Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glial growth factor 2 treatment alleviates ischemia and reperfusion-damaged integrity of the blood-brain barrier through decreasing Mfsd2a/caveolin-1-mediated transcellular and Pdlim5/YAP/TAZ-mediated paracellular permeability

Abstract

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1β that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily ___domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM ___domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BBB was damaged after ischemia and reperfusion.
Fig. 2: I/R induced Mfsd2a downregulation.
Fig. 3: I/R produced an upregulation of Cav-1 and downregulation of TAZ expression after I/R.
Fig. 4: GGF2 treatment alleviated I/R-induced BBB damage in mice.
Fig. 5: GGF2 treatment decreased I/R-induced p-YAP upregulation and downregulation of TAZ and Pdlim5.
Fig. 6: GGF2 treatment alleviated I/R-induced Cav-1 upregulation and Mfsd2a downregulation.
Fig. 7: GGF2 treatment alleviates I/R-induced microglia activation and upregulation of IL-1β and TNF-α.
Fig. 8: Summary.

Similar content being viewed by others

References

  1. Desilles JP, Rouchaud A, Labreuche J, Meseguer E, Laissy JP, Serfaty JM, et al. Blood-brain barrier disruption is associated with increased mortality after endovascular therapy. Neurology. 2013;80:844–51.

    PubMed  Google Scholar 

  2. Ridder DA, Wenzel J, Müller K, Töllner K, Tong XK, Assmann JC, et al. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J Exp Med. 2015;212:1529–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Won S, Sayeed I, Peterson BL, Wali B, Kahn JS, Stein DG. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kappaB signaling pathways. PLoS One. 2015;10:e0122821.

    PubMed  PubMed Central  Google Scholar 

  4. Chen B, Friedman B, Cheng Q, Tsai P, Schim E, Kleinfeld D, et al. Severe blood-brain barrier disruption and surrounding tissue injury. Stroke. 2009;40:e666–74.

    PubMed  PubMed Central  Google Scholar 

  5. Wang YP, Du WH, Hu XY, Yu X, Guo C, Jin XC, et al. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharmaceutica Sin B. 2023;13:4667–87.

    Google Scholar 

  6. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron. 2017;94:581–94. e5

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhao C, Ma J, Wang Z, Li H, Shen H, Li X, et al. Mfsd2a attenuates blood-brain barrier disruption after sub-arachnoid hemorrhage by inhibiting caveolae-mediated transcellular transport in rats. Transl Stroke Res. 2020;11:1012–27.

    PubMed  Google Scholar 

  9. Yang YR, Xiong XY, Liu J, Wu LR, Zhong Q, Zhou K, et al. Mfsd2a (Major facilitator superfamily ___domain containing 2a) attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by inhibiting vesicular transcytosis. J Am Heart Assoc. 2017;6:e005811.

    PubMed  PubMed Central  Google Scholar 

  10. Eser Ocak P, Ocak U, Sherchan P, Gamdzyk M, Tang J, Zhang JH. Overexpression of Mfsd2a attenuates blood brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury. Exp Neurol. 2020;326:113203.

    PubMed  CAS  Google Scholar 

  11. Hussain B, Fang C, Huang X, Feng Z, Yao Y, Wang Y, et al. Endothelial beta-catenin deficiency causes blood-brain barrier breakdown via enhancing the paracellular and transcellular permeability. Front Mol Neurosci. 2022;15:895429.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Gong P, Zhang Z, Zou C, Tian Q, Chen X, Hong M, et al. Hippo/YAP signaling pathway mitigates blood-brain barrier disruption after cerebral ischemia/reperfusion injury. Behav Brain Res. 2019;356:8–17.

    PubMed  CAS  Google Scholar 

  13. Hu X, Dong J, Geng P, Sun Y, Du W, Zhao X, et al. Nicotine treatment ameliorates blood-brain barrier damage after acute ischemic stroke by regulating endothelial scaffolding protein Pdlim5. Transl Stroke Res. 2024;15:672–87.

    PubMed  CAS  Google Scholar 

  14. Elbediwy A, Vanyai H, Diaz-de-la-Loza MD, Frith D, Snijders AP, Thompson BJ. Enigma proteins regulate YAP mechanotransduction. J Cell Sci. 2018;131:jcs221788.

    PubMed  PubMed Central  Google Scholar 

  15. Carraway KL, Burden SJ. Neuregulins and their receptors. Curr Opin Neurobiol. 1995;5:606–12.

    PubMed  CAS  Google Scholar 

  16. Lok J, Sardi SP, Guo S, Besancon E, Ha DM, Rosell A, et al. Neuregulin-1 signaling in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29:39–43.

    PubMed  CAS  Google Scholar 

  17. Lok J, Zhao S, Leung W, Seo JH, Navaratna D, Wang X, et al. Neuregulin-1 effects on endothelial and blood-brain-barrier permeability after experimental injury. Transl Stroke Res. 2012;3:S119–24.

    PubMed  PubMed Central  Google Scholar 

  18. Ji Y, Teng L, Zhang R, Sun J, Guo Y. NRG-1beta exerts neuroprotective effects against ischemia reperfusion-induced injury in rats through the JNK signaling pathway. Neuroscience. 2017;362:13–24.

    PubMed  CAS  Google Scholar 

  19. Xu Z, Ford BD. Upregulation of erbB receptors in rat brain after middle cerebral arterial occlusion. Neurosci Lett. 2005;375:181–6.

    PubMed  CAS  Google Scholar 

  20. Qian H, Dou Z, Ruan W, He P, Zhang JH, Yan F. ErbB4 preserves blood-brain barrier integrity via the YAP/PIK3CB pathway after subarachnoid hemorrhage in rats. Front Neurosci. 2018;12:492.

    PubMed  PubMed Central  Google Scholar 

  21. Li F, Liu WC, Wang Q, Sun Y, Wang H, Jin X. NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. Biochem Pharmacol. 2020;171:113720.

    PubMed  CAS  Google Scholar 

  22. Wu L, Ramirez SH, Andrews AM, Leung W, Itoh K, Wu J, et al. Neuregulin1-beta decreases interleukin-1beta-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability. J Neurochem. 2016;136:250–7.

    PubMed  CAS  Google Scholar 

  23. Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH, et al. Neuregulin1-beta decreases IL-1beta-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res. 2014;6:116–24.

    PubMed  PubMed Central  Google Scholar 

  24. Ryzhov S, Matafonov A, Galindo CL, Zhang Q, Tran TL, Lenihan DJ, et al. ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. Am J Physiol Heart Circ Physiol. 2017;312:H907–H18.

    PubMed  PubMed Central  Google Scholar 

  25. Dimayuga FO, Ding Q, Keller JN, Marchionni MA, Seroogy KB, Bruce-Keller AJ. The neuregulin GGF2 attenuates free radical release from activated microglial cells. J Neuroimmunol. 2003;136:67–74.

    PubMed  CAS  Google Scholar 

  26. Chen S, Sun Y, Li F, Zhang X, Hu X, Zhao X, et al. Modulation of alpha7nAchR by melatonin alleviates ischemia and reperfusion-compromised integrity of blood-brain barrier through inhibiting hmgb1-mediated microglia activation and crtc1-mediated neuronal loss. Cell Mol Neurobiol. 2022;42:2407–22.

    PubMed  CAS  Google Scholar 

  27. Liu Y, Liu WC, Sun Y, Shen X, Wang X, Shu H, et al. Normobaric hyperoxia extends neuro- and vaso-protection of N-acetylcysteine in transient focal ischemia. Mol Neurobiol. 2017;54:3418–27.

    PubMed  CAS  Google Scholar 

  28. Wang X, Liu Y, Sun Y, Liu W, Jin X. Blood brain barrier breakdown was found in non-infarcted area after 2-h MCAO. J Neurol Sci. 2016;363:63–8.

    PubMed  CAS  Google Scholar 

  29. Shu H, Wang M, Song M, Sun Y, Shen X, Zhang J, et al. Acute nicotine treatment alleviates LPS-induced impairment of fear memory reconsolidation through AMPK activation and CRTC1 upregulation in hippocampus. Int J Neuropsychopharmacol. 2020;23:687–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang Y, Wang X, Zhang X, Chen S, Sun Y, Liu W, et al. D1 receptor-mediated endogenous tPA upregulation contributes to blood-brain barrier injury after acute ischaemic stroke. J Cell Mol Med. 2020;24:9255–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke. 2004;35:2659–61.

    PubMed  Google Scholar 

  32. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.

    PubMed  CAS  Google Scholar 

  33. Gong S, Ma H, Zheng F, Huang J, Zhang Y, Yu B, et al. Inhibiting YAP in endothelial cells from entering the nucleus attenuates blood-brain barrier damage during ischemia-reperfusion injury. Front Pharmacol. 2021;12:777680.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–72.

    PubMed  CAS  Google Scholar 

  35. Versele R, Sevin E, Gosselet F, Fenart L, Candela P. TNF-alpha and IL-1beta modulate blood-brain barrier permeability and decrease amyloid-beta peptide efflux in a human blood-brain barrier model. Int J Mol Sci. 2022;23:10235.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Jin X, Liu J, Liu W. Early Ischemic blood brain barrier damage: A potential indicator for hemorrhagic transformation following tissue plasminogen activator (tPA) thrombolysis? Curr Neurovasc Res. 2014;11:254–62.

    PubMed  CAS  Google Scholar 

  37. Jin X, Liu J, Yang Y, Liu KJ, Liu W. Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3h after ischemia onset. Neurobiol Dis. 2012;48:309–16.

    PubMed  Google Scholar 

  38. Shen Y, Gu J, Liu Z, Xu C, Qian S, Zhang X, et al. Inhibition of HIF-1alpha reduced blood brain barrier damage by regulating MMP-2 and vegf during acute cerebral ischemia. Front Cell Neurosci. 2018;12:288.

    PubMed  PubMed Central  Google Scholar 

  39. Sun Y, Chen X, Zhang X, Shen X, Wang M, Wang X, et al. β2-Adrenergic receptor-mediated HIF-1alpha upregulation mediates blood brain barrier damage in acute cerebral ischemia. Front Mol Neurosci. 2017;10:257.

    PubMed  PubMed Central  Google Scholar 

  40. Jin X, Liu J, Liu KJ, Rosenberg GA, Yang Y, Liu W. Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia. Exp Neurol. 2013;240:9–16.

    PubMed  CAS  Google Scholar 

  41. Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012;79:S52–7.

    PubMed  Google Scholar 

  42. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Xu Z, Jiang J, Ford G, Ford BD. Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochem Biophys Res Commun. 2004;322:440–6.

    PubMed  CAS  Google Scholar 

  44. Ayloo S, Gu C. Transcytosis at the blood-brain barrier. Curr Opin Neurobiol. 2019;57:32–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Nag S, Venugopalan R, Stewart DJ. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol. 2007;114:459–69.

    PubMed  CAS  Google Scholar 

  46. Song L, Ge S, Pachter JS. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood. 2007;109:1515–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang CL, Wang HL, Li PC, Hong CD, Chen AQ, Qiu YM, et al. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharmacol Res. 2021;171:105755.

    PubMed  CAS  Google Scholar 

  48. Cui Y, Wang Y, Song X, Ning H, Zhang Y, Teng Y, et al. Brain endothelial PTEN/AKT/NEDD4-2/MFSD2A axis regulates blood-brain barrier permeability. Cell Rep. 2021;36:109327.

    PubMed  CAS  Google Scholar 

  49. Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, et al. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem. 2012;120:147–56.

    PubMed  CAS  Google Scholar 

  50. de Wit NM, Vanmol J, Kamermans A, Hendriks JJA, de Vries HE. Inflammation at the blood-brain barrier: the role of liver X receptors. Neurobiol Dis. 2017;107:57–65.

    PubMed  Google Scholar 

  51. Dohgu S, Banks WA. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by the p38 mitogen-activated protein kinase pathway. Exp Neurol. 2008;210:740–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Erickson MA, Shulyatnikova T, Banks WA, Hayden MR. Ultrastructural remodeling of the blood-brain barrier and neurovascular unit by lipopolysaccharide-induced neuroinflammation. Int J Mol Sci. 2023;24:1640.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.

    PubMed  PubMed Central  Google Scholar 

  54. Xu Z, Ford GD, Croslan DR, Jiang J, Gates A, Allen R, et al. Neuroprotection by neuregulin-1 following focal stroke is associated with the attenuation of ischemia-induced pro-inflammatory and stress gene expression. Neurobiol Dis. 2005;19:461–70.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (LTGY24H090002), the Medical and Health Science and Technology Plan Project of Zhejiang Province (2024KY1685), and Jiaxing Plan of Science and Technology (2022AY30028). This work was also supported by by National Natural Science Foundation of China (81870973, 81671145).

Author information

Authors and Affiliations

Authors

Contributions

WHD, performed the majority experiments. JLD, MS, YYS participated in some experiments. WHD made the figures. XLZ, SXQ, XDL interpreted the data and drafted the manuscript. XLZ, XY, HLF, XQW, YFS, YNH, MHS, and BQZ participated in the study design and provided some suggestions. XLZ, CYX, YPW, and XCJ supervised the study, reviewed the original data, and finalized the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yan-ping Wang, Cong-ying Xu or Xin-chun Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xl., Du, Wh., Qian, Sx. et al. Glial growth factor 2 treatment alleviates ischemia and reperfusion-damaged integrity of the blood-brain barrier through decreasing Mfsd2a/caveolin-1-mediated transcellular and Pdlim5/YAP/TAZ-mediated paracellular permeability. Acta Pharmacol Sin 45, 2241–2252 (2024). https://doi.org/10.1038/s41401-024-01323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-024-01323-7

Keywords

This article is cited by

Search

Quick links