Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology

Dietary intake of isoflavones and coumestrol and risk of pancreatic cancer in the prostate, lung, colorectal, and ovarian cancer screening trial

Abstract

Background

Although phytoestrogens modulated pancreatic tumour growth in experimental studies, it remains unclear whether phytoestrogen intake is associated with pancreatic cancer.

Methods

Of 92,278 persons who completed the Diet History Questionnaire in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, 346 were diagnosed with pancreatic cancer within a median follow-up of 9.4 years. Cox proportional hazards regression was used to evaluate pancreatic cancer risk in relation to phytoestrogen intake.

Results

After adjustment for confounders, intakes of glycitein and formononetin were associated with a reduced risk of pancreatic cancer [highest vs. lowest quartile, hazard ratio (HR) (95% confidence interval (CI)) for glycitein: 0.60 (0.39, 0.92); P for linear trend: 0.01; HR for formononetin: 0.51 (0.37, 0.70); P for linear trend: 0.005]. These associations were stronger and their linear trends across the quartiles of intakes were more statistically significant among ever smokers than never-smokers. A reduced risk was also observed for ever smokers in the highest quartile of total isoflavones or daidzein compared with those in the lowest quartile.

Conclusions

Our study suggests that high intakes of total isoflavones and some individual isoflavones were inversely associated with pancreatic cancer risk, but this potential protective effect was confined to ever smokers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

PLCO data analysed in the present study will be provided upon request, pending approval from the National Cancer Institute. Data requests can be made via the Cancer Data Access System at https://cdas.cancer.gov/plco/.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    PubMed  Google Scholar 

  2. NIH National Cancer Institute SEER Program. Cancer Stat Facts: Pancreatic Cancer. 2024. https://seer.cancer.gov/statfacts/html/pancreas.html.

  3. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18:493–502.

    PubMed  PubMed Central  Google Scholar 

  4. Torrens-Mas M, Roca P. Phytoestrogens for cancer prevention and treatment. Biology. 2020;9:427.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Murphy PA, Barua K, Hauck CC. Solvent extraction selection in the determination of isoflavones in soy foods. J Chromatogr B Anal Technol Biomed Life Sci. 2002;777:129–38.

    CAS  Google Scholar 

  6. Rietjens I, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharm. 2017;174:1263–80.

    CAS  Google Scholar 

  7. Andres S, Abraham K, Appel KE, Lampen A. Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol. 2011;41:463–506.

    CAS  PubMed  Google Scholar 

  8. Yamagiwa Y, Sawada N, Shimazu T, Yamaji T, Goto A, Takachi R, et al. Soy food intake and pancreatic cancer risk: the Japan Public Health Center-based prospective study. Cancer Epidemiol Biomark Prev. 2020;29:1214–21.

    Google Scholar 

  9. McGuinness EE, Morgan RG, Wormsley KG. Fate of pancreatic nodules induced by raw soya flour in rats. Gut. 1987;28:207–12.

    PubMed  PubMed Central  Google Scholar 

  10. Lyn-Cook BD, Stottman HL, Yan Y, Blann E, Kadlubar FF, Hammons GJ. The effects of phytoestrogens on human pancreatic tumor cells in vitro. Cancer Lett. 1999;142:111–9.

    CAS  PubMed  Google Scholar 

  11. Bhardwaj V, Tadinada SM, Jain A, Sehdev V, Daniels CK, Lai JC, et al. Biochanin A reduces pancreatic cancer survival and progression. Anticancer Drugs. 2014;25:296–302.

    CAS  PubMed  Google Scholar 

  12. Zhu CS, Pinsky PF, Kramer BS, Prorok PC, Purdue MP, Berg CD, et al. The prostate, lung, colorectal, and ovarian cancer screening trial and its associated research resource. J Natl Cancer Inst. 2013;105:1684–93.

    PubMed  PubMed Central  Google Scholar 

  13. Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol. 2001;154:1089–99.

    CAS  PubMed  Google Scholar 

  14. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135:1114–26.

    CAS  PubMed  Google Scholar 

  15. NIH National Cancer Institute Cancer Data Access System. Main Questionnaires. 2024. https://cdas.cancer.gov/learn/plco/early-qx/dhq/.

  16. Bhagwat S, Haytowithz DB, Holden JM. USDA Database for the Isoflavone Content of Selected Foods. Release 2.0. September 2008. 2024. https://www.ars.usda.gov/ARSUserFiles/80400525/data/isoflav/isoflav_r2.pdf.

  17. Cancer Data Access System. DHQ dataset: data dictionary, appendix 2: nutrient. U.S. Department of Health and Human Services. 2024. https://cdas.cancer.gov/datasets/plco/98/.

  18. Capasso M, Franceschi M, Rodriguez-Castro KI, Crafa P, Cambie G, Miraglia C, et al. Epidemiology and risk factors of pancreatic cancer. Acta Biomed. 2018;89:141–6.

    PubMed  Google Scholar 

  19. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research. Stat Med. 2010;29:1037–57.

    PubMed  Google Scholar 

  20. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65:1220S–1228S.

    CAS  PubMed  Google Scholar 

  21. Fan Y, Wang M, Li Z, Jiang H, Shi J, Shi X, et al. Intake of soy, soy isoflavones and soy protein and risk of cancer incidence and mortality. Front Nutr. 2022;9:847421.

    PubMed  PubMed Central  Google Scholar 

  22. Messina M, Nagata C, Wu AH. Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer. 2006;55:1–12.

    CAS  PubMed  Google Scholar 

  23. Wang Q, Huang H, Zhao N, Ni X, Udelsman R, Zhang Y. Phytoestrogens and thyroid cancer risk: a population-based case-control study in Connecticut. Cancer Epidemiol Biomark Prev. 2020;29:500–8.

    Google Scholar 

  24. Rizzo G, Baroni L. Soy, soy foods and their role in vegetarian diets. Nutrients. 2018;10:43.

  25. Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, et al. Fermented foods in a global age: east meets west. Compr Rev Food Sci Food Saf. 2020;19:184–217.

    PubMed  Google Scholar 

  26. Guo JM, Xiao BX, Dai DJ, Liu Q, Ma HH. Effects of daidzein on estrogen-receptor-positive and negative pancreatic cancer cells in vitro. World J Gastroenterol. 2004;10:860–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gundogdu G, Dodurga Y, Cetin M, Secme M, Cicek B. The cytotoxic and genotoxic effects of daidzein on MIA PaCa-2 human pancreatic carcinoma cells and HT-29 human colon cancer cells. Drug Chem Toxicol. 2020;43:581–7.

    CAS  PubMed  Google Scholar 

  28. Sotoca AM, Ratman D, van der Saag P, Strom A, Gustafsson JA, Vervoort J, et al. Phytoestrogen-mediated inhibition of proliferation of the human T47D breast cancer cells depends on the ERalpha/ERbeta ratio. J Steroid Biochem Mol Biol. 2008;112:171–8.

    CAS  PubMed  Google Scholar 

  29. Pons DG, Nadal-Serrano M, Torrens-Mas M, Oliver J, Roca P. The phytoestrogen genistein affects breast cancer cells treatment depending on the ERalpha/ERbeta ratio. J Cell Biochem. 2016;117:218–29.

    CAS  PubMed  Google Scholar 

  30. Kostelac D, Rechkemmer G, Briviba K. Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem. 2003;51:7632–5.

    CAS  PubMed  Google Scholar 

  31. Konduri S, Schwarz RE. Estrogen receptor beta/alpha ratio predicts response of pancreatic cancer cells to estrogens and phytoestrogens. J Surg Res. 2007;140:55–66.

    CAS  PubMed  Google Scholar 

  32. Ong SKL, Shanmugam MK, Fan L, Fraser SE, Arfuso F, Ahn KS, et al. Focus on formononetin: anticancer potential and molecular targets. Cancers. 2019;11:611.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, et al. Formononetin: a review of its anticancer potentials and mechanisms. Front Pharm. 2019;10:820.

    CAS  Google Scholar 

  34. Wang Q, Ru M, Zhang Y, Kurbanova T, Boffetta P. Dietary phytoestrogen intake and lung cancer risk: an analysis of the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. Carcinogenesis. 2021;42:1250–9.

    CAS  PubMed  Google Scholar 

  35. Nothlings U, Wilkens LR, Murphy SP, Hankin JH, Henderson BE, Kolonel LN. Vegetable intake and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol. 2007;165:138–47.

    PubMed  Google Scholar 

  36. Woo HD, Kim J. Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis. PLoS One. 2013;8:e75604.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui Y, Morgenstern H, Greenland S, Tashkin DP, Mao JT, Cai L, et al. Dietary flavonoid intake and lung cancer-a population-based case-control study. Cancer. 2008;112:2241–8.

    CAS  PubMed  Google Scholar 

  38. Speisky H, Shahidi F, Costa de Camargo A, Fuentes J. Revisiting the oxidation of flavonoids: loss, conservation or enhancement of their antioxidant properties. Antioxidants. 2022;11:133.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56:317–33.

    CAS  PubMed  Google Scholar 

  40. Buiatti E, Munoz N, Kato I, Vivas J, Muggli R, Plummer M, et al. Determinants of plasma anti-oxidant vitamin levels in a population at high risk for stomach cancer. Int J Cancer. 1996;65:317–22.

    CAS  PubMed  Google Scholar 

  41. Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J, et al. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev. 2022;31:220028.

    PubMed  PubMed Central  Google Scholar 

  42. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kojima K, Asai K, Kubo H, Sugitani A, Kyomoto Y, Okamoto A, et al. Isoflavone aglycones attenuate cigarette smoke-induced emphysema via suppression of neutrophilic inflammation in a COPD murine model. Nutrients. 2019;11:2023.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Steiner C, Peters WH, Gallagher EP, Magee P, Rowland I, Pool-Zobel BL. Genistein protects human mammary epithelial cells from benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide and 4-hydroxy-2-nonenal genotoxicity by modulating the glutathione/glutathione S-transferase system. Carcinogenesis. 2007;28:738–48.

    CAS  PubMed  Google Scholar 

  45. Khan TH, Prasad L, Anuradha, Sultana S. Soy isoflavones inhibits the genotoxicity of benzo(a)pyrene in Swiss albino mice. Hum Exp Toxicol. 2005;24:149–55.

    CAS  PubMed  Google Scholar 

  46. Lee YS, Seo JS, Chung HT, Jang JJ. Inhibitory effects of biochanin A on mouse lung tumor induced by benzo(a)pyrene. J Korean Med Sci. 1991;6:325–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee YS, Kim TH, Cho KJ, Jang JJ. Inhibitory effects of biochanin A on benzo(a)pyrene induced carcinogenesis in mice. Vivo. 1992;6:283–6.

    CAS  Google Scholar 

  48. Delgado ME, Haza AI, Arranz N, Garcia A, Morales P. Dietary polyphenols protect against N-nitrosamines and benzo(a)pyrene-induced DNA damage (strand breaks and oxidized purines/pyrimidines) in HepG2 human hepatoma cells. Eur J Nutr. 2008;47:479–90.

    CAS  PubMed  Google Scholar 

  49. Schwarz D, Kisselev P, Roots I. CYP1A1 genotype-selective inhibition of benzo [a]pyrene activation by quercetin. Eur J Cancer. 2005;41:151–8.

    CAS  PubMed  Google Scholar 

  50. Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol Vitr. 2006;20:187–210.

    CAS  Google Scholar 

  51. Rowland I, Faughnan M, Hoey L, Wahala K, Williamson G, Cassidy A. Bioavailability of phyto-oestrogens. Br J Nutr. 2003;89:S45–58.

    CAS  PubMed  Google Scholar 

  52. Micek A, Godos J, Brzostek T, Gniadek A, Favari C, Mena P, et al. Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: a comprehensive systematic review with meta-analysis. Nutr Rev. 2021;79:42–65.

    PubMed  Google Scholar 

  53. French MR, Thompson LU, Hawker GA. Validation of a phytoestrogen food frequency questionnaire with urinary concentrations of isoflavones and lignan metabolites in premenopausal women. J Am Coll Nutr. 2007;26:76–82.

    CAS  PubMed  Google Scholar 

  54. Jaceldo-Siegl K, Fraser GE, Chan J, Franke A, Sabate J. Validation of soy protein estimates from a food-frequency questionnaire with repeated 24-h recalls and isoflavonoid excretion in overnight urine in a western population with a wide range of soy intakes. Am J Clin Nutr. 2008;87:1422–7.

    CAS  PubMed  Google Scholar 

  55. van der Schouw YT, Kreijkamp-Kaspers S, Peeters PH, Keinan-Boker L, Rimm EB, Grobbee DE. Prospective study on usual dietary phytoestrogen intake and cardiovascular disease risk in western women. Circulation. 2005;111:465–71.

    PubMed  Google Scholar 

  56. Schabath MB, Hernandez LM, Wu X, Pillow PC, Spitz MR. Dietary phytoestrogens and lung cancer risk. JAMA. 2005;294:1493–504.

    CAS  PubMed  Google Scholar 

  57. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey A, Harper P. Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr. 2006;136:3046–53.

    CAS  PubMed  Google Scholar 

  58. Reger MK, Zollinger TW, Liu Z, Jones J, Zhang J. Urinary phytoestrogens and cancer, cardiovascular, and all-cause mortality in the continuous National Health and Nutrition Examination Survey. Eur J Nutr. 2016;55:1029–40.

    CAS  PubMed  Google Scholar 

  59. Filiberto AC, Mumford SL, Pollack AZ, Zhang C, Yeung EH, Perkins NJ, et al. Habitual dietary isoflavone intake is associated with decreased C-reactive protein concentrations among healthy premenopausal women. J Nutr. 2013;143:900–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Reger MK, Zollinger TW, Liu Z, Jones J, Zhang J. Association between urinary phytoestrogens and C-reactive protein in the continuous National Health and Nutrition Examination Survey. J Am Coll Nutr. 2017;36:434–41.

    CAS  PubMed  Google Scholar 

  61. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1199–209 e1194.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Cancer Institute for providing access to the data from the PLCO Cancer Screening Trial. The statements contained herein are solely those of the authors and do not represent or imply concurrence or endorsement by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows—C.L., M.R., H.F., J.W. and J.Z.: participated in the review and revision of the manuscript; C.L. and J.Z.: designed and conducted research; C.L.: analysed data; C.L. and J.Z.: wrote the paper; J.Z.: had primary responsibility for final content; All authors: read and approved the final manuscript.

Corresponding author

Correspondence to Jianjun Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All methods were conducted in compliance with the relevant ethical guidelines and regulations. The PLCO Cancer Screening Trial was approved by both the institutional review boards of the National Cancer Institute and all participating screening centres

Informed consent

Written informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Reger, M., Fan, H. et al. Dietary intake of isoflavones and coumestrol and risk of pancreatic cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer 132, 266–275 (2025). https://doi.org/10.1038/s41416-024-02929-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02929-8

Search

Quick links