Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contrastive learning-based drug screening model for GluN1/GluN3A inhibitors

Abstract

GluN3A-containing NMDA receptors have recently emerged as promising therapeutic targets for neurological disorders. However, discovering potent modulators remains a significant challenge, primarily due to the limitations of traditional high-throughput screening methods. In this study, we introduce a novel drug-target affinity prediction method, CLG-DTA, designed to enhance drug discovery for the GluN1/GluN3A receptor. This graph contrastive learning-based method incorporates natural language supervision by transforming regression labels into textual representation, and integrating them with traditional affinity data to enhance molecular representation. Additionally, a numerical knowledge graph is employed to refine continuous text embeddings, enabling precise modeling of complex drug-target interactions across diverse data modalities. Using CLG-DTA, we screened a library of 18 million compounds and identified 12 candidates for experimental validation. Among them, five compounds exhibited significant activity, with Boeravinone E demonstrating the highest potency (\({{{\rm{IC}}}}_{50}\) = 3.40 \(\pm\) 0.91 μM). These findings highlight the potential of CLG-DTA in accelerating the identification of promising GluN1/GluN3A modulators and lay a robust foundation for future therapeutic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The workflow of the CLG-DTA model for target-based drug discovery.
Fig. 2: Contrastive learning pre-training framework.
Fig. 3: Pre-training phase with CN-KG constraint and fine-tuning.
Fig. 4: Visualization of MSE and PCC results on different datasets across four test experimental scenarios.
Fig. 5: Effects of Boeravinone E on GluN1/GluN3A receptor.
Fig. 6: Predicted binding of Boeravinone E to the GluN1/GluN3A receptor.

Similar content being viewed by others

References

  1. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature. 1998;393:377–81.

    Article  CAS  PubMed  Google Scholar 

  2. Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci. 2001;21:1228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002;415:793–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ciabarra AM, Sullivan J, Gahn LG, Pecht G, Heinemann S, Sevarino KA. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci. 1995;15:6498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci. 1995;15:6509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, et al. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol. 2002;87:2052–63.

    Article  CAS  PubMed  Google Scholar 

  7. Seki T, Namba T, Mochizuki H, Onodera M. Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus. J Comp Neurol. 2007;502:275–90.

    Article  CAS  PubMed  Google Scholar 

  8. Murillo A, Navarro AI, Puelles E, Zhang Y, Petros TJ, Pérez-Otaño I. Temporal dynamics and neuronal specificity of Grin3a expression in the mouse forebrain. Cereb Cortex. 2021;31:1914–26.

    Article  PubMed  Google Scholar 

  9. Mueller HT, Meador-Woodruff JH. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res. 2004;71:361–70.

    Article  PubMed  Google Scholar 

  10. Marco S, Giralt A, Petrovic MM, Pouladi MA, Martínez-Turrillas R, Martínez-Hernández J, et al. Suppressing aberrant GluN3A expression rescues NMDA receptor dysfunction, synapse loss and motor and cognitive decline in Huntington’s disease models. Nat Med. 2013;19:1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfisterer U, Petukhov V, Demharter S, Meichsner J, Thompson JJ, Batiuk MY, et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat Commun. 2020;11:5038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan T, Mameli M, O’Connor EC, Dey PN, Verpelli C, Sala C, et al. Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. Neuron. 2013;80:1025–38.

    Article  CAS  PubMed  Google Scholar 

  13. Bossi S, Pizzamiglio L, Paoletti P. Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling. Trends Neurosci. 2023;46:667–81.

    Article  CAS  PubMed  Google Scholar 

  14. Grand T, Abi Gerges S, David M, Diana MA, Paoletti P. Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat Commun. 2018;9:4769.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Otsu Y, Darcq E, Pietrajtis K, Mátyás F, Schwartz E, Bessaih T, et al. Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula. Science. 2019;366:250–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bossi S, Dhanasobhon D, Ellis-Davies GC, Frontera J, Van Velze MdB, Lourenco J, et al. GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron. 2022;110:2438–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeng Y, Zheng Y, Zhang T, Ye F, Zhan L, Kou Z, et al. Identification of a subtype- selective allosteric inhibitor of GluN1/GluN3 NMDA receptors. Front Pharmacol. 2022;13:888308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hemelikova K, Kolcheva M, Skrenkova K, Kaniakova M, Horak M. Lectins modulate the functional properties of GluN1/GluN3-containing NMDA receptors. Neuropharmacology. 2019;157:107671.

    Article  CAS  PubMed  Google Scholar 

  19. Kvist T, Greenwood JR, Hansen KB, Traynelis SF, Bräuner-Osborne H. Structure- based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology. 2013;75:324–36.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Z, Yi F, Epplin MP, Liu D, Summer SL, Mizu R, et al. Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology. 2020;176:108117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Hu Y, Han N, Yang A, Liu X, Cai H. A survey of drug-target interaction and affinity prediction methods via graph neural networks. Computers Biol Med. 2023;163:107136.

    Article  CAS  Google Scholar 

  22. Wu H, Liu J, Jiang T, Zou Q, Qi S, Cui Z, et al. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism. Neural Netw. 2024;169:623–36.

    Article  PubMed  Google Scholar 

  23. Bai G, Pan Y, Zhang Y, Li Y, Wang J, Wang Y, et al. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives. Food Chem. 2023;429:136836.

  24. Asiamah I, Obiri SA, Tamekloe W, Armah FA, Borquaye LS. Applications of molecular docking in natural products-based drug discovery. Sci Afr. 2023;20:e01593.

    CAS  Google Scholar 

  25. Agu P, Afiukwa C, Orji O, Ezeh E, Ofoke I, Ogbu C, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13:13398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rácz A, Bajusz D, Héberger K. Effect of dataset size and train/test split ratios in QSAR/QSPR multiclass classification. Molecules. 2021;26:1111.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gentile F, Agrawal V, Hsing M, Ton AT, Ban F, Norinder U, et al. Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci. 2020;6:939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohanty M, Mohanty PS. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatshefte für Chem-Chem Monthly. 2023;154:683–707.

    Article  CAS  Google Scholar 

  29. Kamal IM, Chakrabarti S. MetaDOCK: a combinatorial molecular docking approach. ACS Omega. 2023;8:5850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol. 2018;9:1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Z, Zhu M, Kang Y, Leung ELH, Lei T, Shen C, et al. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Brief Bioinforma. 2021;22:bbaa321.

    Article  Google Scholar 

  32. Du L, Geng C, Zeng Q, Huang T, Tang J, Chu Y, et al. Dockey: a modern integrated tool for large-scale molecular docking and virtual screening. Brief Bioinform. 2023;24:bbad047.

    Article  PubMed  Google Scholar 

  33. Jayapriya J, Arock M. Aligning molecular sequences by wavelet transform using cross correlation similarity metric. Int J Intell Syst Appl(IJISA). 2017;9:62–70.

    Google Scholar 

  34. Anakal S, Sandhya P. Decision support system for drug-drug interaction pertaining to COPD and its comorbidities. Int J Educ Manag Eng. 2022;12:1.

    Google Scholar 

  35. Muhammed MT, Aki-Yalcin E. Molecular docking: principles, advances, and its applications in drug discovery. Lett Drug Des Discov. 2024;21:480–95.

    Article  CAS  Google Scholar 

  36. Lewis RA, Wood D. Modern 2D QSAR for drug discovery. Wiley Interdiscip Rev: computational Mol Sci. 2014;4:505–22.

    CAS  Google Scholar 

  37. Chen S, Xue D, Chuai G, Yang Q, Liu Q. FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery. Bioinformatics. 2020;36:5492–8.

    Article  CAS  Google Scholar 

  38. Tropsha A, Isayev O, Varnek A, Schneider G, Cherkasov A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nat Rev Drug Discov. 2024;23:141–55.

    Article  PubMed  Google Scholar 

  39. Li K, Liu W, Luo Y, Cai X, Wu J, Hu W. Zero-shot Learning for Preclinical Drug Screening. In: Larson K, editor. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24. International Joint Conferences on Artificial Intelligence Organization; 2024. p. 2117-25. Main Track. Available from: https://doi.org/10.24963/ijcai.2024/234.

  40. Özçelik R, Bag A, Atil B, Barsbey M, Özgür A, Ozkirimli E. A framework for improving the generalizability of drug-target affinity prediction models. J Comput Biol. 2023;30:1226–39.

    Article  PubMed  Google Scholar 

  41. Li T, Zhao XM, Li L. Co-VAE: Drug-target binding affinity prediction by co-regularized variational autoencoders. IEEE Trans Pattern Anal Mach Intell. 2021;44:8861–73.

    Article  Google Scholar 

  42. Monteiro NR, Oliveira JL, Arrais JP. TAG-DTA: Binding-region-guided strategy to predict drug-target affinity using transformers. Expert Syst Appl. 2024;238:122334.

    Article  Google Scholar 

  43. Li K, Gong X, Wu J, Hu W. Contrastive learning drug response models from natural language supervision. In: Larson K, editor. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24. International Joint Conferences on Artificial Intelligence Organization; 2024. p. 2126–34. Main Track. Available from: https://doi.org/10.24963/ijcai.2024/235.

  44. Li YC, You ZH, Yu CQ, Wang L, Wong L, Hu L, et al. PPAEDTI: personalized propagation auto-encoder model for predicting drug-target interactions. IEEE J Biomed Health Inform. 2022;27:573–82.

    Article  Google Scholar 

  45. Zha K, Cao P, Son J, Yang Y, Katabi D. Rank-n-contrast: learning continuous representations for regression. Adv Neural Info Proc Syst. 2024;36:17882–903.

  46. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29:1046–51.

    Article  CAS  PubMed  Google Scholar 

  47. He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines. J Cheminform. 2017;9:1–14.

    Article  Google Scholar 

  48. Tang J, Szwajda A, Shakyawar S, Xu T, Hintsanen P, Wennerberg K, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J Chem Inf Modeling. 2014;54:735–43.

    Article  CAS  Google Scholar 

  49. Zhang S, Tong H, Xu J, Maciejewski R. Graph convolutional networks: a comprehensive review. Comput Soc Netw. 2019;6:1–23.

    Article  Google Scholar 

  50. Han K, Xiao A, Wu E, Guo J, Xu C, Wang Y. Transformer in transformer. Adv Neural Inf Process Syst. 2021;34:15908–19.

    Google Scholar 

  51. Halgren T. New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des. 2007;69:146–8.

    Article  CAS  PubMed  Google Scholar 

  52. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

    Article  CAS  PubMed  Google Scholar 

  53. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Computer-aided Mol Des. 2007;21:681–91.

    Article  CAS  Google Scholar 

  54. Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Modeling. 2011;51:408–19.

    Article  CAS  Google Scholar 

  55. Ballester PJ, Mitchell JB. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics. 2010;26:1169–75.

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Leung KS, Wong MH, Ballester PJ. Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules. 2015;20:10947–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Modeling. 2010;50:742–54.

    Article  CAS  Google Scholar 

  58. Cao DS, Xu QS, Liang YZ. propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics. 2013;29:960–2.

    Article  CAS  PubMed  Google Scholar 

  59. Wang S, Song X, Zhang Y, Zhang K, Liu Y, Ren C, et al. MSGNN-DTA: multi-scale topological feature fusion based on graph neural networks for drug-target binding affinity prediction. Int J Mol Sci. 2023;24:8326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vrahatis AG, Lazaros K, Kotsiantis S. Graph attention networks: a comprehensive review of methods and applications. Future Internet. 2024;16:318.

    Article  Google Scholar 

  61. Chu Z, Huang F, Fu H, Quan Y, Zhou X, Liu S, et al. Hierarchical graph representation learning for the prediction of drug-target binding affinity. Inf Sci. 2022;613:507–23.

    Article  Google Scholar 

  62. Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, et al. Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Springer Topics in Signal Processing, Vol 2. Berlin, Heidelberg: Springer; 2009. p. 1–4. https://doi.org/10.1007/978-3-642-00296-0_5.

  63. Sedgwick P. Spearman’s rank correlation coefficient. BMJ. 2014;349:g7327.

  64. Harrell JrFE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.

    Article  PubMed  Google Scholar 

  65. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007;35:D198–D201.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery. Signal Transduct Target Ther. 2024;9:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Borrelli F, Ascione V, Capasso R, Izzo AA, Fattorusso E, Taglialatela-Scafati O. Spasmolytic effects of nonprenylated rotenoid constituents of Boerhaavia diffusa Roots. J Nat Products. 2006;69:903–6.

    Article  CAS  Google Scholar 

  68. Linghu L, Fan H, Hu Y, Zou Y, Yang P, Lan X, et al. Mirabijalone E: a novel rotenoid from Mirabilis himalaica inhibited A549 cell growth in vitro and in vivo. J Ethnopharmacol. 2014;155:326–33.

    Article  CAS  PubMed  Google Scholar 

  69. Borrelli F, Milic N, Ascione V, Capasso R, Izzo AA, Capasso F, et al. Isolation of new rotenoids from Boerhaavia diffusa and evaluation of their effect on intestinal motility. Planta Med. 2005;71:928–32.

    Article  CAS  PubMed  Google Scholar 

  70. Liu T, Ren Q, Wang S, Gao J, Shen C, Zhang S, et al. Chemical modification of polysaccharides: a review of synthetic approaches, biological activity and the structure–activity relationship. Molecules. 2023;28:6073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li F, Deng H, Renata H. Chemoenzymatic approaches for exploring structure–activity relationship studies of bioactive natural products. Nat Synth. 2023;2:708–18.

    Article  CAS  Google Scholar 

  72. Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Product Rep. 2024;41:1543–78.

  73. Shalini R, Mohan R. Drugs relationship discovery using hypergraph. Int J Inf Technol Comput Sci. 2018;10:54–63.

    Google Scholar 

  74. Schlick T, Portillo-Ledesma S. Biomolecular modeling thrives in the age of technology. Nat Comput Sci. 2021;1:321–31.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dawson KA, Yan Y. Current understanding of biological identity at the nanoscale and future prospects. Nat Nanotechnol. 2021;16:229–42.

    Article  CAS  PubMed  Google Scholar 

  76. Petrén H, Köllner TG, Junker RR. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. N Phytologist. 2023;237:2478–92.

    Article  Google Scholar 

  77. Naishima NL, Faizan S, Raju RM, Sruthi ASVL, Veena N, Sharma GK, et al. Design, synthesis, analysis, evaluation of cytotoxicity against MCF-7 breast cancer cells, 3D QSAR studies and EGFR, HER2 inhibition studies on novel biginelli 1, 4-dihydropyrimidines. J Mol Struct. 2023;1277:134848.

    Article  CAS  Google Scholar 

  78. Bai Q, Liu S, Tian Y, Xu T, Banegas-Luna AJ, Pérez-Sánchez H, et al. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip Rev: Comput Mol Sci. 2022;12:e1581.

    CAS  Google Scholar 

  79. Al-Majmar NA, Mohsen AA, Al-Thulathi MS. Development a model for drug interaction prediction based on patient state. Int J Intell Syst Appl. 2022;13:28.

    Google Scholar 

  80. Tazeen N, Rani KS. A novel ant colony based DBN framework to analyze the drug reviews. Int J Intell Syst Appl. 2021;13:25.

    Google Scholar 

  81. Devi RV, Sathya SS, Kumar N, Coumar MS. Multi-objective monkey algorithm for drug design. Int J Intell Syst Appl. 2019;11:31.

    Google Scholar 

  82. Nag A, Karforma S. Adaptive dictionary-based compression of protein sequences. Int J Educ Manag Eng. 2017;5:1–6.

    CAS  Google Scholar 

  83. Mohamed EM. Enhanced PROBCONS for multiple sequence alignment in cloud computing. IJ Inf Technol Computer Sci. 2019;9:38–47.

    Google Scholar 

  84. Majumder A. Multiple features based approach to extract bio-molecular event triggers using conditional random field. Int J Intell Syst Appl. 2012;4:41.

    Google Scholar 

  85. Cerna PD, Abdulahi TJ, Abdulahi T. Prediction of anti-retroviral drug consumption for HIV patient in hospital pharmacy using data mining technique. Int J Inf Technol Computer Sci. 2016;8:52–9.

    Google Scholar 

  86. Liu Y, Aickelin U. Feature selection in detection of adverse drug reactions from the Health Improvement Network (THIN) database. Int J Inf Technol Comput Sci. 2015;7:68–85.

  87. Pashaa MK, Munawara K, Qureshib AT. Application of the docking protocol optimization for inhibitors of IGF-1R and IR and understanding them through artificial intelligence and bibliography. IJ Educ Manag Eng. 2021;4:1–11.

    Google Scholar 

  88. Ye Q, Hsieh CY, Yang Z, Kang Y, Chen J, Cao D, et al. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun. 2021;12:6775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Key Research and Development Program of China (2023YFC2705700 to WBH), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0830403 to ZBG), National Science Foundation of China (No. 62476203 to WBH), the Guangdong Provincial Natural Science Foundation General Project (No. 2025A1515012155 to WBH), the National Science and Technology Innovation 2030 Major Program (2021ZD0200900), Open Fund for Research Projects of the Ministry of Education Key Laboratory of Embedded System and Service Computing, Tongji University (No. ESSCKF2024-01), and Key Program of Hubei Natural Science Foundation Traditional Chinese Medicine Innovation and Development Joint Fund (2025AFD470).

Author information

Authors and Affiliations

Authors

Contributions

WBH and ZBG designed the study. KL, YDX, Yan Z, BD, and WBH developed the computational methods. Yue Z, HCW, and SF performed the activity validation. ZYQ and YDX conducted homology modeling and molecular docking analyses. KL, Yue Z, ZBG, and WBH drafted the original manuscript. KL, Yue Z, YDX, HCW, SF, Yue Z, BD, ZBG, and WBH edited and reviewed the manuscript before submission.

Corresponding authors

Correspondence to Yan Zhu, Bo Du, Zhao-bing Gao or Wen-bin Hu.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zeng, Y., Xiong, Yd. et al. Contrastive learning-based drug screening model for GluN1/GluN3A inhibitors. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01580-0

Keywords

Search

Quick links