Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PYRCR alleviates myocardial ischemia/reperfusion injury in mice via inhibiting DRG2-mediated cardiomyocyte pyroptosis

Abstract

Circular RNAs (circRNAs) are a distinct class of endogenous RNAs characterized by their covalently closed circular structure. CircRNAs play crucial regulatory roles in various biological processes and pathogenesis. In this study we investigated the role of circRNAs in cardiomyocyte pyroptosis and underlying mechanisms. Ischemia/reperfusion (I/R)-induced myocardial injury was induced in mice by ligation of the left anterior descending coronary artery (LAD). Neonatal mouse cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) assault. By using circRNA microarray, we found that the expression levels of a pyroptosis-related circRNA (designated PYRCR) were markedly decreased in H/R-exposed cardiomyocytes and I/R-injured mouse hearts. Overexpression of PYRCR inhibited cardiomyocyte pyroptosis, attenuated I/R-induced myocardial infarction and ameliorated cardiac function in mice. By RNA pull-down assays coupled with MS analysis followed by molecular validation, we identified developmental regulated GTP-binding protein 2 (DRG2) as the direct downstream target of PYRCR. Cardiac-specific DRG2 knockout mice displayed attenuated pyroptosis and enhanced cardiac function following I/R injury compared to DRG2fl/fl controls. DRG2 directly bound to dynamin-related protein 1 (Drp1), the master regulator of mitochondrial fission, and enhanced its protein stability and expression. Importantly, PYRCR competitively disrupted the DRG2-Drp1 interaction, thereby suppressing DRG2-mediated Drp1 expression and subsequently reducing mitochondrial fission, cardiomyocyte pyroptosis, and myocardial damage. In conclusion, we demonstrate that PYRCR, a novel pyroptosis-related circRNA, protects against I/R-induced myocardial injury through the DRG2-mediated modulation of Drp1 activity, offering promising new therapeutic strategies for preventing cardiac damage mediated by cardiomyocyte pyroptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and characterization of cardiac pyroptosis-associated circRNAs.
Fig. 2: PYRCR attenuates pyroptosis in vivo.
Fig. 3: PYRCR inhibits H/R-induced pyroptosis in cardiomyocytes.
Fig. 4: PYRCR interacts with Drg2 and maintains its stability.
Fig. 5: Drg2 regulates pyroptosis in vitro.
Fig. 6: Drg2 regulates pyroptosis in vivo.
Fig. 7: DRG2 binds to Drp1 and promotes its protein stability.
Fig. 8: PYRCR regulates mitochondrial fission and cardiomyocyte pyroptosis by targeting DRG2/Drp1.

Similar content being viewed by others

Data availability

All data generated in the present study may be requested from the corresponding author.

References

  1. Mohebi R, Chen C, Ibrahim NE, McCarthy CP, Gaggin HK, Singer DE, et al. Cardiovascular disease projections in the United States based on the 2020 census estimates. J Am Coll Cardiol. 2022;80:565–78.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bozkurt B, Ahmad T, Alexander KM, Baker WL, Bosak K, Breathett K, et al. Heart failure epidemiology and outcomes statistics: a report of the heart failure society of America. J Card Fail. 2023;29:1412–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–e743.

    Article  PubMed  Google Scholar 

  4. Sabolová G, Kočan L, Rabajdová M, Rapčanová S, Vašková J. Association of inflammation, oxidative stress, and deteriorated cognitive functions in patients after cardiac surgery. Vessel Plus. 2024;8:27.

  5. Botros M, Fadah K, Mukherjee D. The role of inflammatory response in the development of atherosclerosis, myocardial infarction, and remodeling. Vessel. 2024;8:31.

    Google Scholar 

  6. Ying L, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiol. 2021;231:e13541.

    Article  CAS  Google Scholar 

  7. Ju J, Song YN, Wang K. Mechanism of ferroptosis: a potential target for cardiovascular diseases treatment. Aging Dis. 2021;12:261–76.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shen S, Wang Z, Sun H, Ma L. Role of NLRP3 inflammasome in myocardial ischemia-reperfusion injury and ventricular remodeling. Med Sci Monit. 2022;28:e934255.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9:113–4.

    Article  CAS  PubMed  Google Scholar 

  10. Vande Walle L, Lamkanfi M. Pyroptosis. Current Biol CB. 2016;26:R568–r72.

    Article  CAS  Google Scholar 

  11. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ. 2002;9:358–61.

    Article  CAS  PubMed  Google Scholar 

  12. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.

    Article  CAS  PubMed  Google Scholar 

  13. Schmid-Burgk JL, Gaidt MM, Schmidt T, Ebert TS, Bartok E, Hornung V. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur J Immunol. 2015;45:2911–7.

    Article  CAS  PubMed  Google Scholar 

  14. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  15. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 1976;73:3852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280:339–40.

    Article  CAS  PubMed  Google Scholar 

  17. Zaug AJ, Grabowski PJ, Cech TR. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction. Nature. 1983;301:578–83.

    Article  CAS  PubMed  Google Scholar 

  18. Mehta SL, Chokkalla AK, Bathula S, Arruri V, Chelluboina B, Vemuganti R. CDR1as regulates α-synuclein-mediated ischemic brain damage by controlling miR-7 availability. Mol Ther Nucleic Acids. 2023;31:57–67.

    Article  CAS  PubMed  Google Scholar 

  19. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38:e100836.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

    Article  CAS  PubMed  Google Scholar 

  22. Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37:2602–11.

    Article  CAS  PubMed  Google Scholar 

  23. Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 2017;7:3842–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38:1402–12.

    CAS  PubMed  Google Scholar 

  25. Schenker T, Lach C, Kessler B, Calderara S, Trueb B. A novel GTP-binding protein which is selectively repressed in SV40 transformed fibroblasts. J Biol Chem. 1994;269:25447–53.

    Article  CAS  PubMed  Google Scholar 

  26. Li B, Trueb B. DRG represents a family of two closely related GTP-binding proteins. Biochim Biophys Acta. 2000;1491:196–204.

    Article  CAS  PubMed  Google Scholar 

  27. Mani M, Thao DT, Kim BC, Lee UH, Kim DJ, Jang SH, et al. DRG2 knockdown induces Golgi fragmentation via GSK3β phosphorylation and microtubule stabilization. Biochim Biophys Acta Mol Cell Res. 2019;1866:1463–74.

    Article  CAS  PubMed  Google Scholar 

  28. Vo MT, Ko MS, Lee UH, Yoon EH, Lee BJ, Cho WJ, et al. Developmentally regulated GTP-binding protein 2 depletion leads to mitochondrial dysfunction through downregulation of dynamin-related protein 1. Biochem Biophys Res Commun. 2017;486:1014–20.

    Article  CAS  PubMed  Google Scholar 

  29. Mani M, Lee UH, Yoon NA, Yoon EH, Lee BJ, Cho WJ, et al. Developmentally regulated GTP-binding protein 2 is required for stabilization of Rac1-positive membrane tubules. Biochem Biophys Res Commun. 2017;493:758–64.

    Article  CAS  PubMed  Google Scholar 

  30. Yoon NA, Jung SJ, Choi SH, Ryu JH, Mani M, Lee UH, et al. DRG2 supports the growth of primary tumors and metastases of melanoma by enhancing VEGF-A expression. FEBS J. 2020;287:2070–86.

    Article  CAS  PubMed  Google Scholar 

  31. Lim HR, Vo MT, Kim DJ, Lee UH, Yoon JH, Kim HJ, et al. DRG2 deficient mice exhibit impaired motor behaviors with reduced striatal dopamine release. Int J Mol Sci. 2019;21:60.

  32. Le AN, Park SS, Le MX, Lee UH, Ko BK, Lim HR, et al. DRG2 depletion promotes endothelial cell senescence and vascular endothelial dysfunction. Int J Mol Sci. 2022;23:2877.

  33. Lee GJ, Yan L, Vatner DE, Vatner SF. Mst1 inhibition rescues beta1-adrenergic cardiomyopathy by reducing myocyte necrosis and non-myocyte apoptosis rather than myocyte apoptosis. Basic Res Cardiol. 2015;110:7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Duan Y, Li Q, Wu J, Zhou C, Liu X, Yue J, et al. A detrimental role of endothelial S1PR2 in cardiac ischemia-reperfusion injury via modulating mitochondrial dysfunction, NLRP3 inflammasome activation, and pyroptosis. Redox Biol. 2024;75:103244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 2020;34:101523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo YW, Zhu L, Duan YT, Hu YQ, Li LB, Fan WJ, et al. Ruxolitinib induces apoptosis and pyroptosis of anaplastic thyroid cancer via the transcriptional inhibition of DRP1-mediated mitochondrial fission. Cell Death Dis. 2024;15:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang B, Wang J, Qiao J, Zhang Q, Liu Q, Tan Y, et al. Circ DENND4C inhibits pyroptosis and alleviates ischemia-reperfusion acute kidney injury by exosomes secreted from human urine-derived stem cells. Chem Biol Interact. 2024;391:110922.

    Article  CAS  PubMed  Google Scholar 

  38. Yang D, Zhao D, Ji J, Wang C, Liu N, Bao X, et al. CircRNA_0075723 protects against pneumonia-induced sepsis through inhibiting macrophage pyroptosis by sponging miR-155-5p and regulating SHIP1 expression. Front Immunol. 2023;14:1095457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu S, Ge Y, Wang X, Yin W, Zhu X, Wang J, et al. Circ-USP9X interacts with EIF4A3 to promote endothelial cell pyroptosis by regulating GSDMD stability in atherosclerosis. Clin Exp Hypertens. 2023;45:2186319.

    Article  PubMed  Google Scholar 

  40. Yuan Q, Sun Y, Yang F, Yan D, Shen M, Jin Z, et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Sig Transduct Target Ther. 2023;8:99.

    Article  CAS  Google Scholar 

  41. Xu C, Li H, Zhang L, Jia T, Duan L, Lu C. MicroRNA‑1915‑3p prevents the apoptosis of lung cancer cells by downregulating DRG2 and PBX2. Mol Med Rep. 2016;13:505–12.

    Article  CAS  PubMed  Google Scholar 

  42. Kim SC, Lee WH, Kim SH, Abdulkhayevich AA, Park JW, Kim YM, et al. Developmentally regulated GTP-binding protein 2 levels in prostate cancer cell lines impact docetaxel-induced apoptosis. Investig Clin Urol. 2021;62:485–95.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol. 2022;19:723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Chen Chen and Prof. Dao-wen Wang from Tongji Hospital, Huazhong University of Science and Technology, for providing samples from patients with heart failure and healthy subjects. The mechanism diagram in the article: “By figdraw.com”.

Funding

This work was supported by the National Natural Science Foundation of China (82370291, 82401019, 82270288), the Open Project Program of State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University (HDHY2024007), Qingdao Science and Technology Benefiting the People Demonstration Project (24-1-8-smjk-7-nsh), Major Basic Research Projects in Shandong Province (ZR2024ZD46), Taishan Scholar Distinguished Expert, China Postdoctoral Science Foundation (2024M761553) and Shandong Provincial Natural Science Foundation (ZR2024QH184).

Author information

Authors and Affiliations

Authors

Contributions

KW, XQG, YHZ, and FL designed and supervised the experiments. XZC, HFX, XMZ, JHR, FHL and LYZ performed the experiments. CYL, YQW, SMY, XZC and HFX analyzed the data. XQG, KW, YHZ and XZC wrote the manuscript.

Corresponding authors

Correspondence to Fang Liu, Yu-hui Zhang, Kun Wang or Xiang-qian Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All the animal studies conformed to Directive 2010/63/EU of the European Parliament and were approved by the Biomedical Research Ethics Committee of Qingdao University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xz., Xu, Hf., Zhao, Xm. et al. PYRCR alleviates myocardial ischemia/reperfusion injury in mice via inhibiting DRG2-mediated cardiomyocyte pyroptosis. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01604-9

Keywords

Search

Quick links