Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CTCF enhances pancreatic cancer progression via FLG-AS1-dependent epigenetic regulation and macrophage polarization

Abstract

CCCTC-binding factor (CTCF) regulates chromatin organization and is upregulated in pancreatic ductal adenocarcinoma (PDAC). We found that CTCF interacts with HNRNPU through a FLG-AS1-dependent mechanism, facilitating the recruitment of EP300 and activation of the m6A reader IGF2BP2. This activation promotes histone lactylation at the promoter region of IGF2BP2 stimulating the proliferation of PDAC cells. IGF2BP2 enhanced the mRNA stability of CSF1 and MYC. Moreover, FLG-AS1 directly interacts with HNRNPU to modulate alternative splicing of CSF1, thus promoting the M2 polarization of tumor associated macrophages (TAMs) in PDAC. The results indicated that CTCF-induced oncogenic modification of histone lactylation, m6A and alternative spilcing as multi-regulation modes of TAMs reprogramming in PDAC and identifies CTCF as a potential therapeutic target for PDAC immunotherapy whose inhibition M2 polarization through the IGF2BP2/CSF1/CSF1R axis. Curaxin combined with gemcitabine treatment has shown promising antitumor efficacy against PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CTCF promotes the progression of pancreatic cancer.
Fig. 2: CTCF recruits HNRNPU to activate IGF2BP2 transcription.
Fig. 3: CTCF activates histone lactylation modifications via FLG-AS1-mediated recruitment of EP300.
Fig. 4: FLG-AS1 interacts with IGF2BP2 to enhance the mRNA stability of CSF1 in an m6A-dependent manner.
Fig. 5: HNRNPU interacts with FLG-AS1 to control exon skipping of CSF1 in PCs.
Fig. 6: CTCF drives M2 macrophage polarization via the CSF1-CSF1R pathway to facilitate PDAC proliferation.
Fig. 7: Curaxin inhibits M2 macrophage polarization to reduce PDAC growth.
Fig. 8: Curaxin sensitizes PDAC to gemcitabine therapy in mice models.

Similar content being viewed by others

Data availability

Data are available in a public, open access repository. All sequencing data generated in this study are deposited at Mendeley Data, https://doi.org/10.17632/hzjwhm46 and https://doi.org/10.17632/7fkktknnm8.1. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    PubMed  Google Scholar 

  2. Yang S, Liu Q, Liao Q. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: origin, polarization, function, and reprogramming. Front Cell Dev Biol. 2020;8:607209.

    PubMed  Google Scholar 

  3. Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163:386–402.e1.

    PubMed  Google Scholar 

  4. Zhu H, Li T, Du Y, Li M. Pancreatic cancer: challenges and opportunities. BMC Med. 2018;16:214.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. van den Bulk J, Verdegaal EM, de Miranda NF. Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol. 2018;8:180037.

  6. Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer. 2022;22:131–42.

    CAS  PubMed  Google Scholar 

  7. Morrison AJ. Chromatin-remodeling links metabolic signaling to gene expression. Mol Metab. 2020;38:100973.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez-Paredes M, Ceballos-Chavez M, Esteller M, Garcia-Dominguez M, Reyes JC. The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Res. 2009;37:2449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351:1454–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Docquier F, Kita GX, Farrar D, Jat P, O’Hare M, Chernukhin I, et al. Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation. Clin Cancer Res. 2009;15:5762–71.

    CAS  PubMed  Google Scholar 

  11. Liu Y, Wang X, Zhu Y, Cao Y, Wang L, Li F, et al. The CTCF/LncRNA-PACERR complex recruits E1A binding protein p300 to induce pro-tumour macrophages in pancreatic ductal adenocarcinoma via directly regulating PTGS2 expression. Clin Transl Med. 2022;12:e654.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang C, Wang Z, Han C, Safgren SL, Helmin KA, Adelman ER, et al. Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation. Genome Biol. 2020;21:247.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Zhang Y, Zou X, Chan AW, Zhang R, Lee TK, et al. The CCCTC-binding factor (CTCF)-forkhead box protein M1 axis regulates tumour growth and metastasis in hepatocellular carcinoma. J Pathol. 2017;243:418–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.

    CAS  PubMed  Google Scholar 

  15. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang C, Huang S, Zhuang H, Ruan S, Zhou Z, Huang K, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene. 2020;39:4507–18.

    CAS  PubMed  Google Scholar 

  18. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  19. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79:4557–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. Mol Ther. 2021;29:1226–38.

    CAS  PubMed  Google Scholar 

  23. Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 2019;29:1390–9.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73:1128–41.

    CAS  PubMed  Google Scholar 

  25. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29:725–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Alonso-Curbelo D, Ho YJ, Burdziak C, Maag JLV, Morris JPT, Chandwani R, et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature. 2021;590:642–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Korkmaz G, Manber Z, Lopes R, Prekovic S, Schuurman K, Kim Y, et al. A CRISPR-Cas9 screen identifies essential CTCF anchor sites for estrogen receptor-driven breast cancer cell proliferation. Nucleic Acids Res. 2019;47:9557–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mujahed H, Miliara S, Neddermeyer A, Bengtzen S, Nilsson C, Deneberg S, et al. AML displays increased CTCF occupancy associated with aberrant gene expression and transcription factor binding. Blood. 2020;136:339–52.

    PubMed  Google Scholar 

  29. Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet. 2014;15:234–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng WX, He RZ, Zhang Z, Yang L, Mo YY. LINC00346 promotes pancreatic cancer progression through the CTCF-mediated Myc transcription. Oncogene. 2019;38:6770–80.

    CAS  PubMed  Google Scholar 

  31. Blank-Giwojna A, Postepska-Igielska A, Grummt I. lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep. 2019;26:2904–15.e4.

    CAS  PubMed  Google Scholar 

  32. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics. 2013;29:2928–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiao W, Chen Y, Song H, Li D, Mei H, Yang F, et al. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene. 2018;37:2728–45.

    CAS  PubMed  Google Scholar 

  34. Chai P, Yu J, Jia R, Wen X, Ding T, Zhang X, et al. Generation of onco-enhancer enhances chromosomal remodeling and accelerates tumorigenesis. Nucleic Acids Res. 2020;48:12135–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimada M, Chen WY, Nakadai T, Onikubo T, Guermah M, Rhodes D, et al. Gene-specific H1 eviction through a transcriptional activator→p300→NAP1→H1 pathway. Mol Cell. 2019;74:268–83.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Shi M, He X, Cao Y, Liu P, Li F, et al. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2022;15:52.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 2020;39:e104514.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, et al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18:112.

    PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 2019;18:174.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang J, Qian X, Qiu Q, Xu L, Pan M, Li J, et al. LCAT1 is an oncogenic LncRNA by stabilizing the IGF2BP2-CDC6 axis. Cell Death Dis. 2022;13:877.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao R, Tang P, Yang B, Huang J, Zhou Y, Shao C, et al. Nuclear matrix factor hnRNP U/SAF-A exerts a global control of alternative splicing by regulating U2 snRNP maturation. Mol Cell. 2012;45:656–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11:905–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene. 2014;33:3812–9.

    CAS  PubMed  Google Scholar 

  47. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene—the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19:23–36.

    CAS  PubMed  Google Scholar 

  48. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell. 1999;98:387–96.

    CAS  PubMed  Google Scholar 

  49. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C, et al. Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol Cancer. 2019;18:78.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Izzo LT, Wellen KE. Histone lactylation links metabolism and gene regulation. Nature. 2019;574:492–3.

    CAS  PubMed  Google Scholar 

  52. Li F, Si W, Xia L, Yin D, Wei T, Tao M, et al. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 2024;23:90.

    PubMed  PubMed Central  Google Scholar 

  53. Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M, et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell. 2018;34:757–74.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    CAS  PubMed  Google Scholar 

  55. Lin J, Wang X, Zhai S, Shi M, Peng C, Deng X, et al. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15:128.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    PubMed  PubMed Central  Google Scholar 

  57. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    CAS  PubMed  Google Scholar 

  59. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  60. Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA. 2014;111:E5593–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Meng J, Cui X, Rao MK, Chen Y, Huang Y. Exome-based analysis for RNA epigenome sequencing data. Bioinformatics. 2013;29:1565–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen R, Weng Z. Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins. 2002;47:281–94.

    CAS  PubMed  Google Scholar 

  65. Wang W, Kollman PA. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol. 2000;303:567–82.

    CAS  PubMed  Google Scholar 

  66. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–34.

    CAS  PubMed  Google Scholar 

  67. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106:21984–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut. 2023;72:958–71.

    CAS  PubMed  Google Scholar 

  69. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ren X, Zhong G, Zhang Q, Zhang L, Sun Y, Zhang Z. Reconstruction of cell spatial organization from single-cell RNA sequencing data based on ligand-receptor mediated self-assembly. Cell Res. 2020;30:763–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017;14:975–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for the sequencing service provided by the Shanghai Bioegene Co., Ltd.

Funding

This work was sponsored by The National Natural Science Foundation of China (81871906 and 82073326), Basic Research Program of Shanghai (20JC1412200), the National Key Research and Development Program of China (2020YFA0113000) and PostGraduate Innovation Fund of Interdiscipline and New Medicine from School of Medicine of Shanghai University.

Author information

Authors and Affiliations

Authors

Contributions

YH Liu designed experiments and drafted manuscripts; YH Liu, PY Liu, JY Lin, WX Qi, Y Liu, Y Jiang, ZW Yu, X Gao, XQ Sun, J Liu, JW Lin, SY Zhai, YZ Cao, K Qin and JW Li conducted experiments; YH Liu, PY Liu, JY Lin, Y Jiang, MM Chen, SY Zou, CL Wen, HL Bao and KY Sun were responsible for sample collection; SQ Duan, D Fu and JC Wang was responsible for data analysis; J Wang, Y Jiang, KY Sun, HL Bao and BY Shen discussed and revised the manuscript. All authors approved the manuscript.

Corresponding authors

Correspondence to Haili Bao, Keyan Sun, Yu Jiang or Baiyong Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Sample collections were approved by Ethnics Committee of Ruijin Hospital, Shanghai Jiaotong University School of Medicine (2021 Clinical Ethnics Review No. 161). Also, the animal research was authorized by the Shanghai Municipal Science and Technology Commission of Shanghai, China (SYXK-2018-0027). The informed consents were obtained from patients or their guardians, as appropriate. All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, P., Duan, S. et al. CTCF enhances pancreatic cancer progression via FLG-AS1-dependent epigenetic regulation and macrophage polarization. Cell Death Differ 32, 745–762 (2025). https://doi.org/10.1038/s41418-024-01423-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01423-1

Search

Quick links