Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Yuanhuacine suppresses head and neck cancer growth by promoting ASCT2 degradation and inhibiting glutamine uptake

Abstract

Head and neck squamous cell carcinoma (HNSCC) cells exhibit a high dependency on glutamine metabolism, making it an attractive target. Despite the well-established link between glutamine reliance and tumor progression, the specific role of glutamine transporters in HNSCC remains poorly understood. The alanine-serine-cysteine transporter 2 (ASCT2), a key glutamine transporter, is overexpressed in HNSCC, and its silencing has been shown to reduce intracellular glutamine and glutathione levels, inhibiting tumor growth. These facts suggest that targeting ASCT2-mediated glutamine uptake could offer a promising therapeutic strategy for HNSCC. But no clinically approved drugs directly target ASCT2, and challenges such as the limited stability of antisense oligonucleotides persist. In this study we evaluated the correlation between ASCT2-mediate glutamine metabolism and its impact on HNSCC patients. We established a virtual screening method followed by cytotoxic assays to identify small molecules that specifically target ASCT2. Among the top 15 candidates, we identified yuanhuacine (YC) as the most potent antitumor compound with IC50 values of 1.43, 6.62, and 6.46 μM against HN6, CAL33, and SCC7 cells, respectively. We demonstrated that YC (0.3–5 μM) dose-dependently induced ASCT2 degradation by recruiting the E3 ubiquitin ligase RNF5, inhibiting glutamine uptake in HN6 cells. This disruption led to mitochondrial dysfunction and enhanced the therapeutic efficacy of YC. Our results highlight YC as a promising regulator of ASCT2-mediated glutamine metabolism in HNSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASCT2 overexpression was correlated with poor clinical outcomes in HNSCC patients.
Fig. 2: YC exerted anti-HNSCC effects by directly binding to ASCT2.
Fig. 3: YC promoted ASCT2 degradation.
Fig. 4: YC induced a glutamine metabolism crisis in HNSCC cells.
Fig. 5: YC induced mitochondrial damage and inhibited mitochondrial function.
Fig. 6: YC exhibited effective anti-tumor effects in vivo.
Fig. 7: Mechanism diagram.

Similar content being viewed by others

References

  1. Khera NRA, Abdulkader M Alkurdi K, Liu Z, Ma H, Waseem A, Teh MT. Identification of multidrug chemoresistant genes in head and neck squamous cell carcinoma cells. Mol Cancer. 2023;22:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chow LQM. Head and neck cancer. N Engl J Med. 2020;382:60–72.

    Article  CAS  PubMed  Google Scholar 

  3. Ludwig R, Pouymayou B, Balermpas P, Unkelbach J. A hidden Markov model for lymphatic tumor progression in the head and neck. Sci Rep. 2021;11:12261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  5. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF. Metabolic imaging of glutamine in cancer. J Nucl Med. 2017;58:533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sagardoy T, Fernandez P, Ghafouri A, Digue L, Haaser T, de Clermont-Galleran H. et al. Accuracy of (18) FDG PET-CT for treatment evaluation 3 months after completion of chemoradio therapy for head and neck squamous cell carcinoma: 2-year minimum follow-up. Head Neck. 2016;38:E1271–6.

    Article  PubMed  Google Scholar 

  8. Zhang Z, Liu R, Shuai Y, Huang Y, Jin R, Wang X, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 2020;122:82–93.

    Article  CAS  PubMed  Google Scholar 

  9. Luo Y, Li W, Ling Z, Hu Q, Fan Z, Cheng B, et al. ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells. Cancer Med. 2020;9:3489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beddok A, Orlhac F, Calugaru V, Champion L, Ala Eddine C, Nioche C, et al. [18F]-FDG PET and MRI radiomic signatures to predict the risk and the ___location of tumor recurrence after re-irradiation in head and neck cancer. Eur J Nucl Med Mol I. 2023;50:559–71.

    Article  CAS  Google Scholar 

  11. Yang L, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng. 2017;19:163–94.

    Article  CAS  PubMed  Google Scholar 

  12. Luo JT, Wang YF, Wang Y, Wang CL, Liu RY, Zhang Z. CircMAT2B facilitates the progression of head and neck squamous cell carcinoma via sponging miR-491-5p to trigger ASCT2-mediated glutaminolysis. Mol Cell Biochem. 2023;478:1067–81.

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Guo Y, Seo W, Zhang R, Lu C, Wang Y, et al. Targeting cellular metabolism to reduce head and neck cancer growth. Sci Rep. 2019;9:4995.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ai C, Sun X, Xiao S, Guo L, Shang M, Shi D, et al. CAFs targeted ultrasound-responsive nanodroplets loaded V9302 and GLULsiRNA to inhibit melanoma growth via glutamine metabolic reprogramming and tumor microenvironment remodeling. J Nanobiotechnol. 2023;21:214.

    Article  CAS  Google Scholar 

  15. Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat Cancer. 2021;2:189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khoury ES, Sharma A, Ramireddy RR, Thomas AG, Alt J, Fowler A, et al. Dendrimer-conjugated glutaminase inhibitor selectively targets microglial glutaminase in a mouse model of Rett syndrome. Theranostics. 2020;10:5736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 2017;3:169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med. 2020;52:1496–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang J, Chen F, Lang L, Yang F, Fu Z, Martinez J, et al. Therapeutic targeting of the GLS1-c-Myc positive feedback loop suppresses glutaminolysis and inhibits progression of head and neck cancer. Cancer Res. 2024;84:3223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. El Ansari R, McIntyre A, Craze ML, Ellis IO, Rakha EA, Green AR. Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology. 2018;72:183–90.

    Article  PubMed  Google Scholar 

  22. Mukha A, Kahya U, Dubrovska A. Targeting glutamine metabolism and autophagy: the combination for prostate cancer radiosensitization. Autophagy. 2021;17:3879–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36:1302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pacifico F, Leonardi A, Crescenzi E. Glutamine metabolism in cancer stem cells: a complex liaison in the tumor microenvironment. Int J Mol Sci. 2023;24:2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cha YJ, Kim ES, Koo JS. Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci. 2018;19:907.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gray KA, Seal RL, Tweedie S, Wright MW, Bruford EA. A review of the new HGNC gene family resource. Hum Genomics. 2016;10:6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 2020;31:267–83.e12.

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Nie L, Jordan A, Cai Q, Liu Y, Li Y, et al. Targeting glutaminase is therapeutically effective in ibrutinib-resistant mantle cell lymphoma. Haematologica. 2022;108:1616–27.

    Article  PubMed Central  Google Scholar 

  29. Ni F, Yu W-M, Li Z, Graham DK, Jin L, Kang S, et al. Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nat Metab. 2019;1:390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teixeira E, Silva C, Martel F. The role of the glutamine transporter ASCT2 in antineoplastic therapy. Cancer Chemoth Pharmacol. 2021;87:447–64.

    Article  CAS  Google Scholar 

  31. Hara Y, Minami Y, Yoshimoto S, Hayashi N, Yamasaki A, Ueda S, et al. Anti-tumor effects of an antagonistic mAb against the ASCT2 amino acid transporter on KRAS-mutated human colorectal cancer cells. Cancer Med. 2020;9:302–12.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki M, Toki H, Furuya A, Ando H. Establishment of monoclonal antibodies against cell surface domains of ASCT2/SLC1A5 and their inhibition of glutamine-dependent tumor cell growth. Biochem Biophys Res Commun. 2017;482:651–7.

    Article  CAS  PubMed  Google Scholar 

  33. Oppedisano F, Catto M, Koutentis PA, Nicolotti O, Pochini L, Koyioni M, et al. Inactivation of the glutamine/amino acid transporter ASCT2 by 1,2,3-dithiazoles: proteoliposomes as a tool to gain insights in the molecular mechanism of action and of antitumor activity. Toxicol Appl Pharmacol. 2012;265:93–102.

    Article  CAS  PubMed  Google Scholar 

  34. Taurino G, Dander E, Chiu M, Pozzi G, Maccari C, Starace R, et al. Asparagine transport through SLC1A5/ASCT2 and SLC38A5/SNAT5 is essential for BCP-ALL cell survival and a potential therapeutic target. Br J Haematol. 2024;205:175–88.

    Article  CAS  PubMed  Google Scholar 

  35. Bröer A, Fairweather S, Bröer S. Disruption of amino acid homeostasis by novel ASCT2 inhibitors involves multiple targets. Front Pharmacol. 2018;9:785.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cormerais Y, Massard PA, Vucetic M, Giuliano S, Tambutté E, Durivault J, et al. The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5). J Biol Chem. 2018;293:2877–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan T, Huang B, Zhang W, Gabos S, Huang DY, Devendran V. Cytotoxicity assessment based on the AUC50 using multi-concentration time-dependent cellular response curves. Anal Chim Acta. 2013;764:44–52.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang L, Yin X, Chen Y-H, Chen Y, Jiang W, Zheng H, et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics. 2021;11:1703–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang C, Li K, Zhu H, Cheng M, Chen S, Ling R, et al. ITGB6 modulates resistance to anti-CD276 therapy in head and neck cancer by promoting PF4+ macrophage infiltration. Nat Commun. 2024;15:7077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cai H, Liang J, Jiang Y, Wang Z, Li H, Wang W, et al. KLF7 regulates super-enhancer-driven IGF2BP2 overexpression to promote the progression of head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2024;43:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu L, Liu Y, Zhang S, Zhang J, Meng Y, Liu D, et al. Celastrol promotes apoptosis of breast cancer MDA-MB-231 cells by targeting HSDL2. Acupunct Herb Med. 2024;4:92–101.

    Article  Google Scholar 

  42. Qu J, Qiu B, Zhang Y, Hu Y, Wang Z, Guan Z, et al. The tumor-enriched small molecule gambogic amide suppresses glioma by targeting WDR1-dependent cytoskeleton remodeling. Signal Transduct Target Ther. 2023;8:424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu TT, Yang H, Zhuo FF, Yang Z, Zhao MM, Guo Q, et al. Atypical E3 ligase ZFP91 promotes small-molecule-induced E2F2 transcription factor degradation for cancer therapy. EBioMedicine. 2022;86:104353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, et al. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell. 2015;27:354–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung CI, Zhang Q, Shu X. Dynamic imaging of small molecule induced protein-protein interactions in living cells with a fluorophore phase transition based approach. Anal Chem. 2018;90:14287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu TJ, Ma D, Liu YY, Xiao Y, Gong Y, Jiang YZ, et al. Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Mol Ther. 2021;29:2350–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sengupta D, Cassel T, Teng KY, Aljuhani M, Chowdhary VK, Hu P, et al. Regulation of hepatic glutamine metabolism by miR-122. Mol Metab. 2020;34:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng S, Wan X, Yang L, Qin Y, Chen S, Liu Y, et al. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKalpha2 to activate oxidative phosphorylation and fatty acid oxidation. J Exp Clin Cancer Res. 2023;42:342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang DX, Zhang JP, Hu JY, Huang YS. The potential regulatory roles of NAD+ and its metabolism in autophagy. Metabolism. 2016;65:454–62.

    Article  CAS  PubMed  Google Scholar 

  51. White AT, Schenk S. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab. 2012;303:E308–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  53. Anto R, Vidya K, Thomas M, Tirkey AJ, Agarwal M, Riju J, et al. Worst pattern of invasion as an independent predictor of lymph node metastasis and prognosis in oral cavity squamous cell carcinoma - a retrospective cohort study. Indian J Otolaryngol Head Neck Surg. 2023;75:440–9.

    Article  PubMed  Google Scholar 

  54. Cheng X, Feng M, Zhang A, Guo J, Gong Y, Hu X, et al. Gambogenic acid induces apoptosis via upregulation of Noxa in oral squamous cell carcinoma. Chin J Nat Med. 2024;22:632–42.

    CAS  PubMed  Google Scholar 

  55. Allevato MM, Trinh S, Koshizuka K, Nachmanson D, Nguyen TC, Yokoyama Y, et al. A genome-wide CRISPR screen reveals that antagonism of glutamine metabolism sensitizes head and neck squamous cell carcinoma to ferroptotic cell death. Cancer Lett. 2024;598:217089.

    Article  CAS  PubMed  Google Scholar 

  56. Song A, Wu L, Zhang BX, Yang QC, Liu YT, Li H, et al. Glutamine inhibition combined with CD47 blockade enhances radiotherapy-induced ferroptosis in head and neck squamous cell carcinoma. Cancer Lett. 2024;588:216727.

    Article  CAS  PubMed  Google Scholar 

  57. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123:3678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou Q, Lin W, Wang C, Sun F, Ju S, Chen Q, et al. Neddylation inhibition induces glutamine uptake and metabolism by targeting CRL3(SPOP) E3 ligase in cancer cells. Nat Commun. 2022;13:3034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nikkuni O, Kaira K, Toyoda M, Shino M, Sakakura K, Takahashi K, et al. Expression of amino acid transporters (LAT1 and ASCT2) in patients with stage III/IV laryngeal squamous cell carcinoma. Pathol Oncol Res. 2015;21:1175–81.

    Article  CAS  PubMed  Google Scholar 

  60. Wen Q, Huang M, Xie J, Liu R, Miao Q, Huang J, et al. lncRNA SYTL5-OT4 promotes vessel co-option by inhibiting the autophagic degradation of ASCT2. Drug Resist Updat. 2023;69:100975.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang H, Zhang N, Tang T, Feng F, Sun H, Qu W. Target the human alanine/serine/cysteine transporter 2(ASCT2): achievement and future for novel cancer therapy. Pharmacol Res. 2020;158:104844.

    Article  CAS  PubMed  Google Scholar 

  62. Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, et al. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med. 2024;22:887–99.

    Article  CAS  PubMed  Google Scholar 

  63. Huang D, Tang Z, Pu X, Wang T, Gao F, Li C. A novel cabazitaxel liposomes modified with ginsenoside Rk1 for cancer targeted therapy. Acupunct Herb Med. 2024;4:113–21.

    Article  Google Scholar 

  64. Yang L, Wang Y, Ye X, Liu Q, Qu D, Chen Y. Traditional Chinese medicine-based drug delivery systems for anti-tumor therapies. Chin J Nat Med. 2024;22:1177–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 82322073, 82173846, 82304790, and 82430119), China Postdoctoral Innovative Talent Support Program (BX20220213), Shanghai Rising-Star Program (No.22QA1409100), Oriental Scholars of Shanghai (TP2022081), Jiangxi Province Thousand Talents Program (jxsq2023102168), Shanghai Shuguang Program (No. 24SG40), National Key R&D Program of China (Grant No. 2024YFC3506600), CAMS Innovation Fund for Medical Sciences (CIFMS) (2023-I2M-3-009), Key project at central government level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302), Shanghai Sailing Program (No. 22YF1445000, 23YF1442600), High-level Key Discipline of National Administration of Traditional Chinese Medicine (No. zyyzdxk-2023071), Innovation team of high-level local universities in Shanghai: Strategic Innovation Team of TCM Chemical Biology, Organizational Key Research and Development Program of Shanghai University of Traditional Chinese Medicine [No. 2023YZZ02], supported by the State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine. We thank the staff members of the Large-scale Protein Preparation System (https://cstr.cn/31129.02.NFPS.LSPS) at the National Facility for Protein Science in Shanghai (https://cstr.cn/31129.02.NFPS), for providing technical support and assistance in data collection and analysis. We acknowledge the online drawing software for figure creation (BioRender, https://biorender.com).

Author information

Authors and Affiliations

Authors

Contributions

XYC, XC, and XHL: Writing—original draft. DL, QYX, XXL, and JYL: Methodology. RRP: Provision of compounds. LJZ and HZC: Investigation. JMJ, WDZ, and XL: Review & editing and conceptualization.

Corresponding authors

Correspondence to Jin-mei Jin, Wei-dong Zhang or Xin Luan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xy., Chen, X., Liang, Xh. et al. Yuanhuacine suppresses head and neck cancer growth by promoting ASCT2 degradation and inhibiting glutamine uptake. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01562-2

Keywords

Search

Quick links