Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Apolipoprotein D is crucial for promoting perineural invasion in salivary adenoid cystic carcinoma

Abstract

Background

Perineural invasion (PNI) is a prevalent phenomenon in salivary adenoid cystic carcinoma (SACC). Nevertheless, the regulatory mechanism of PNI is largely elusive.

Methods

We detected Apolipoprotein D (ApoD) expression and further determined its role in SACC progression. Subsequently, the contributions of SACC-derived ApoD on neurite outgrowth of dorsal root ganglions (DRGs) cells were explored. Moreover, a series of in vivo assays were conducted to elucidate the role of ApoD in the SACC PNI process.

Results

We observed a dramatic up-regulation of ApoD in the SACC associated with an enhancement of PNI in patient biopsies. We found that SACC-derived ApoD elevated cancer cell migration and invasion. In addition, ApoD could facilitate the neurite outgrowth of cultured DRG cells in a CXCR4-dependent manner in vitro, as well as innervation, angiogenesis, and invasion along peripheral nerves of SACC in vivo. More importantly, by advanced bioinformatic analysis, we unexpectedly revealed a novel phenomenon ‘tumour cell to neuron-like cell transition’ in the ApoD-rich microenvironment in vivo, contributing to the neurogenesis in the SACC tumour.

Conclusion

we discovered a novel role of cancer-derived ApoD in the pathogenesis of PNI, which may represent an effective therapeutic target for SACC in clinics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ApoD was elevated in SACC, and promoted SACC migration and invasion.
Fig. 2: ApoD targeted CXCR4 to accelerate invasion of SACC along nerves.
Fig. 3: ApoD promoted invasion, tumour innervation and angiogenesis in vivo during SACC growth.
Fig. 4: ApoD accelerated SACC cells invasion of peripheral nerves in vivo, and might induce tumour cell to neuron-like cell transition.
Fig. 5: ApoD expression was mediated by JAK2/STAT3 signalling.

Similar content being viewed by others

Data availability

The RNA-seq data have been submitted to the GEO database with the accession number is GSE281812.

References

  1. Nightingale J, Lum B, Ladwa R, Simpson F, Panizza B. Adenoid cystic carcinoma: a review of clinical features, treatment targets and advances in improving the immune response to monoclonal antibody therapy. Biochim Biophys Acta Rev Cancer. 2021;1875:188523.

    Article  CAS  PubMed  Google Scholar 

  2. Cordesmeyer R, Schliephake H, Kauffmann P, Tröltzsch M, Laskawi R, Ströbel P, et al. Clinical prognostic factors of salivary adenoid cystic carcinoma: a single-center analysis of 61 patients. J Craniomaxillofac Surg. 2017;45:1784–7.

    Article  PubMed  Google Scholar 

  3. Melgarejo da Rosa M, Clara Sampaio M, Virgínia Cavalcanti Santos R, Sharjeel M, Araújo C, Galdino da Rocha Pitta M, et al. Unveiling the pathogenesis of perineural invasion from the perspective of neuroactive molecules. Biochem Pharm. 2021;188:114547.

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Yang X, Zhan C, Zhang Y, Hou J, Yin X. Perineural invasion in adenoid cystic carcinoma of the salivary glands: where we are and where we need to go. Front Oncol. 2020;10:1493.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang M, Wu JS, Xian HC, Chen BJ, Wang HF, Yu XH, et al. CXCR5 induces perineural invasion of salivary adenoid cystic carcinoma by inhibiting microRNA-187. Aging. 2021;13:15384–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Yang Z, Liu Y, Li H, Yang X, Gao W, et al. The GAL/GALR2 axis promotes the perineural invasion of salivary adenoid cystic carcinoma via epithelial-to-mesenchymal transition. Cancer Med. 2022. https://doi.org/10.1002/cam4.5181.

  7. Saleh E, Ukwas A. Adenoid cystic carcinoma of salivary glands: a ten-year review and an assessment of the current management, surgery, radiotherapy, and chemotherapy. Int J Otolaryngol. 2023;2023:7401458.

    PubMed  PubMed Central  Google Scholar 

  8. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115:3379–91.

    Article  CAS  PubMed  Google Scholar 

  9. Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2015;12:649–59.

    Article  CAS  PubMed  Google Scholar 

  10. Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, García-Acevez SJ. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Ther. 2020;5:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee D, Katz MH, Rashid A, Wang H, Iuga AC, Varadhachary GR, et al. Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Am J Surg Pathol. 2012;36:409–17.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jaber MA, Hassan M, Ingafou M, Elameen AM. Adenoid cystic carcinoma of the minor salivary glands: a systematic review and meta-analysis of clinical characteristics and management strategies. J Clin Med. 2024;13:267.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene. 2020;756:144874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma P, Zhang G, Chen S, Miao C, Cao Y, Wang M, et al. Promotion effect of TGF-β-Zfp423-ApoD pathway on lip sensory recovery after nerve sacrifice caused by nerve collateral compensation. Int J Oral Sci. 2023;15:23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pascual G, Domínguez D, Elosúa-Bayes M, Beckedorff F, Laudanna C, Bigas C, et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature. 2021;599:485–90.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang JF, Tao LY, Yang MW, Xu DP, Jiang SH, Fu XL, et al. CD74 promotes perineural invasion of cancer cells and mediates neuroplasticity via the AKT/EGR-1/GDNF axis in pancreatic ductal adenocarcinoma. Cancer Lett. 2021;508:47–58.

    Article  CAS  PubMed  Google Scholar 

  17. Huang GZ, Wu QQ, Zheng ZN, Shao TR, Chen YC, Zeng WS, et al. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging. 2020;12:11667–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huyett P, Gilbert M, Liu L, Ferris RL, Kim S. A model for perineural invasion in head and neck squamous cell carcinoma. J Vis Exp. 2017. https://doi.org/10.3791/55043.

  19. Jeong WJ, Choi IJ, Park MW, An SY, Jeon EH, Paik JH, et al. CXCR4 antagonist inhibits perineural invasion of adenoid cystic carcinoma. J Clin Pathol. 2014;67:992–8.

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Wang Z, Ma Q, Xu Q, Liu H, Duan W, et al. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res. 2014;20:4326–38.

    Article  CAS  PubMed  Google Scholar 

  21. Jurcak NR, Rucki AA, Muth S, Thompson E, Sharma R, Ding D, et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology. 2019;157:838–50.e836.

    Article  CAS  PubMed  Google Scholar 

  22. Hung YH, Hou YC, Hsu SH, Wang LY, Tsai YL, Shan YS, et al. Pancreatic cancer cell-derived semaphorin 3A promotes neuron recruitment to accelerate tumor growth and dissemination. Am J Cancer Res. 2023;13:3417–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanchez D, Ganfornina MD. The lipocalin Apolipoprotein D functional portrait: a systematic review. Front Physiol. 2021;12:738991.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tang PC, Chung JY, Liao J, Chan MK, Chan AS, Cheng G, et al. Single-cell RNA sequencing uncovers a neuron-like macrophage subset associated with cancer pain. Sci Adv. 2022;8:eabn5535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Vattai A, Vilsmaier T, Kaltofen T, Steger A, Mayr D, et al. Immunogenomic identification for predicting the prognosis of cervical cancer patients. Int J Mol Sci. 2021;22:2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Selvaggi F, Melchiorre E, Casari I, Cinalli S, Cinalli M, Aceto GM, et al. Perineural invasion in pancreatic ductal adenocarcinoma: from molecules towards drugs of clinical relevance. Cancers. 2022;14:5793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin L, Li J, Wang J, Pu T, Wei J, Li Q, et al. MAOA promotes prostate cancer cell perineural invasion through SEMA3C/PlexinA2/NRP1-cMET signaling. Oncogene. 2021;40:1362–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su R, Zhong S, Wang P, Lin Z. Induction of perineural invasion in salivary adenoid cystic carcinoma by circular RNA RNF111. Clin Transl Oncol. 2023;25:3152–64. https://doi.org/10.1007/s12094-023-03182-w.

    Article  CAS  PubMed  Google Scholar 

  29. Bakst RL, Wong RJ. Mechanisms of perineural invasion. J Neurol Surg B Skull Base. 2016;77:96–106.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.

    Article  PubMed  Google Scholar 

  31. Desmarais F, Bergeron KF, Rassart E, Mounier C. Apolipoprotein D overexpression alters hepatic prostaglandin and omega fatty acid metabolism during the development of a non-inflammatory hepatic steatosis. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:522–31.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Raimi HAI, Kong J, Ran Y, Zhu L, Li J, Liu X, et al. Extracellular vesicles from carcinoma-associated fibroblasts promote EMT of salivary adenoid cystic carcinoma via IL-6. Arch Med Res. 2023;54:27–36.

    Article  CAS  PubMed  Google Scholar 

  33. Mengie Ayele T, Tilahun Muche Z, Behaile Teklemariam A, Bogale Kassie A, Chekol Abebe E. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: a systemic review. J Inflamm Res. 2022;15:1349–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin D, Zhang H, Zhang J, Huang K, Chen Y, Jing X, et al. α-Synuclein induces neuroinflammation injury through the IL6ST-AS/STAT3/HIF-1α axis. Int J Mol Sci. 2023;24:1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bu LL, Deng WW, Huang CF, Liu B, Zhang WF, Sun ZJ. Inhibition of STAT3 reduces proliferation and invasion in salivary gland adenoid cystic carcinoma. Am J Cancer Res. 2015;5:1751–61.

    PubMed  PubMed Central  Google Scholar 

  36. Guo K, Ma Q, Li J, Wang Z, Shan T, Li W, et al. Interaction of the sympathetic nerve with pancreatic cancer cells promotes perineural invasion through the activation of STAT3 signaling. Mol Cancer Ther. 2013;12:264–73.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang M, Zheng M, Dai L, Zhang WL, Fan HY, Yu XH, et al. CXCL12/CXCR4 facilitates perineural invasion via induction of the Twist/S100A4 axis in salivary adenoid cystic carcinoma. J Cell Mol Med. 2021;25:7901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein Nulent TJW, van Es RJJ, Valstar MH, Smeele LE, Smit LA, Klein Gunnewiek R, et al. High CXCR4 expression in adenoid cystic carcinoma of the head and neck is associated with increased risk of locoregional recurrence. J Clin Pathol. 2020;73:476–82.

    Article  PubMed  Google Scholar 

  39. Amit M, Na’ara S, Gil Z. Mechanisms of cancer dissemination along nerves. Nat Rev Cancer. 2016;16:399–408.

    Article  CAS  PubMed  Google Scholar 

  40. Silverman DA, Martinez VK, Dougherty PM, Myers JN, Calin GA, Amit M. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res. 2021;81:1431–40.

    Article  CAS  PubMed  Google Scholar 

  41. Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, et al. Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers. 2021;13:4985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parvanian S, Coelho-Rato LS, Patteson AE, Eriksson JE. Vimentin takes a hike—emerging roles of extracellular vimentin in cancer and wound healing. Curr Opin Cell Biol. 2023;85:102246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maybee DV, Ink NL, Ali MAM. Novel roles of MT1-MMP and MMP-2: beyond the extracellular milieu. Int J Mol Sci. 2022;23:9513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang X, Zhang P, Ma Q, Kong L, Li Y, Liu B, et al. EMMPRIN silencing inhibits proliferation and perineural invasion of human salivary adenoid cystic carcinoma cells in vitro and in vivo. Cancer Biol Ther. 2012;13:85–91.

    Article  CAS  PubMed  Google Scholar 

  45. Yang X, Jing D, Liu L, Shen Z, Ju J, Ma C, et al. Downregulation of p53 promotes in vitro perineural invasive activity of human salivary adenoid cystic carcinoma cells through epithelial-mesenchymal transition-like changes. Oncol Rep. 2015;33:1650–6.

    Article  CAS  PubMed  Google Scholar 

  46. Ganfornina MD, Do Carmo S, Martínez E, Tolivia J, Navarro A, Rassart E, et al. ApoD, a glia-derived apolipoprotein, is required for peripheral nerve functional integrity and a timely response to injury. Glia. 2010;58:1320–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge Xiaoting Chen and Xijing Yang from the Animal Experimental Center of West China Hospital for technical assistance in animal experiments. In addition, we acknowledge Juan Wu for the data processing and contribution on RNA-Seq submitting.

Funding

This study was funded by the National Natural Science Foundation of China (82270994), the Science and Technology Department of Sichuan Province (2023NSFSC0704, 2023NSFSC0573).

Author information

Authors and Affiliations

Authors

Contributions

Huang GZ: methodology, investigation, data curation, visualisation, writing—original draft and writing—review & editing; Chen S: investigation, data curation, formal analysis and visualisation; Han B: investigation, funding acquisition; Zhang GW: investigation; Bao MZ: data curation; Paka Lubamba G: formal analysis; Hua YF: data curation; Li HL: investigation; Liu WW: writing—review & editing; Shen JF: writing—review & editing; Wang L: writing—review & editing; Lin J: supervision, funding acquisition; Patrick Ming-Kuen Tang: supervision and writing—review & editing; Ding ZF: methodology, supervision and writing—review & editing; Li CJ: conceptualisation, methodology, project administration, supervision, funding acquisition and writing—review & editing.

Corresponding authors

Correspondence to Zhangfan Ding or Chunjie Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Written informed consent was obtained from all patients. This study was approved by the Ethical Committee of West China School of Stomatology, Sichuan University (WCHSIRB-D-2022-445). All animal experiments were approved by the Animal Ethical Committee of West China School of Stomatology, Sichuan University (WCHSIRB-D-2022-337). All methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication

All authors reviewed and agreed to publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Chen, S., Han, B. et al. Apolipoprotein D is crucial for promoting perineural invasion in salivary adenoid cystic carcinoma. Br J Cancer 132, 599–610 (2025). https://doi.org/10.1038/s41416-025-02946-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-025-02946-1

Search

Quick links