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Suicide is a complex behavior strongly associated with depression. Despite extensive research, an objective biomarker for
evaluating suicide risk precisely and timely is still lacking. Using the precision resting-state fMRI method, we studied 61 depressive
patients with suicide ideation (SI) or suicide attempt (SA), and 35 patients without SI to explore functional biomarkers of suicide risk.
Among them, 21 participants also completed electroconvulsive therapy (ECT) treatment, allowing the examination of functional
changes across different risk states within the same individual. Functional networks were localized in each subject using resting-
state fMRI and then an individualized connectome was constructed to represent the subject’s functional brain organization. We
identified a set of connections that track suicide risk (r= 0.41, p= 0.001) and found that these risk-associated connections were
hyper-connected in the frontoparietal network (FPN, p= 0.008, Cohen’s d= 0.58) in patients with suicide risk compared to those
without. Moreover, ECT treatment significantly reduced (p= 0.001, Cohen’s d= 0.56) and normalized these FPN hyper-connections.
These findings suggest that connections involving FPN may constitute an important biomarker for evaluating suicide risk and may
provide potential targets for interventions such as non-invasive brain stimulation.
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INTRODUCTION
Suicide is a complex multifactorial phenomenon. Up to 60% of
people who commit suicide have a major depressive disorder
(MDD) [1], and depressive patients have suicide mortality about 20
times higher than that of the general population [2]. Moreover, in
patients with treatment-resistant depression (TRD), the suicide
attempt (SA) was sevenfold higher compared to those with non-
TRD patients [3–5], suggesting that suicide has a strong
association with depression. Suicide ideation (SI) is the process
of thinking or ruminating about not wanting to live or imagining
being dead or forming a plan to do so, which is a significant risk
factor for suicide behavior and is often present before an SA
occurs. Identifying SI is thus a critical step in preventing suicide.
Both SI and SA may exhibit characteristics of syndromes, including
commitment, rigidity, failure, shame, and isolation [6]. However, in
clinical practice, most patients will not show or are unwilling to
express their suicidal ideation, making it difficult to evaluate the
suicide risk precisely and timely.
Brain imaging holds promise to provide objective biomarkers

for suicidal risk. Previous studies have demonstrated the role of
prefrontal cortices and subcortical structures including the
amygdala, basal ganglia, and hippocampus in mediating
aggression, impulsivity, and mood regulation [7–10]. Func-
tional connectivity in several large-scale brain networks,
including the fronto-parietal network (FPN) and the default
mode network (DMN), was related to increased suicidality in

MDD patients [11, 12]. Nevertheless, characteristics derived
from functional imaging are poor predictors of individual
suicide risk, either due to unreliable subject-level neuroima-
ging results or limited sample size for the biomarker discovery
[13–15]. Recent studies suggested that sufficient functional
data, e.g., 25 min of resting-state functional magnetic reso-
nance imaging (fMRI) data per subject, and, in some cases,
even as much as 4 h, are required to obtain reliable functional
markers and distinguish an individual from the group [16].
To discover meaningful biomarkers for suicidal risk, it is critical

to obtain within-subject measurements across different states.
For depression with high suicide risks, electroconvulsive therapy
(ECT) is the first-line treatment that can alleviate suicidality
rapidly and effectively [17, 18]. The fast response makes ECT an
ideal therapeutic paradigm to investigate how functional
activity changes across different risk states within the same
individual. Here, we aimed to explore the neurobiological
mechanisms underlying suicide risk varying from no SI to SI/
SA based on individualized functional connectome derived from
resting-state fMRI (rs-fMRI). We first identified a set of functional
connections that track suicide risk in patients and then
examined whether these connections can be normalized by
ECT treatment. These findings will provide insights into neural
mechanisms of suicide and may lead to future biomarkers for
early identification and intervention of individuals at high risk of
suicide.
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MATERIALS AND METHODS
Participants
From July 2021 to July 2022, a total of 99 participants aged between 16
and 45, diagnosed with a depressive episode according to DSM-5 criteria
(Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, DSM-5)
[19], were enrolled at Beijing Anding Hospital, Capital Medical University,
China (Registration number: ChiCTR2100048182). The study was approved
by the Ethics Committee of Anding Hospital (No.202194FS-2) and
conducted in accordance with the declaration of Helsinki. Informed
consent was obtained from each participant.
Eligible participants must have a score ≥17 on the 17-item Hamilton

Depression Rating Scale (HAMD) [20], and was diagnosed with either
unipolar or bipolar depression disorder. None of the participants had
comorbid psychiatric diagnoses; however, 6.06% (6 out of 99) reported
non-psychiatric conditions such as kidney stones, lumbar disc herniation,
adenomyosis, or polycystic ovary syndrome. For participants who received
the ECT administration, they must show recent suicidal symptoms (SS),
including SI and/or SA, within two weeks. Exclusion criteria were: a history
of schizophrenia or other mental disorders (e.g., intellectual disability),
neurodegenerative or neurological disorders (Alzheimer’s disease, epilepsy,
severe brain injury, etc.), current drug or alcohol abuse, MRI contra-
indications, allergies to muscle relaxants or anesthetics, pregnancy, or
recent use of ECT or other neuromodulation therapies such as transcranial
electrical stimulation within 90 days preceding the study. Twenty-nine
patients with SS received ECT treatment and were allowed to change their
medication regimen throughout the ECT intervention.
Before the initiation of ECT, all participants underwent assessments

using the Beck Scale for Suicide Ideation (BSSI) [21], the HAMD, the
Hamilton Anxiety Rating Scale (HAMA) [22], and the MATRICS™ Consensus
Cognitive Battery-Chinese version (MCCB) [23]. The BSSI is a 21-item self-
report questionnaire, with only 19 items scored, utilized for a compre-
hensive assessment of suicide ideation severity. Scores range from 0,
indicating the absence of the symptom, to higher values indicating more
pronounced suicidal thoughts. The depressed patient cohort was
categorized as follows: (1) individuals with suicide ideation (BSSI score
>0) but without any suicide attempt were labeled as the SI group; (2) those
who had attempted suicide were labeled as the SA group. Notably, all SA
cases in this study were accompanied by suicide ideation; (3) all patients
with non-zero BSSI scores were labeled as the SS group, encompassing
both SI and SA cases; (4) individuals exhibiting no suicide symptoms (NSS)
constituted the NSS group, defined by a BSSI value of zero; (5) SS patients
who underwent ECT treatment before and after the intervention were
further subdivided into the SS_pre and SS_post groups.

After quality control of the data (mean head motion <0.25 mm,
completed rs-fMRI and BSSI and HAMD estimates), data from 61 SS
patients (31 SI and 30 SA patients) and 35 NSS patients were retained for
the imaging biomarker analysis, while 21 SS patients (12 SI and 9 SA
patients) with pre- and post-ECT treatment data were retained for the
within-subject intervention analysis. Demographic and clinical character-
istics of SS and NSS participants are summarized in Table 1, and those of
SS_pre and SS_post are provided in Table S1. Details regarding suicide
methods and times of occurrence are detailed in Table S2.

ECT procedure
The Thymatron system (Somatics Thymatron®, Venice, FL, USA) was
utilized for administering ECT with bifrontal electrode placement sites
during the procedure. The stimulus dosage was determined using the
half-age method [24]. Prior to anesthesia induction, all patients received
0.5 mg of atropine intravenously. Muscle relaxation was achieved through
intravenous succinylcholine administration (0.4 mg/kg for women, 0.5 mg/
kg for men), and anesthesia was induced with intravenous propofol
(1.5 mg/kg). Patients underwent 9–12 sessions of ECT treatment
scheduled on Days 1, 2, 3, 4, 6, 8, 10, 12, and 14. Additional sessions on
Days 16, 18, and 20 were provided if necessary based on the patient’s
response to treatment.

MRI data acquisition and processing
MRI data were acquired on a 3 T Siemens Magnetom Prisma scanner with a
64-channel phased-array head coil at Beijing Anding Hospital. MRI scans
and clinical assessments were performed on the same day. All participants
completed structural T1-weighted and 24-min resting-state fMRI scans. For
participants receiving ECT, the MRI scans were completed within 3 days
before the ECT. The parameters for high-resolution structural T1-weighted
image acquisition were as follows: repetition time (TR)= 2530ms, echo
time (TE)= 1.85ms, field of view (FOV)= 256 × 256mm2, flip angle
(FA)= 90°, voxel size= 1 × 1 × 1mm2, slice thickness= 1.0 mm,
matrix= 256 × 256. The parameters for resting-state fMRI parameters
were: TR= 3000ms, TE= 30ms, FOV= 216 × 216mm2, matrix= 64 × 64,
FA= 90°, slice number= 47, slice thickness= 3mm, voxel
size= 3 × 3 × 3mm3, and 47 axial sections collected with interleaved
acquisition and no gap. Four functional runs were acquired per participant
and each run lasted 6.2 min (124 time points). During the resting-state
scan, participants were instructed to remain still, stay awake, keep their
eyes closed, and avoid repetitive or specific thoughts. Participants who
received ECT also participated in a post-treatment MRI session within

Table 1. Participants’ demographic and clinical characteristics.

NSS group (n= 35) SS group (n= 61) p

Demographic characteristics

Gender (Male/Female) 11/24 13/48 0.271

Age 26.46 ± 9.01 (16–44) 25.52 ± 8.13 (16–45) 0.604

Education 14.49 ± 2.25 (11–18) 14.41 ± 2.15 (11–19) 0.870

Clinical evaluations

BSSI 0 53.10 ± 20.51 (15.15–93.94) -

HAMD (exclude suicide item) 21.03 ± 4.08 (11–29) 24.89 ± 4.05 (16–33) <0.001

HAMA 18.97 ± 8.53 (9–39) 25.90 ± 8.56 (11–42) <0.001

MCCB total score 46.59 ± 8.50 (28–61) 44.93 ± 9.48 (20–64) 0.432

Duration of illness(years) 3.67 ± 4.42 (0.08–20) 4.03 ± 4.80 (0.08–21) 0.716

Medication

Psychiatric medication (No/Yes) 16/19 22/39 0.352

Depression medication (No/Yes) 11/24 17/44 0.712

Mood stabilizers (No/Yes) 19/16 23/38 0.115

Head motion 0.081 ± 0.035 (0.033–0.174) 0.089 ± 0.046 (0.028–0.238) 0.420

The p values of age, education, BSSI, HAMD, and duration of illness were obtained by two-sample t-test, and p values of gender and medical characteristics
were obtained by Chi-squared test. Six participants from the NSS group and six participants from the SS group didn’t complete the MCCB assessments, so the
statistical analysis includes data from only 29 NSS participants and 55 SS participants.
SS suicide symptom, NSS no suicide symptom, BSSI beck scale for suicide ideation, HAMD hamilton depression rating scale with 17 items, HAMA hamilton
anxiety rating scale, MCCB matrics™ consensus cognitive battery-chinese version.
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5 days after the last ECT treatment, using parameters identical to those for
the baseline MRI.
MRI data were preprocessed using the same methods as reported in our

previous studies [25]. In brief, the T1-weighted images were first processed
to reconstruct the cortical surface using FSL and Freesurfer. Resting-state
fMRI data were aligned to the structural image using boundary-based
registration. FMRI data were preprocessed using the following steps: (1)
removing the first four frames; (2) slice timing correction; (3) motion
correction; (4) global mean signal normalization across runs; (5) band-pass
temporal filtering (0.01 - 0.08 Hz); (6) regression of covariates, which
includes motion parameters, average signals derived from anatomically-
defined whole-brain, white matter, cerebrospinal fluid masks, and their
temporal derivatives. Head motion was quantified using frame-wise
displacement (FD) with Jenkinson’s method, which is calculated as the
root mean square of translational and rotational movements [26]. The fMRI
data of each participant were registered to the surface fsaverage6
template and smoothed using a 6-mm full-width half-maximum kernel
in the surface space.

Individual-level functional network parcellation
Cortical functional regions were mapped in each individual according to
the following steps. First, we segmented each hemisphere into 5 zones
according to the Desikan-Killiany atlas [27]. Second, a group-level atlas
with 92 subareas covering the whole brain cortical surface was created
based on a large sample of 1000 subjects from the Genomic Superstruct
Project using a k-means clustering approach. Third, a previously
established iterative parcellation algorithm was implemented to
gradually refine the boundaries of the subject-specific functional regions
for each participant [28]. Using this procedure, 92 individualized,
homologous functional regions (46 regions in each hemisphere) were
localized in each participant. This technology demonstrated good
reliability (dice’s coefficient= 0.76 ± 0.03, range: 0.69–0.84) when indivi-
dualized functional regions were derived from only 12-min (split-half of
the 24-min data) data across all 96 participants (61 SS and 35 NSS). To
explore the characteristics of large-scale networks, these functional
regions were further grouped into seven canonical networks reported by
Yeo et al. [25], which included the visual (VIS), sensorimotor (MOT),
attention (ATN), salience (SAL), limbic (LMB), frontoparietal (FPN), and
default mode networks (DMN).
Functional connectivity (FC) was estimated by calculating Pearson’s

correlations between the time series of each region, and then an
individualized symmetrical FC matrix (92 × 92) was created. The FC values
were transformed to Fisher’s z values. Each participant’s functional brain
was thus characterized by 4186 (92 × 91/2, the lower triangle of the FC
matrix) individualized connections in the FC matrix.

Identifying connectivity markers for suicide risk
We identified FCs in the SS group that could predict the BSSI score using
leave-one-out cross-validation (LOOCV). Specifically, we temporarily
excluded one participant from the SS group as the test set and used
the remaining 65 (N-1) participants as the training set to train a predictive
model. Within the training set, Pearson’s correlations between all FCs and
the BSSI scores were calculated, considering covariates including age,
gender, education, HAMD without suicide item, HAMA, duration of
depression, and head motion. FCs that are significantly (p < 0.05)
positively or negatively correlated with the BSSI were selected as input
features to construct the linear predictive model using the LIBLINEAR
package with default parameters [29]. The selected features in the test
data were then used as input for the prediction model to estimate the
BSSI score for the test set. After completing the LOOCV for all patients, we
calculated Pearson’s correlation between the predicted and actual BSSI
scores to evaluate the performance of identified FCs in predicting BSSI
scores.

Abnormal connections and their normalization through
treatment
To explore the dysfunctions of large-scale networks potentially linked to
suicide risk, we conducted two-sample t-tests to compare the identified
FCs for each network between patients with suicide risk (SS group) and
those without suicide risk (NSS group). These identified FCs related to the
BSSI scores were grouped into seven canonical networks. An imaging score
calculated as the average FC within each network was used for group
comparison. We included age, gender, education, HAMD (excluding the

suicide item), HAMA, duration of depression, and head motion as
covariates in the analysis.
If FCs are found to be aberrant in individuals with SS, we proceeded to

investigate whether ECT treatment could influence and normalize them.
Paired t-tests were conducted on the identified connections to assess
changes from pre- to post-treatment (SS_pre vs. SS_post).

Exploratory analyses
We investigated the capacity of the imaging marker to indicate the
escalation of risk from SI to SA. Using a one-way analysis of variance
(ANOVA) test with the age, gender, education, HAMD without suicide item,
HAMA, duration of depression, and head motion as covariates, we assessed
variations in the imaging marker scores across NSS, SI, and SA groups.
Subsequent post-hoc two-sample t-tests were conducted to ascertain
whether the observed group differences were primarily attributable to
SI or SA.
To determine if the identified FCs are specifically contributing to the

estimation of suicide rather than depression symptoms present in the
cohort, we conducted the same prediction analyses for HAMD and
examined the overlap between the identified FCs for BSSI and those for
HAMD in the SS group.
Given the gender imbalance in each group, we further explored whether

the identified FCs were influenced by gender. We first compared the
identified FCs between males and females. Additionally, we re-ran the
group comparisons between NSS and SS, as well as between pre-treatment
and post-treatment, within the female and male groups separately.

RESULTS
ECT rapidly alleviates suicidal risk
Demographic data and clinical characteristics of the SS (n= 61)
and NSS (n= 35) groups are summarized in Table 1. No significant
differences were observed in age (SS: 25.52 ± 8.13 years; NSS:
26.46 ± 9.01 years; p= 0.604), education (SS: 14.41 ± 2.15 years;
NSS: 14.49 ± 2.25 years; p= 0.870), gender distribution (SS:
female, n= 48; NSS: female, n= 24; p= 0.271), duration of
depression (SS: 4.03 ± 4.80 years; NSS: 3.67 ± 4.42 years;
p= 0.716), or cognitive deficits (SS: 44.93 ± 9.48; NSS:
46.59 ± 8.50, p= 0.432) between the two groups. However, as
expected, HAMD, HAMA and BSSI scores were significantly higher
(p < 0.001) in the SS group. There were no significant differences
in current medication status (p > 0.05) between the SS and NSS
groups.
Among the SS participants, 29 received ECT, and 21 completed

the post-treatment assessment and MRI scan. Following 9–12 ECT
sessions, 18 out of 21 patients (85.7%) reported no suicidal
thoughts (BSSI= 0), while 3 patients reported suicidal thoughts
(BSSI > 0). Across the entire group of 21 patients, there was a
significant decrease in BSSI scores, HAMD scores, and HAMA
scores, as well as a mild increase in MCCB scores throughout ECT
treatment (Table S1). These results indicate an overall improve-
ment in symptoms including those related to suicide risk,
depression, anxiety, and cognition. Adverse events, such as
headache and dizziness, were reported but did not persist during
the treatment phase, and no severe adverse events occurred
during the experiment.

Functional connectome could predict suicide risk
To assess the capability of individualized FCs in predicting suicide
risk, we trained prediction models to estimate the BSSI scores. The
findings revealed that a specific set of FCs could predict the BSSI
scores, and the predicted BSSI scores exhibited a significant
correlation with the actual BSSI scores (Fig. 1, r= 0.41, p= 0.001).
This prediction model included 40 connections across multiple
networks.

Suicide risk is associated with hyper-connectivity in the FPN
These 40 connections that contributed to the estimation of the
BSSI score were subsequently categorized according to the 7
canonical networks and compared between the SS and NSS
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groups to investigate network abnormalities. Our analysis revealed
that connections involving the FPN were significantly increased in
the SS group (Fig. 2, two-sample t-test, p= 0.008, Cohen’s
d= 0.58, FDR corrected) than in the NSS group. Within these
FPN connections, 4 demonstrated positive FC values, while 4
showed negative FC values. Notably, upon investigating these
positive and negative FCs separately, we observed significant
increases in negative FCs (two-sample t-test, p= 0.022, Cohen’s
d= 0.50) and moderate increases in positive FCs (two-sample t-
test, p= 0.077, Cohen’s d= 0.38) within the FPN in the SS group
compared to the NSS group.

ECT normalizes hyper-connectivity in the FPN
Subsequently, we investigated the impact of ECT on these FPN
hyper-connections that are associated with suicide risk. We found
that the negative FCs connected to the FPN were significantly
diminished in the SS_post group compared to the SS_pre group
(paired t-test, p= 0.001, Cohen’s d= 0.56, Fig. 3), while positive
FCs connected to the FPN remained unchanged (paired t-test,
p= 0.747, Cohen’s d= 0.08). The regions connected by these
negative FCs included the FPN, VAN, MOT, and DMN. Intriguingly,
this set, FPN negative hyper-connections in the SS group
compared to the NSS group (two-sample t-test, p= 0.022, Cohen’s

Fig. 1 Individualized FCs predict BSSI scores. Scatter plots show the correlation between BSSI scores predicted using FCs and the actual BSSI
scores. Each dot represents one participant from the SS group. FCs were derived from 92 individualized regions of interest (ROIs). The group-
atlas-based 92 regions encompassing the seven networks from the Yeo atlas are displayed, with black lines indicating the boundaries of these
regions. BSSI Beck scale for suicide ideation, VIS visual network, MOT sensorimotor network, DAN dorsal attention network, VAN ventral
attention network, LMB limbic network, FPN frontoparietal network, DMN default mode network, FC functional connectivity.

Fig. 2 Connectivity in FPN is significantly increased in the SS group. The 40 FCs contributing to BSSI prediction were categorized into 7
networks, and the average of connections included in each network was compared between the SS and NSS groups. The average of 8 FCs in
the FPN was significantly (p= 0.008, FDR correction) increased in the SS group. The red “+“ symbols denote individual outliers, identified as
data points deviating 1.5 times the interquartile range from the bottom or top of the box. SS suicide symptom, NSS no suicide symptom, BSSI
Beck scale for suicide ideation, VIS visual network, MOT sensorimotor network, DAN dorsal attention network, VAN ventral attention network,
LMB limbic network, FPN frontoparietal network, DMN default mode network, FC functional connectivity, L left, R right.
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d= 0.50), was restored to normal levels after treatment (SS_post
vs. NSS, two-sample t-test, p= 0.794, Cohen’s d= 0.07).

Exploratory findings
Given that the SS group included patients with SI and SA, we
explored whether the identified FPN connectivity differed among
NSS, SI, and SA groups. One-way ANOVA test revealed a significant
difference in the three groups (Fig. S1, p= 0.006). Post-hoc two-
sample t-tests showed significantly elevated FPN connectivity
between SA and NSS (two-sample t-test, p= 0.002, Cohen’s
d= 0.81), a significant difference between SA and SI (two-sample
t-test, p= 0.039, Cohen’s d= 0.54), but not between NSS and SI
(p= 0.269, Cohen’s d= 0.27), indicating the observed group
difference in the FPN connectivity was primarily driven by the
patients with SA.
To explore the potential of using functional connections as

biomarkers specific to suicide risk rather than depressed mood, we
compared the FCs predicting BSSI with those predicting HAMD
scores (excluding the suicide item). Only 1.6% of the FCs were
found to contribute to both BSSI and HAMD scores. Importantly,
the FPN negative hyper-connections normalized by ECT in the SS
group were not among the FCs predicting HAMD scores.
Additionally, there was no difference in these functional connec-
tions between females and males (p= 0.731, Cohen’s d= 0.08).
However, upon reanalyzing the main findings separately for
females and males, these results were primarily driven by females
(Fig. S2).

DISCUSSION
Discovering a reliable biomarker for assessing suicide risk holds
the potential to detect and prevent suicidal behavior at an early
stage. In this study, precision resting-state fMRI was employed to
identify a specific set of functional connections associated with
suicide risk. We found that connections involving the FPN
exhibited heightened connectivity in individuals with suicidal
symptoms compared to those without such symptoms. ECT was
found to normalize these connections, suggesting the potential
neural mechanisms of this treatment in mitigating suicide risk.
Furthermore, negative connections within the FPN exhibited the
most significant changes following ECT. Collectively, this data
underscores the existence of neurobiological foundations for
suicide risk that could potentially be normalized through
intervention, paving the way for future personalized neural
therapy.
The FPN, essential for executive functioning, relies on the

dorsolateral prefrontal cortex (DLPFC) and inferior parietal lobule
(IPL) as major hubs, which are densely connected with other

cortical areas responsible for various functions such as attention,
decision-making under uncertainty, and complex problem-solving
[30, 31]. Previous neurobiological studies, both in vivo and post-
mortem, have implicated frontal and parietal regions in suicide
risk [32, 33]. Structural changes in the DLPFC and IPL have been
linked to planned suicide attempts in bipolar patients [34], and a
history of suicide attempts in patients with MDD [35, 36].
Functional connections involving the DLPFC or/and IPL, particu-
larly with the striatum and motor regions, have been associated
with self-harm, suggesting the involvement of the FPN circuit
related to behavioral disinhibition and impaired decision-making,
both risk factors for suicidal behaviors [1, 37, 38]. Disturbances in
the fronto-parietal areas that regulate impulsivity can impair the
evaluation of behavioral consequences, thereby increasing the
likelihood of suicide [39]. Participants with suicide risk showed
altered negative connectivity in the FPN, suggesting reduced
competition or interaction with this network. These disruptions in
negative connectivity indicate impaired functional coupling,
which compromises the ability to accurately regulate control over
risk behaviors, potentially leading to the development of suicidal
thoughts.
The normalization of FPN connectivity following ECT suggests

that ECT may exert its therapeutic effects by modulating these
neural circuits, enhancing emotion regulation processes and
thereby reducing suicidal ideation and behavior. ECT induces
rapid and widespread changes in brain function and connectivity,
making it ideal for investigating acute treatment effects on
abnormal FC in patients at risk for suicide. However, other
treatments with more subtle mechanisms of action, such as
cognitive-behavioral therapy (CBT) or mindfulness-based inter-
ventions, can also beneficially change brain connectivity, though
these changes may not be as pronounced or rapid as those
observed with ECT [40, 41]. Similarly, pharmacological treatments
like antidepressants have been associated with alterations in the
FPN connectivity [42, 43]. While their mechanisms of action differ
from ECT, they can still positively impact neural networks relevant
to depression and suicide risk. Overall, various interventions
targeting suicide risk may have effects on similar brain circuits,
albeit through potentially different mechanisms.
Understanding the neural mechanisms underlying the ther-

apeutic effects of ECT and other treatments for suicidal behavior is
crucial for developing targeted interventions and improving
patient outcomes. Individual-level FPN connectivity is implicated
not only in suicide-related circuits but also provides personalized
targets for intervention in individual patients. While ECT is a well-
established antidepressive method with rapid improvement in
suicidal behavior, it affects the entire brain and is limited by safety
concerns and adverse effects [44]. Non-invasive brain stimulation

Fig. 3 FPN hyper- connectivity is significantly decreased in the SS group after ECT treatment. Identified negative FCs from FPN were
decreased in the SS_post group compared to the SS_pre group (paired t-test, p= 0.001), brain regions of these connections were shown on
the right. SS_Pre patients with suicide symptoms at pre-treatment, SS_Post patients with suicide symptoms at post-treatment, FPN
frontoparietal network, MOT sensorimotor network, VAN ventral attention network, DMN default mode network.
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treatments, such as transcranial magnetic stimulation (TMS), offer
an alternative treatment for depression and even suicidal behavior
[45]. However, treatment response depends on selecting the
precise therapeutic target or circuit. Beyond DLPFC TMS, limited
evidence suggests that directly targeting the IPL could be
therapeutically valuable in depressed patients with suicide
ideation [46, 47]. Network-based brain stimulation in the FPN
may guide future therapies to enhance the antidepressant
response, especially in patients at high risk of suicide.
Identifying alterations in brain circuits that contribute to the

transition from SI to SA is crucial for developing more precise and
effective strategies to mitigate suicide risk. In our exploratory
study, a significant difference in the FPN connectivity was
observed between SA and NSS groups. However, no significant
difference was found between SI and NSS. These findings indicate
that changes in this specific connectivity become pronounced
only during the SA period or when suicide thoughts are
particularly intense, but are not sensitive enough to detect SI
without an attempt or when suicide thoughts are relatively weak.
More than half of individuals with depressive disorders do not

attempt suicide, and the severity of depression does not reliably
predict suicide attempts [48]. Negative emotions in depressed
patients may intensify suicidal ideation without directly leading to
extreme suicidal acts [49]. Whether suicide is an independent
symptom of mood remains uncertain. In our study, a significant
correlation was observed between the BSSI and the HAMD
(excluding the suicide item) scores in the SS group, suggesting a
strong relationship and potential shared pathophysiology
between the two symptoms. However, the low similarity of FCs
underlying the BSSI and the HAMD indicated a distinct
neurological basis for suicidal ideation apart from depressed
mood. Nevertheless, future studies with larger datasets should
address heterogeneity to identify neurological pathways to suicide
and mood.
Several limitations should be considered in interpreting our

findings. First, although we used longer, higher-quality scans to
enhance reliability, the cohort was predominantly females, it is
unclear whether these findings apply to males, and the
generalizability of the findings still requires validation with an
independent dataset. Second, the biomarkers were identified in
depressive adult patients presenting suicide symptoms, caution-
ing against broad generalizations to other disorders or
adolescent populations. Third, rather than solely recording the
presence or absence of a suicide attempt, future studies should
comprehensively assess individuals’ histories regarding suicidal
thoughts, behaviors, and attempts, using standard measure-
ment tools such as the Columbia Suicide History Form. More-
over, understanding the neurobiological mechanisms associated
with the progression of suicide risk from no SI to SI and SA is
critical. However, in our cohort, all the SA cases are accompanied
by severe suicide ideation, it’s challenging to distinguish suicide
attempts and suicidal ideation. To address this limitation, a
larger cohort comprising individuals with SI and SA cases whose
ideation severity matches that of SI cases is required.
Psychological constructs and adverse experiences should be
considered, and subcortical regions, crucial for depression and
suicide, need to be included in future analyses. Finally, although
the observed effects may be uniquely associated with the
powerful and immediate impact of ECT, it is important to
carefully consider the impact of medication changes on
functional connectivity when interpreting post-treatment
changes.
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