Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of Fbxo45 in AT2 cells leads to insufficient histone supply and initiates lung adenocarcinoma

Abstract

Dysregulation of histone supply is implicated in various cancers, including lung adenocarcinoma (LUAD), although the underlying mechanisms remain poorly understood. Here, we demonstrate that knockout of Fbxo45 in mouse alveolar epithelial type 2 (AT2) cells leads to spontaneous LUAD. Our findings reveal that FBXO45 is a novel cell-cycle-regulated protein that is degraded upon phosphorylation by CDK1 during the S/G2 phase. During the S phase or DNA damage repair, FBXO45 binds to UPF1 and recruits the phosphatase PPP6C, thereby inhibiting UPF1 phosphorylation. This process is crucial for preventing the degradation of replication-dependent (RD) histone mRNAs and ensuring an adequate histone supply. In the absence of FBXO45, the impaired interaction between PPP6C and UPF1 results in sustained hyperphosphorylation of UPF1 throughout the cell cycle, leading to an insufficient histone supply, chromatin relaxation, genomic instability, and an increased rate of gene mutations, ultimately culminating in malignant transformation. Notably, analysis of clinical LUAD specimens confirms a positive correlation between the loss of FBXO45 and genomic instability, which is consistent with our findings in the mouse model. These results highlight the critical role of FBXO45 as a genomic guardian in coordinating histone supply and DNA replication, providing valuable insights into potential therapeutic targets and strategies for the treatment of LUAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fbxo45 deficiency in AT2 cells leads to LUAD.
Fig. 2: Fbxo45 deficiency reduces the supply of RD-histones.
Fig. 3: FBXO45 prevents rapid degradation of RD-histone mRNAs.
Fig. 4: FBXO45 binds to UPF1 and inhibits pS/TQ-UPF1.
Fig. 5: FBXO45 reduces the phosphorylation level of UPF1 by recruiting PPP6C to UPF1.
Fig. 6: FBXO45 is a cell-cycle regulated protein and highly expressed in the S phase.
Fig. 7: Fbxo45 deficiency leads to loosened chromatin and impaired DDR.
Fig. 8: Fbxo45 deficiency leads to accumulation of gene mutations.

Similar content being viewed by others

Data availability

The RNA-Seq data generated in this study were provided as EXCEL profiles in Supplementary Data and have been deposited in the Gene Expression Omnibus (GEO) repository under the accession number GSE218662. The whole-exome sequencing (WES) data generated in this study were provided as EXCEL profiles in Supplementary Data and have been deposited in the Sequence Read Archive (SRA) database under the accession number PRJNA905170. The mass spectrometry data generated in this study were provided as EXCEL profiles in Supplementary Data and have been uploaded to the Integrated Proteome Resources (iProX) database under the accession number IPX0005469000 and IPX0010103000. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. All data are also available from the corresponding author (J.Y.) upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J Clin Oncol. 2021;12:217–37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nair N, Shoaib M, Sorensen CS. Chromatin dynamics in genome stability: roles in suppressing endogenous DNA damage and facilitating DNA repair. Int J Mol Sci. 2017;18:1486.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat Rev Cancer. 2021;21:413–30.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol. 2010;17:1218–25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2:e1600584.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, et al. Elevated histone expression promotes life span extension. Mol Cell. 2010;39:724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mejlvang J, Feng Y, Alabert C, Neelsen KJ, Jasencakova Z, Zhao X, et al. New histone supply regulates replication fork speed and PCNA unloading. J Cell Biol. 2014;204:29–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh RK, Liang D, Gajjalaiahvari UR, Kabbaj MH, Paik J, Gunjan A. Excess histone levels mediate cytotoxicity via multiple mechanisms. Cell Cycle. 2010;9:4236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li L, Zhang X, Tian T, Pang L. Mathematical modelling the pathway of genomic instability in lung cancer. Sci Rep. 2019;9:14136.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marzluff WF, Koreski KP. Birth and Death of Histone mRNAs. Trends Genet. 2017;33:745–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davila Lopez M, Samuelsson T. Early evolution of histone mRNA 3’ end processing. RNA. 2008;14:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kaygun H, Marzluff WF. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat Struct Mol Biol. 2005;12:794–800.

    Article  CAS  PubMed  Google Scholar 

  14. Kaufman PD. Toxicity and lifespan extension: complex outcomes of histone overexpression in budding yeast. Cell Cycle. 2010;9:4611–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet. 2008;9:843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meaux SA, Holmquist CE, Marzluff WF. Role of oligouridylation in normal metabolism and regulated degradation of mammalian histone mRNAs. Philos Trans R Soc Lond B Biol Sci. 2018;373:20180170.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choe J, Ahn SH, Kim YK. The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA. Nucleic Acids Res. 2014;42:9334–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gowravaram M, Bonneau F, Kanaan J, Maciej VD, Fiorini F, Raj S, et al. A conserved structural element in the RNA helicase UPF1 regulates its catalytic activity in an isoform-specific manner. Nucleic Acids Res. 2018;46:2648–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol Cell. 2011;41:693–703.

    Article  CAS  PubMed  Google Scholar 

  20. Fiorini F, Bonneau F, Le Hir H. Biochemical characterization of the RNA helicase UPF1 involved in nonsense-mediated mRNA decay. Methods Enzymol. 2012;511:255–74.

    Article  CAS  PubMed  Google Scholar 

  21. Kim YK, Maquat LE. UP Front and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA. 2019;25:407–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choe J, Kim KM, Park S, Lee YK, Song OK, Kim MK, et al. Rapid degradation of replication-dependent histone mRNAs largely occurs on mRNAs bound by nuclear cap-binding proteins 80 and 20. Nucleic Acids Res. 2013;41:1307–18.

    Article  CAS  PubMed  Google Scholar 

  23. Muller B, Blackburn J, Feijoo C, Zhao X, Smythe C. DNA-activated protein kinase functions in a newly observed S phase checkpoint that links histone mRNA abundance with DNA replication. J Cell Biol. 2007;179:1385–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget. 2015;6:979–94.

    Article  PubMed  Google Scholar 

  25. Yoshida K. Characterization of estrogen-induced F-box protein FBXO45. Oncol Rep. 2005;14:531–5.

    CAS  PubMed  Google Scholar 

  26. Yoon KA, Park JH, Han J, Park S, Lee GK, Han JY, et al. A genome-wide association study reveals susceptibility variants for non-small cell lung cancer in the Korean population. Hum Mol Genet. 2010;19:4948–54.

    Article  CAS  PubMed  Google Scholar 

  27. Tuominen R, Jonsson G, Enerback C, Appelqvist F, Olsson H, Ingvar C, et al. Investigation of a putative melanoma susceptibility locus at chromosome 3q29. Cancer Genet. 2014;207:70–4.

    Article  CAS  PubMed  Google Scholar 

  28. Wu C, Miao X, Huang L, Che X, Jiang G, Yu D, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet. 2011;44:62–6.

    Article  PubMed  Google Scholar 

  29. Feng M, Ye X, Chen B, Zhang J, Lin M, Zhou H, et al. Detection of circulating genetically abnormal cells using 4-color fluorescence in situ hybridization for the early detection of lung cancer. J Cancer Res Clin Oncol. 2021;147:2397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Katz RL, Zaidi TM, Pujara D, Shanbhag ND, Truong D, Patil S, et al. Identification of circulating tumor cells using 4-color fluorescence in situ hybridization: Validation of a noninvasive aid for ruling out lung cancer in patients with low-dose computed tomography-detected lung nodules. Cancer Cytopathol. 2020;128:553–62.

    Article  CAS  PubMed  Google Scholar 

  31. Willatt L, Cox J, Barber J, Cabanas ED, Collins A, Donnai D, et al. 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet. 2005;77:154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glassford, M.R., R.H. Purcell, S. Pass, M.M. Murphy, G.J. Bassell, J.G. Mulle, et al., Caregiver perspectives on a Child’s diagnosis of 3q29 Deletion: “We Can’t Just Wish This Thing Away”. J Dev Behav Pediatr, 2022;43:e94–e102.

  33. Saiga T, Fukuda T, Matsumoto M, Tada H, Okano HJ, Okano H, et al. Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development. Mol Cell Biol. 2009;29:3529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507:190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng HC, Takano Y. NNK-induced lung tumors: a review of animal model. J Oncol. 2011;2011:635379.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wikenheiser KA, Vorbroker DK, Rice WR, Clark JC, Bachurski CJ, Oie HK, et al. Production of immortalized distal respiratory epithelial cell lines from surfactant protein C/simian virus 40 large tumor antigen transgenic mice. Proc Natl Acad Sci USA. 1993;90:11029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ. The human and mouse replication-dependent histone genes. Genomics. 2002;80:487–98.

    Article  CAS  PubMed  Google Scholar 

  38. Sittman DB, Graves RA, Marzluff WF. Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation. Proc Natl Acad Sci USA. 1983;80:1849–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dou Y, Kalmykova S, Pashkova M, Oghbaie M, Jiang H, Molloy KR, et al. Affinity proteomic dissection of the human nuclear cap-binding complex interactome. Nucleic Acids Res. 2020;48:10456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoefig KP, Heissmeyer V. Degradation of oligouridylated histone mRNAs: see UUUUU and goodbye. Wiley Interdiscip Rev RNA. 2014;5:577–89.

    Article  CAS  PubMed  Google Scholar 

  42. Hammond D, Zeng K, Espert A, Bastos RN, Baron RD, Gruneberg U, et al. Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A. J Cell Sci. 2013;126:3429–40.

    CAS  PubMed  Google Scholar 

  43. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maskin CR, Raman R, Houvras Y. PPP6C, a serine-threonine phosphatase, regulates melanocyte differentiation and contributes to melanoma tumorigenesis through modulation of MITF activity. Sci Rep. 2022;12:5573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sobajima T, Kowalczyk KM, Skylakakis S, Hayward D, Fulcher LJ, Neary C, et al. PP6 regulation of Aurora A-TPX2 limits NDC80 phosphorylation and mitotic spindle size. J Cell Biol. 2023;222:e202205117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen X, Miragaia RJ, Natarajan KN, Teichmann SA. A rapid and robust method for single cell chromatin accessibility profiling. Nat Commun. 2018;9:5345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rizzo JM, Bard JE, Buck MJ. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons. BMC Mol Biol. 2012;13:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frew AJ, Johnstone RW, Bolden JE. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett. 2009;280:125–33.

    Article  CAS  PubMed  Google Scholar 

  49. Igaz N, Kovacs D, Razga Z, Konya Z, Boros IM, Kiricsi M. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids Surf B Biointerfaces. 2016;146:670–7.

    Article  CAS  PubMed  Google Scholar 

  50. Luzhna L, Kathiria P, Kovalchuk O. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet. 2013;4:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36:5678–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Griesbach E, Schlackow M, Marzluff WF, Proudfoot NJ. Dual RNA 3’-end processing of H2A.X messenger RNA maintains DNA damage repair throughout the cell cycle. Nat Commun. 2021;12:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hauer MH, Seeber A, Singh V, Thierry R, Sack R, Amitai A, et al. Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat Struct Mol Biol. 2017;24:99–107.

    Article  CAS  PubMed  Google Scholar 

  54. Chang KW, Lin CE, Tu HF, Chung HY, Chen YF, Lin SC. Establishment of a p53 null murine oral carcinoma cell line and the identification of genetic alterations associated with this carcinoma. Int J Mol Sci. 2020;21:9354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Esposito MR, Binatti A, Pantile M, Coppe A, Mazzocco K, Longo L, et al. Somatic mutations in specific and connected subpathways are associated with short neuroblastoma patients’ survival and indicate proteins targetable at onset of disease. Int J Cancer. 2018;143:2525–36.

    Article  CAS  PubMed  Google Scholar 

  56. Han ZF, Lin ST, Zhong M, Yu DJ. Correlations of UGT1A1 gene polymorphisms with onset and prognosis of non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2020;24:9973–80.

    PubMed  Google Scholar 

  57. Preussner J, Zhong J, Sreenivasan K, Gunther S, Engleitner T, Kunne C, et al. Oncogenic amplification of zygotic dux factors in regenerating p53-deficient muscle stem cells defines a molecular cancer subtype. Cell Stem Cell. 2018;23:794–805 e4.

    Article  CAS  PubMed  Google Scholar 

  58. Jonckheere N, Van Seuningen I. Integrative analysis of the cancer genome atlas and cancer cell lines encyclopedia large-scale genomic databases: MUC4/MUC16/MUC20 signature is associated with poor survival in human carcinomas. J Transl Med. 2018;16:259.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Reiterova J, Tesar V. Autosomal dominant polycystic kidney disease: from pathophysiology of cystogenesis to advances in the treatment. Int J Mol Sci. 2022;23:3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–85 e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martinez-Jimenez F, Muinos F, Sentis I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20:555–72.

    Article  CAS  PubMed  Google Scholar 

  62. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He Y, Rozeboom L, Rivard CJ, Ellison K, Dziadziuszko R, Yu H, et al. MHC class II expression in lung cancer. Lung Cancer. 2017;112:75–80.

    Article  PubMed  Google Scholar 

  64. Johnson AM, Bullock BL, Neuwelt AJ, Poczobutt JM, Kaspar RE, Li HY, et al. Cancer cell-intrinsic expression of MHC Class II regulates the immune microenvironment and response to Anti-PD-1 therapy in lung adenocarcinoma. J Immunol. 2020;204:2295–307.

    Article  CAS  PubMed  Google Scholar 

  65. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin M, Wang ZW, Zhu X. FBXO45 is a potential therapeutic target for cancer therapy. Cell Death Discov. 2020;6:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kogure N, Yokobori T, Ogata K, Altan B, Mochiki E, Ohno T, et al. Low Expression of FBXO45 Is Associated with Gastric Cancer Progression and Poor Prognosis. Anticancer Res. 2017;37:191–6.

    Article  CAS  PubMed  Google Scholar 

  68. Abshire CF, Carroll JL, Dragoi AM. FLASH protects ZEB1 from degradation and supports cancer cells’ epithelial-to-mesenchymal transition. Oncogenesis. 2016;5:e254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peschiaroli A, Scialpi F, Bernassola F, Pagano M, Melino G. The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene. 2009;28:3157–66.

    Article  CAS  PubMed  Google Scholar 

  70. Chen X, Sahasrabuddhe AA, Szankasi P, Chung F, Basrur V, Rangnekar VM, et al. Fbxo45-mediated degradation of the tumor-suppressor Par-4 regulates cancer cell survival. Cell Death Differ. 2014;21:1535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Richter KT, Kschonsak YT, Vodicska B, Hoffmann I. FBXO45-MYCBP2 regulates mitotic cell fate by targeting FBXW7 for degradation. Cell Death Differ. 2020;27:758–72.

    Article  CAS  PubMed  Google Scholar 

  72. Wu L, Yu K, Chen K, Zhu X, Yang Z, Wang Q, et al. Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis. 2022;13:231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Q, Wu L, Cao R, Gao J, Chai D, Qin Y, et al. Fbxo45 promotes the malignant development of esophageal squamous cell carcinoma by targeting GGNBP2 for ubiquitination and degradation. Oncogene. 2022;41:4795–807.

    Article  CAS  PubMed  Google Scholar 

  74. Al Zubaidi T, Gehrisch OHF, Genois MM, Liu Q, Lu S, Kung J, et al. Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Sci Rep. 2021;11:3656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung FZ, Sahasrabuddhe AA, Ma K, Chen X, Basrur V, Lim MS, et al. Fbxo45 inhibits calcium-sensitive proteolysis of N-cadherin and promotes neuronal differentiation. J Biol Chem. 2014;289:28448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deem AK, Li X, Tyler JK. Epigenetic regulation of genomic integrity. Chromosoma. 2012;121:131–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, et al. Genomic instability in mice lacking histone H2AX. Science. 2002;296:922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gionchiglia N, Granato A, Merighi A, Lossi L. Association of Caspase 3 Activation and H2AX gamma Phosphorylation in the Aging Brain: Studies on Untreated and Irradiated Mice. Biomedicines. 2021;9:1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. H2AX: the histone guardian of the genome. DNA Repair. 2004;3:959–67.

    Article  CAS  PubMed  Google Scholar 

  80. Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349:1483–9.

    Article  CAS  PubMed  Google Scholar 

  81. Sinha M, Lowell CA. Isolation of highly pure primary mouse alveolar epithelial type II cells by flow cytometric cell sorting. Bio Protoc. 2016;6:e2013.

    Article  PubMed  Google Scholar 

  82. Zhang H, Zhao X, Guo Y, Chen R, He J, Li L, et al. Hypoxia regulates overall mRNA homeostasis by inducing Met(1)-linked linear ubiquitination of AGO2 in cancer cells. Nat Commun. 2021;12:5416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Clerck NM, Meurrens K, Weiler H, Van Dyck D, Van G, Houtte, et al. High-resolution X-ray microtomography for the detection of lung tumors in living mice. Neoplasia. 2004;6:374–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dzierzak E, de Bruijn M. Isolation and analysis of hematopoietic stem cells from mouse embryos. Methods Mol Med. 2002;63:1–14.

    PubMed  Google Scholar 

  85. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gansauge MT, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc. 2013;8:737–48.

    Article  PubMed  Google Scholar 

  87. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  88. Soederberg A, Meissgeier T, Bosserhoff AK, Linck-Paulus L. MAGOH and MAGOHB Knockdown in Melanoma Cells Decreases Nonsense-Mediated Decay Activity and Promotes Apoptosis via Upregulation of GADD45A. Cells. 2022;11:3859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baird TD, Cheng KC, Chen YC, Buehler E, Martin SE, Inglese J, et al. ICE1 promotes the link between splicing and nonsense-mediated mRNA decay. Elife. 2018;7:e33178.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pereverzev AP, Gurskaya NG, Ermakova GV, Kudryavtseva EI, Markina NM, Kotlobay AA, et al. Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level. Sci Rep. 2015;5:7729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc. 2007;2:1445–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Proteomics, Electron microscope and Flow sorting laboratory of Core Facility, Shanghai Jiao Tong University College of Basic Medical Sciences.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82230100, 32271310, 82273138) and Natural Science Foundation of Shanghai (23ZR1411500).

Author information

Authors and Affiliations

Contributions

JY and LL conceptualized the project; LL, JL, RC, CH, YZ and JC designed the methods; LL, JL, RC, CH, RL, XL, and JH performed most of experiments; LL, YW, XZ and JY performed formal analyses; LL and JY wrote the manuscript; JY, CD, and XJZ supervised the project. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Xiaojing Zhao, Chunling Du or Jianxiu Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Animal experiments were conducted following the general rules for the care and use of experimental animals and approved by the Shanghai Jiao Tong University School of Medicine Animal Care and Use Committee (permission no. A-2022-036). Clinical samples were collected from patients with written informed consent, following a protocol approved by The Affiliated Renji Hospital of Shanghai Jiao Tong University School of Medicine (ethics approval no. RA-2022-267).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, J., Chen, R. et al. Loss of Fbxo45 in AT2 cells leads to insufficient histone supply and initiates lung adenocarcinoma. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01433-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01433-z

Search

Quick links