Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

VASN drives gastric tumorigenesis via activation of the COL4A1/PI3K/AKT axis during Helicobacter pylori infection

Subjects

Abstract

Background

Vasorin (VASN) is linked to tumor progression in various cancers, its role and regulatory mechanisms in gastric cancer (GC) are still unknown.

Methods

Human gastric mucosal samples, VASN heterozygous-deficient (VASN+/-) C57BL/6 mice, and gastric cell lines with VASN knockdown and overexpression were used to study VASN’s role in GC. A combination of in vitro and in vivo models, RNA sequencing (RNA-seq), proteomics, bioinformatics, and various assays revealed VASN’s critical involvement in GC.

Results

Elevated VASN expression was significantly associated with poor clinical outcomes in GC patients. We identified a strong correlation between increased VASN expression, driven by Helicobacter pylori (H. pylori) infection, and the progression of gastric carcinogenesis. Functional studies demonstrated that VASN overexpression enhanced the proliferation, migration, and invasion of gastric epithelial cells, whereas VASN knockdown suppressed these malignant phenotypes. Mechanistically, the collagen type IV alpha 1 chain (COL4A1) was identified as a critical downstream effector of VASN in GC. VASN exerted its oncogenic effects by regulating COL4A1 to activate the PI3K/AKT signaling pathway. Furthermore, H. pylori infection was demonstrated to induce hypoxia-inducible factor-1 alpha (HIF-1α) expression, which subsequently upregulated VASN.

Conclusions

The HIF-1α-VASN-COL4A1-PI3K/AKT signaling pathway is crucial for gastric tumor development and may represent a therapeutic target for GC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High levels of VASN are found in gastric cancer (GC) tissues, which correlates with a negative prognosis.
Fig. 2: VASN contributes to the proliferation, migration, and invasion of gastric epithelial cells.
Fig. 3: Identification of COL4A1 as a potential downstream target of VASN.
Fig. 4: Cell proliferation, migration, and invasion are promoted by VASN through the regulation of COL4A1.
Fig. 5: VASN activates the PI3K/AKT signaling pathway via COL4A1.
Fig. 6: VASN is involved in H. pylori-induced gastric carcinogenesis.
Fig. 7: VASN expression is elevated by HIF-1α in the context of gastric carcinogenesis triggered by H. pylori.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    Article  PubMed  Google Scholar 

  2. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396:635–48.

    Article  PubMed  Google Scholar 

  3. Ugai T, Sasamoto N, Lee HY, Ando M, Song M, Tamimi RM, et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol. 2022;19:656–73.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer. 2024;1879:189139.

    Article  PubMed  Google Scholar 

  5. Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, et al. Helicobacter pylori infection. Nat Rev Dis Prim. 2023;9:19.

    Article  PubMed  Google Scholar 

  6. Ikeda Y, Imai Y, Kumagai H, Nosaka T, Morikawa Y, Hisaoka T, et al. Vasorin, a transforming growth factor beta-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Proc Natl Acad Sci USA. 2004;101:10732–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonnet AL, Chaussain C, Broutin I, Rochefort GY, Schrewe H, Gaucher C. From vascular smooth muscle cells to folliculogenesis: what about vasorin? Front Med (Lausanne) 2018;5:335.

    Article  PubMed  Google Scholar 

  8. Liang W, Zuo J, Liu M, Su Y, Guo B, Hou J, et al. VASN promotes colorectal cancer progression by activating the YAP/TAZ and AKT signaling pathways via YAP. FASEB J 2023;37:e22688.

    Article  PubMed  Google Scholar 

  9. Bhandari A, Guan Y, Xia E, Huang Q, Chen Y. VASN promotes YAP/TAZ and EMT pathway in thyroid carcinogenesis in vitro. Am J Transl Res 2019;11:3589–99.

    PubMed  PubMed Central  Google Scholar 

  10. Choksi S, Lin Y, Pobezinskaya Y, Chen L, Park C, Morgan M, et al. A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. Mol Cell. 2011;42:597–609.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Kang T, Wang Y, Song C, Li H, Mi H, et al. Low level of tumor necrosis factor alpha in tumor microenvironment maintains self-renewal of glioma stem cells by Vasorin-mediated glycolysis. Neuro Oncol. 2024;26:2256–2271.

    Article  PubMed  Google Scholar 

  12. Man J, Yu X, Huang H, Zhou W, Xiang C, Huang H, et al. Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell. 2018;22:104–18.e6.

    Article  PubMed  Google Scholar 

  13. Wan F, Li H, Huang S, Sun J, Li J, Li Y, et al. Vasorin promotes proliferation and migration via STAT3 signaling and acts as a promising therapeutic target of hepatocellular carcinoma. Cell Signal. 2023;110:110809.

    Article  PubMed  Google Scholar 

  14. Cui FL, Mahmud AN, Xu ZP, Wang ZY, Hu JP. VASN promotes proliferation of prostate cancer through the YAP/TAZ axis. Eur Rev Med Pharm Sci. 2020;24:6589–96.

    Google Scholar 

  15. Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharm Rev. 2009;61:198–223.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang T, Jin H, Hu J, Li X, Ruan H, Xu H, et al. COL4A1 promotes the growth and metastasis of hepatocellular carcinoma cells by activating FAK-Src signaling. J Exp Clin Cancer Res. 2020;39:148.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hu YZ, Hu ZL, Liao TY, Li Y, Pan YL. LncRNA SND1-IT1 facilitates TGF-beta1-induced epithelial-to-mesenchymal transition via miR-124/COL4A1 axis in gastric cancer. Cell Death Discov. 2022;8:73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferrucci V, Asadzadeh F, Collina F, Siciliano R, Boccia A, Marrone L, et al. Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer. iScience. 2021;24:101938.

    Article  PubMed  Google Scholar 

  19. Miyake M, Hori S, Morizawa Y, Tatsumi Y, Toritsuka M, Ohnishi S, et al. Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1) produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the bladder. Oncotarget. 2017;8:36099–114.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jin R, Shen J, Zhang T, Liu Q, Liao C, Ma H, et al. The highly expressed COL4A1 genes contributes to the proliferation and migration of the invasive ductal carcinomas. Oncotarget. 2017;8:58172–83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li X, Yu X, Bi J, Jiang X, Zhang L, Li Z, et al. Integrating single-cell and spatial transcriptomes reveals COL4A1/2 facilitates the spatial organisation of stromal cells differentiation in breast phyllodes tumours. Clin Transl Med. 2024;14:e1611.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cui X, Shan T, Qiao L. Collagen type IV alpha 1 (COL4A1) silence hampers the invasion, migration and epithelial-mesenchymal transition (EMT) of gastric cancer cells through blocking Hedgehog signaling pathway. Bioengineered. 2022;13:8972–81.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Wang Y, Ding H. COL4A1, negatively regulated by XPD and miR-29a-3p, promotes cell proliferation, migration, invasion and epithelial-mesenchymal transition in liver cancer cells. Clin Transl Oncol. 2021;23:2078–89.

    Article  PubMed  Google Scholar 

  24. Li A, Li Y, Li Y, Zhang M, Zhang H, Chen F. Identification and validation of key genes associated with pathogenesis and prognosis of gastric cancer. PeerJ. 2023;11:e16243.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eskandarion MR, Eskandarieh S, Shakoori Farahani A, Mahmoodzadeh H, Shahi F, Oghabian MA, et al. Prediction of novel biomarkers for gastric intestinal metaplasia and gastric adenocarcinoma using bioinformatics analysis. Heliyon. 2024;10:e30253.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li N, Xu X, Zhan Y, Fei X, Ouyang Y, Zheng P, et al. YAP and beta-catenin cooperate to drive H. pylori-induced gastric tumorigenesis. Gut Microbes. 2023;15:2192501.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Noto JM, Piazuelo MB, Romero-Gallo J, Delgado AG, Suarez G, Akritidou K, et al. Targeting hypoxia-inducible factor-1 alpha suppresses Helicobacter pylori-induced gastric injury via attenuation of both cag-mediated microbial virulence and proinflammatory host responses. Gut Microbes. 2023;15:2263936.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xiong H, Tian L, Zhao Z, Chen S, Zhao Q, Hong J, et al. The sinomenine enteric-coated microspheres suppressed the TLR/NF-kappaB signaling in DSS-induced experimental colitis. Int Immunopharmacol. 2017;50:251–62.

    Article  PubMed  Google Scholar 

  29. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lanczky A, Gyorffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23:e27633.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77:e108–e10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  35. Liu C, Liu D, Wang F, Liu Y, Xie J, Xie J, et al. Construction of a novel choline metabolism-related signature to predict prognosis, immune landscape, and chemotherapy response in colon adenocarcinoma. Front Immunol. 2022;13:1038927.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Louvet L, Lenglet G, Krautzberger AM, Mentaverri R, Hague F, Kowalewski C, et al. Vasorin plays a critical role in vascular smooth muscle cells and arterial functions. J Cell Physiol. 2022;237:3845–59.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun J, Guo X, Yu P, Liang J, Mo Z, Zhang M, et al. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. J Cell Mol Med. 2022;26:88–98.

    Article  PubMed  Google Scholar 

  38. Amieva M, Peek RM Jr. Pathobiology of helicobacter pylori-induced gastric cancer. Gastroenterology. 2016;150:64–78.

    Article  PubMed  Google Scholar 

  39. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18:534–42.

    Article  PubMed  Google Scholar 

  40. Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol. 2022;86:566–82.

    Article  PubMed  Google Scholar 

  41. Luo D, Liu Y, Lu Z, Huang L. Targeted therapy and immunotherapy for gastric cancer: rational strategies, novel advancements, challenges, and future perspectives. Mol Med. 2025;31:52.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Fan W, Su F, Zhang X, Du Y, Li W, et al. Discussion on the mechanism of HER2 resistance in esophagogastric junction and gastric cancer in the era of immunotherapy. Hum Vaccin Immunother. 2025;21:2459458.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Saeed A, Park R, Sun W. The integration of immune checkpoint inhibitors with VEGF targeted agents in advanced gastric and gastroesophageal adenocarcinoma: a review on the rationale and results of early phase trials. J Hematol Oncol. 2021;14:13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li D, Zhang T, Yang X, Geng J, Li S, Ding H, et al. Identification of functional mimotopes of human vasorin ectodomain by biopanning. Int J Biol Sci. 2018;14:461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kang D, Huang S, Liao Y, Mi S, Zhou J, Feng Y, et al. Vasorin (VASN) overexpression promotes pulmonary metastasis and resistance to adjuvant chemotherapy in patients with locally advanced rectal cancer. J Transl Med. 2024;22:742.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liang W, Guo B, Ye J, Liu H, Deng W, Lin C, et al. Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Sci. 2019;110:2558–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khezri MR, Jafari R, Yousefi K, Zolbanin NM. The PI3K/AKT signaling pathway in cancer: molecular mechanisms and possible therapeutic interventions. Exp Mol Pathol. 2022;127:104787.

    Article  PubMed  Google Scholar 

  48. Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, et al. Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci. 2024;25:1848.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wroblewski LE, Peek RM Jr. Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev. 2010;23:713–39.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li M, Li G, Yang X, Yin W, Lv G, Wang S. HIF in gastric cancer: regulation and therapeutic target. Molecules. 2022;27:4893.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1alpha signaling: essential roles in tumorigenesis and implications in targeted therapies. Genes Dis. 2024;11:234–51.

    Article  PubMed  Google Scholar 

  52. Wen J, Wang Y, Gao C, Zhang G, You Q, Zhang W, et al. Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS-HIF-1alpha-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene. 2018;37:3549–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work came from the Key Laboratory Project of Digestive Diseases in Jiangxi Province (2024SSY06101) and the Jiangxi Clinical Research Center for Gastroenterology (20223BCG74011). We appreciate Dr. Zhongming Ge for kindly providing the H. pylori 7.13 and PMSS1 strains. We also thank the TCGA, GEO, GEPIA, TIMER, Kaplan-Meier plotter and cBioPortal databases for providing data.

Funding

This research was funded by the National Natural Science Foundation of China (82270593), the China Postdoctoral Science Foundation (2023M731495), the Science and Technology Research Project of Jiangxi Provincial Department of Education (GJJ2400123) and the Science and Technology Plan of Jiangxi Provincial Health Commission (202510024).

Author information

Authors and Affiliations

Authors

Contributions

JL and YX were responsible for designing, conceiving, and supervising the study, and the experiments were conducted by RZ, JX, HC and XG. CP, JX, JP, JQ, CW, XG, HW, JR, WD and XW collected the clinical samples and contributed to the animal experiments. The bioinformatics analysis was conducted by CP, DL and SC. RZ drafted the manuscript, while JL and YX edited the paper.

Corresponding authors

Correspondence to Jianping Liu or Yong Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consents to participate

The study was approved by the Ethics Committee of The First Affiliated Hospital of Nanchang University (Approval No. 2020-1-64). All tissue samples were collected with informed consent. All studies involving animals were performed following the ARRIVE guidelines (https://arriveguidelines.org).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Xie, J., Chen, H. et al. VASN drives gastric tumorigenesis via activation of the COL4A1/PI3K/AKT axis during Helicobacter pylori infection. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03081-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03081-7

Search

Quick links