mis-
prescribing of medications leading to poorer patient outcomes,
particularly in high-risk populations such as those with mental
health or neurological conditions [49, 51, 52].

Prediction modelling
Predictive modelling attempts to complement evidence-based
medical practice by providing methods for using clinical data to
estimate an individual’s probability of, e.g. experiencing benefit or
harm from a treatment, experiencing an outcome (prognosis) or
having a diagnosis [53]. A critical stage in developing predictive
models is external validation and calibration of a tentative model,

Fig. 1 Examples of potential data sources for psychiatric research.
CPRD: Clinical Practice Research Datalink [174], QResearch (https://
www.qresearch.org/), THIN: The health improvement network
(https://www.the-health-improvement-network.com/), CRIS: Clinical
Record Interactive Search, OPTUM (https://www.optum.com/), NHS
Digital (https://digital.nhs.uk/), GLAD study: Genetic Links to Anxiety
and Depression Study [175], SveDem: The Swedish Dementia
Registry [176], UK Biobank [177], Our Future Health (https://
ourfuturehealth.org.uk/), All of Us (https://allofus.nih.gov/), German
National Cohort [178]. EMR and claims databases contain a variety of
data formats which can be classified as structured or unstructured
[69]. Structured data includes information such as age and gender,
measurements such as blood pressure readings, height and also
diagnosis codes, laboratory tests and medication prescribing.
Whereas unstructured text includes narrative data such as clinical
notes (e.g. biopsychosocial formulations, differential diagnoses,
mental state examinations and risk formulations). Compared to
narrative, unstructured data, structured data is easier to process with
little pre-processing because it is stored in a standardised format.
EHR and claims databases have vast patient numbers covering all
diseases and disorders, giving the opportunity to look at psychiatric
conditions and their comorbid diseases.
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ideally in a prospective evaluation. EMRs are often conceived as
ideal data sources for predictive model development and,
sometimes, validation; but currently, there is limited evidence
for the robustness of predictive models in psychiatric applications
more generally, for example, in a systematic review of risk
prediction models [54], of 89 studies, only 29 had been subjected
to external validation and 1 study was considered for
implementation.
Common clinical domains for predictive modelling include

suicide risk [55], diagnostic trajectories [56], treatment outcomes
in depression [57] and identification of dementia cases [58].
Notably, many well-designed and implemented models (e.g. those
with robust validation) have tended to use national registry data
(rather than EMR-derived data). Whilst individual studies using
EMR data have shown promise [59–61], there is little synthesised
evidence demonstrating the value of EMRs for predictive
modelling. Registry data is (importantly) different from EMR data
(even if one federates a number of organisation’s individual EMRs)
because registries are samples of the whole population, whereas
EMRs are selection-biassed (i.e. only people who are unwell and
require input from services will be visible in EMRs).

CHALLENGES AND OPPORTUNITIES WITH USING ELECTRONIC
MEDICAL RECORDS FOR LARGE-SCALE PSYCHIATRY
RESEARCH
One of the most important considerations when utilising EMR for
research is that it is collected for healthcare and not for research
purposes. It is important to understand this when using EMRs for
research because they contain a vast amount of data that reflects
medico-legal and administrative concerns, rather than being
clinically relevant.

The Big Data Paradox
Big data can be characterised by its variety, volume, velocity, and
veracity [62, 63]. In context, EMR can be considered “big data”
(due to its variety, volume and veracity) containing information in
the order of thousands to millions of patients. The large number of
patients and coverage of clinical conditions allow opportunities to
study rare events or disorders (i.e. exploiting volume, variety and
veracity) encountered in “real-world” clinical practice [64]. How-
ever, EMR is collected to support healthcare delivery and services,
which gives rise to heterogeneity in the data collected. The
volume of EMR datasets promises large sample sizes but this often
leads to an assumption that derived error and uncertainty
estimates will be necessarily more precise. However, this
commonly received wisdom does not always hold; the “big data
paradox” [65, 66] describes how increasing the sample size alone
does not guarantee a more precise estimate of e.g. sample
averages. In studies of survey data, vaccine uptake and the
prediction and tracking of flu [67, 68], large sample sizes yielded
misleadingly narrow uncertainty estimates leading to biased
population inferences. We should be mindful of the quality,
heterogeneity, and problem difficulty that are all functions of the
data used, how it is collected, and the specific application or re-
use of that data [65].

The dominance of unstructured text in electronic medical
records in psychiatry
Unstructured data, such as free text, requires considerable pre-
processing and, usually, domain expertise and human annotation.
A major problem with clinical free text is the language used by
clinicians is often idiosyncratic, with frequent abbreviations
(sometimes, with parochial meaning such as the names of clinical
services), and varied medical vocabularies [69]. Drug names, for
example, often have different brand names in different national

territories or “class” nomenclature (i.e. “antidepressant”) depend-
ing on the institution, requiring ontologies to be developed for
mapping between synonymous terms (e.g. the Unified Medical
Language System [70]) to assist pre-processing before being used
in analyses or model development. Within psychiatry and mental
health the number of clinical notes for any individual can be very
large and written in a narrative but terminologically dense manner
and often contain a high proportion of redundant text [71].
Further, unlike other medical and surgical specialities (that can
utilise EMR-based sources of routinely collected structured data),
psychiatry is far more reliant on clinical information such as
symptoms, behaviour and clinical assessments within the
unstructured notes. The major task is to represent this clinical
text in a useful way for both algorithms and clinicians alike.
The computational processing and analysis of human language

found in the unstructured text (clinical notes) falls under the broad
field of natural language processing (NLP), which pertains to the
statistical [72, 73] and deterministic (e.g. rule-based) representa-
tion and processing of language. NLP seeks to represent words,
sentences, paragraphs and sometimes, the entire text corpus in
such a way that algorithms can be deployed to automate task-
specific analyses of the text. Contemporary NLP usually combines
rule-based methods with statistical (usually machine and deep
learning methods) to represent written and spoken language. The
current state of the art for NLP focuses on pre-trained language
models (PLMs, very-large deep learning NLP networks trained
using a language modelling objective) like BERT [74] and GPT-3
[75]. PLMs better capture semantic nuances contained in
sequences of text and have seen state-of-the-art performance in
a considerable number of domains e.g. finance, internet of things,
biomedical [75–77]. Most impactful applications of PLMs to EMR-
free text have focused on Information Extraction, e.g. named
entity recognition. This has spawned a number of tools to create
structured representations of that free text to aid clinical decision
support, such as MedCAT [78], NeuroBlu [3], and Med-7 [79].
However, the research into the representation of clinical notes in
psychiatry as a whole is still relatively limited, especially in relation
to the latest trends in NLP.
A concrete example of a challenge in NLP applied to narrative

EMR data in psychiatry concerns the vernacular use of diagnostic
terminology; for example, a healthcare professional might
summarily describe their impression that “the patient seems
depressed”. In isolation, this statement might refer to signs
(observations by the professional), symptoms (difficulties reported
by the patient) or a summary diagnosis (the signs and symptoms
observed in this clinical encounter meet diagnostic criteria for a
depressive disorder or episode). Similarly, a recording of clinical
state might read “Mood: normal” and could refer to the patient’s
mood being normal for them (referencing a previously observed
clinical state), a normative assessment representing a lack of
pathology (where the clinician’s recording references their own
experience of the population of people with “abnormal” mood) or
could represent a change over time (i.e. that the patient’s mood
has returned to some baseline). Resolving these different
interpretations remains difficult using data-driven lexical or
statistical analyses of language and necessarily, resource-
intensive expert human annotation is required.

Resource challenges using machine learning-based NLP within
psychiatry
Contemporary neural networks (NN) are computationally expen-
sive when compared to other mature machine- and statistical-
learning methods. Practical development of NN models requires
parallel processing using Graphical Processing Units (GPU) that are
costly. The last few years have seen neural networks reaching the
size of hundreds of billions of parameters, and the amount of data
used to train them is usually comparably vast. A prominent large
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language model, GPT-3 [75], has ~175 billion model parameters
(by comparison, the human brain has ~86 billion neurons).
Commercial interests often obfuscate accurate costing, but
speculative estimates are of the order of several million US dollars
to train models of this magnitude [80, 81]. This trend of increasing
performance through scaling of model size/complexity is proble-
matic for resource-constrained environments such as publicly-
funded hospitals (i.e. the UK’s National Health Service).
A crucial component of any AI/ML-driven algorithm or tool is

that it is trusted and usable by human clinicians and patients;
Critically, imbuing trust in a model requires that the algorithm
deliver outputs that include justifications or reasons for reaching a
given output or decision, sometimes referred to as XAI (eXplain-
able AI). Many ML methods (and especially deep learning neural
networks) are opaque or “black-box” models, where the computa-
tional processes that intervene between input and output are too
complex to be easily understood by any human user. There is an
active research field dedicated to illuminating the machinery of
such models, although the concept of what constitutes an
explainable or interpretable model remains controversial [82]. If
clinicians and patients are to trust an AI/ML model, they will likely
favour model transparency and simplicity—often described as
intrinsically interpretable models [83]—over the often modest
performance gains given by complex DL models [84]. Free text
data in sensitive (and, for psychiatry, often stigmatising) settings
carries serious privacy risks due to the difficulty in adequately
anonymising data and removing personally identifiable content
[69]. For this reason, these data are often warehoused with strict
data access regulations that necessarily inhibit reproducibility and
replicability efforts.

Problems with data linkages and selection bias in EMR
Linking together information about the same individual across
multiple data sources can further enhance existing data [85, 86],
improve the quality of information, and offer a relatively quick and
low-cost means to exploit existing data sources. One benefit of
data linkage in psychiatry is it can provide additional information
on other non-psychiatric conditions and medications [87],
allowing more detailed information about patient’s medical
history, which can be used to reduce biases in research studies.
Although data linkages can improve knowledge about psychiatric
research [87, 88], there are limitations. Errors in the data linkage
process can introduce bias of unknown size and direction, which
could feed through into final research results, leading to
overestimating or underestimating results [89]. Missingness of
different participant characteristics in EMR, such as age, gender
and race, can also lead to systematic bias and issues with the
validity and generalisability of research results [90, 91].
Selection bias is a common problem in observational research

and occurs when characteristics influence whether a person is
included in a group. For example, in psychiatry, only those with
extreme mental health conditions enter secondary care due to the
different priorities of healthcare providers and government funds.
Therefore, any research studies using EMR in secondary care will
differ from the general population [92]. Furthermore, selection
biases can exacerbate existing disparities, such as those relating to
ethnicity, sexual orientation and socioeconomic status, that can
lead to inequalities in treatment and healthcare [93–97]. Findings
from psychiatric research conducted in selected groups should be
interpreted with great caution unless selection bias has been
explicitly addressed.

PHENOTYPING IN PSYCHIATRIC RESEARCH
Phenotyping is the process of identifying specific patients with a
clinical condition or characteristic(s) based on information in their

EMR [98]. It can involve combining different types of data such as
diagnosis codes, procedures, medication data, laboratory and test
results, and unstructured text [99] with growing interest in using
data from smartphones and other digital wearables [15, 100].
Phenotypes can be derived using algorithms that use filters and
rule-based algorithms or machine learning methods based on
structured data [101, 102]. The Electronic MEdical Records and
GEnomics (eMERGE) Network [103] and CALIBER [104] have both
shown that phenotypes can be identified and validated and
consequently used in research. Patients identified with a specific
phenotype can be included in cohort studies in order for further
study of risk factors or drug safety surveillance, genetic studies as
well as recruitment for clinical trials [105–110]. The psychiatry field
presents a unique challenge for phenotyping as the majority of
psychiatric diagnoses typically rely on self-reported symptoms,
behaviour and clinical judgement, meaning a combination of
structured and unstructured text has been shown to give rise to
more accurate phenotypes with less misclassification of cases
[111, 112]. Problems arise with phenotyping when there is no
consistency in the phenotyping process, only using structured
data may not accurately represent the disease status of the
patient, what types or combinations of data could be used from
different healthcare datasets and the lack of translation of
phenotypes to different health care settings and countries [113].
As phenotyping is a dynamic process, it requires clinical expertise
and multiple cycles of review and can take many months of
development [114]. Once a phenotype has been derived,
validation of the phenotype is a critical process [115]. A phenotype
must have high sensitivity and specificity, limiting both false
positives and false negatives. Validation can be done using a
variety of different approaches [104], such as by cross-referencing
different data EMR sources and case note reviews by clinical
experts to confirm a diagnosis based on the phenotype
developed. Accuracy measures can then dictate how useful a
phenotype will be for use in further research [106, 116, 117].

FUTURE CONSIDERATIONS FOR OPTIMISING THE USE OF
ELECTRONIC MEDICAL RECORDS IN PSYCHIATRY
There are many examples of the use of EMR to generate evidence
in psychiatric research. However, to aid in the improvement and
research applications of EMR we discuss future considerations
which could optimise the use of EMR.

Design, statistical techniques to address biases and reporting
in observational psychiatric research
The design, analysis and reporting are vital components for
optimising the use of EMR. Observational research using EMR is
utilised because RCTs that would answer causal questions are
sometimes not feasible, unethical and take too long. By applying
the study design principles of RCTs to observational studies, the
causal effect of an intervention [118, 119] can be estimated, and
this helps avoid biases such as selection and immortal time biases
[120]. This approach, called “target trial emulation” [118], uses EMR
to emulate a clinical trial—the target trial—that would answer the
causal research question. If target trial emulation is successful the
results from observational data can yield similar results to the RCT
[121–125]. Target trial emulation is now being used for a wide
variety of conditions, such as showing potential beneficial effects
of statins with dementia risk [126] and harmful effects of protein
pump inhibitors with dementia risk [127]. Other applications
include determining optimal drug plasma concentrations in
bipolar disorder [128] and establishing the risk of diabetes with
anticonvulsant mood stabilisers [129]. Target trial emulation
cannot remove bias due to the lack of randomisation of
observational data [118]. However, methods to address this, such
as propensity scores, can be applied to reduce this confounding
[130, 131].
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Clinical decision support tools for psychiatry could include
identifying or detecting those at risk of certain disorders, illness
progression/prognosis and using treatment response data to
improve personalised care. However, specifically for predictive
models, research has shown that over 90% were at high risk of
bias [53]. Therefore, in order to optimise the use of EMR for
developing clinical decision support, we require careful attention
to model development, sample sizes [132], internal and external
validation, including calibration and assessment of clinical utility
and generalisability should be adopted [59, 133].
Studies using EMR can be prone to publication bias and

reporting bias [134, 135]. On top of this, published research often
omits important information or the information is unclear and
very often, the nature of EMR data means it cannot be shared for
interrogation, reproducibility and replication studies. These biases
are a concern because they undermine the validity of studies.
Study analysis plans and study results should be reported
transparently, including what was planned, what was carried
out, what was found, and what conclusions were drawn.
Researchers can now register statistical analysis plans for a study
prior to analysis (e.g. clinicaltrials.gov, researchregistry.com,
encepp.eu) and the STROBE [136] and TRIPOD [137] guidelines
offer a checklist of items that should be addressed in articles
reporting studies to increase transparency [138, 139]. Furthermore,
in order to improve reproducibility and ambiguity, analytical code
should also be freely available [140].

Precision medicine to provide individualised healthcare
With the increase in the availability of accurate deep phenotyping
information from unstructured text researchers will be able to
make more precise insights about disease outcomes from clinical
information. This has expanded the scope of evidence-based
prediction and tools designed to triangulate evidence from
multiple sources are now being developed for applications in
precision medicine. For example, the Petrushka [105] web-based
tool uses data from multiple sources, including QResearch
(primary care), EMR (secondary care) and available literature to
make personalised medication recommendations in individuals
with unipolar depression. Other projects seek to incorporate other
data modalities, such as wearables to give a more detailed digital
phenotype [141]. However, further validation is needed to
convince clinicians of the benefits of supported clinical decision-
making.

Triangulation of evidence from multimodal data for large-
scale psychiatry research
There is a vast array of data acquired in research and healthcare
which covers a variety of different modalities. These different
modalities, such as omics, histology, imaging, clinical and smart
technology, can help researchers unveil novel mechanistic insights
to help understand crucial information about the complexity of
mental health and neurological conditions. Triangulation of
evidence is an approach where one can obtain more confidence
in results by carrying out analyses integrating different statistical
methodologies and/or data modalities [142, 143]. The key is that
each analysis has different sources of potential bias that may be
unrelated to each other. If the results from each different analysis
point to the same conclusion, this strengthens the confidence in
the findings obtained. Examples of this triangulation approach in
mental health research include assessing the relationship between
cultural engagement and depression, where the authors used
three different statistical methodologies with different strengths
and weaknesses to show lower cultural engagement is associated
with depression outcomes [144]. Other examples used observa-
tional data and genetic data to triangulate evidence between

smoking and suicide ideation and attempts [145], and anxiety
disorders and anorexia nervosa [146]; however, the triangulated
results were inconsistent with each other, potentially questioning
the causal relationships established using any of the sources. For
psychiatry, triangulation could be used by applying different
statistical approaches, using different EMRs across different
countries and healthcare settings and/or integrating other non-
EMR data as discussed below to help provide further under-
standing regarding causality and optimise big data in psychiatric
research.

Incorporating biomarkers in EMR phenotyping
Biomarkers are biological measures utilised to better diagnose,
track or predict psychiatric disorders. These can range from clinical
assays and brain imaging to digital biomarkers from wearables. In
EMR research, they can be used to help define disease phenotypes
or better understand outcomes and applications in precision
medicine. In Alzheimer’s Disease, fluid biomarkers (cerebrospinal
fluid and blood plasma) for the tau protein are used to determine
disease pathology to aid in trial recruitment. Biomarkers of
neurodegeneration have been successful, neurofilament light
measured in blood or CSF can be used to assess axon damage
[147]. Measures of inflammation, such as C-reactive protein, have
applications in many psychiatric disorders. Disorder-specific
markers have been identified and replicated in meta-analyses
for Vitamin B6 in schizophrenia and basal cortisol awakening in
bipolar disorder [148]. However, in many psychiatric disorders,
translation to clinical applications is limited [148, 149] and further
work will be necessary to validate these potential candidates in
suitable cohorts.
The suitability of the marker modality should be considered

when selecting a biomarker. In mental health conditions, the
development of a digital marker captured by remote monitoring
might aid in diagnosis by adding information to the self-reporting
of symptoms from a patient, for example, if the marker can act as
a proxy for behavioural signs of mental illness that cannot be
captured by a single measurement of clinical state when
consulting a clinician. The development of phone-based applica-
tions allows clinicians to collect data on changes through a series
of symptom-based questions [150]. However, the future of
biomarker discovery is likely the ability to measure, compare
and combine multiple variables and here, resources are key. The
Penn Medicine Biobank [151] includes genetics and biomarkers
alongside EMR to enable precision medicine and the discovery of
new phenotypes.
Interrogation of EMRs has revealed the potential value of

routinely recorded data to identify and validate the use of existing
and exploratory biomarkers. For example, in a study of sepsis,
biomarkers were used alongside EMR to study progression [152].
Biomarkers were employed to study different time periods
whereby early-life mental health impacts midlife using a panel
of markers [153]. Elsewhere the combination of biomarkers and
EMR has been recommended for aiding risk reduction profiles and
identifying new clinical biomarkers [154].

The use of genetics for large-scale psychiatry research
The observational nature of many findings precludes drawing firm
conclusions about causality due to residual confounding and
reverse causation. With the recent explosion of large-scale genetic
data available, methods using this data, such as polygenetic risk
scores (PRS) and Mendelian randomisation (MR) allow the
elucidation of causal relationships between psychiatric disorders,
risk factors and drug treatments. Leveraging genetic data using
PRS and MR offers a cost-effective approach with the future
potential to embed genetic data into healthcare settings to help
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improve patient care [155] and could provide complementary
evidence as part of the triangulation process.
PRS are weighted sums of genetic variants associated with a

particular condition [156]. Therefore, PRS can estimate the genetic
risk of an individual for a disease or trait. Due to the complex
polygenic nature of many conditions (including mental health and
neurological conditions [157–161], PRS can only capture a fraction
of the overall risk, with clinical and demographic factors usually
explaining most variance. This means that on their own, PRS is
unlikely to definitively predict future diagnoses in a healthcare
setting [162, 163]. However, PRS could be included with other
measures to predict future risk and may show promise in aiding
clinical decision-making. Adding PRS to risk prediction models
alongside other clinical factors such as age, gender and family
history has been shown to improve model performance for
predicting the risk of conditions such as dementia [164] and
certain mental health conditions [162, 165, 166]. On top of this,
PRS may have some potential to inform treatment response if
polygenetic complex traits can be predicted from an individual’s
genetics [167] and those traits are robustly associated with
treatment response. PRS can be used in conjunction with other
methods, such as Mendelian randomisation [168], to uncover
casual insights between complex psychiatric traits and treatments.
Mendelian randomisation (MR) is a statistical approach that uses

genetic variants to provide evidence that an exposure has a causal
effect on an outcome [169–173] (Fig. 2). A genetic variant (or
variants) is used which is associated with an exposure (e.g.,
insomnia) but not associated with any other risk factors which
affect the outcome (e.g., depression). By doing so, any association
of the genetic variant(s) with the outcome must act via the
variants’ association with the exposure and imply a causal effect of
the exposure on the outcome. As genetic variants are inherited
randomly at conception, genetic variants are not susceptible to
reverse causation and confounding, like observational studies
using EMR. Results from MR can help support results from EMR by
using data triangulation, as discussed previously.

CONCLUSION
Large-scale research approaches are at the forefront of EMR use in
psychiatry. With the advances in interpretation using NLP and
access to diverse data resources, the scope of research questions
is rapidly expanding. However, care is needed to make sure that
potential biases are considered. Not considering limitations with
big data can lead to incorrect inferences about a population which
could mean poorer care for high-risk populations such as those
with mental health conditions and neurodegenerative conditions.

In order to optimise EMR for psychiatry a clear understanding of
such biases in the data is vital. A researcher must carefully
consider if the research question can be answered in the data
source they want to use and develop the best study design and
statistical analysis. By cautiously incorporating the strengths of the
EMR format it will be possible to make exciting contributions to
mental health and neurological research.
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