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Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation
effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we
present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-
shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to
comprehensively learn both sequence and structure contexts from ~160 million proteins. ProMEP achieves state-of-the-art
performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and
intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes
TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants.
The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool
developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine
deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based
adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases
superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein
engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of
proteins, thereby advancing studies in biomedicine and synthetic biology.
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INTRODUCTION
Growing evidence from molecular evolution suggests that
mutations in protein sequences are often associated with changes
in protein function, which may lead to enzyme deficiencies,1

human diseases2 and viral escape.3,4 Deciphering the effects of
mutations is thus important in many fields of biological sciences,
particularly for the design of protein variants with enhanced or
novel functions. Recent efforts have demonstrated that learning
the effects of mutations aids in protein engineering and has the
potential to overcome the challenges of directed evolution and
rational protein design.5–7 By navigating the fitness landscape of
the target protein and identifying a small set of advantageous
mutations, mutation effect prediction could diminish the labor-
intensive procedures stemming from multi-round random varia-
tion and screening,8 as well as reduce reliance on expert
knowledge about protein structure and function during the
rational design of proteins.9,10

Despite the importance, accurate modeling of mutation effects
is a fundamental challenge due to the intricate interactions
among numerous residues and the complex nature of mutational

epistasis.11,12 Recent advances in high-throughput experimental
technologies, such as deep mutational scanning (DMS),13 have led
to significant improvements in the parallel assessment of
mutations.14,15 However, due to the considerations of scale and
costs, experimentally traversing the gigantic space of all possible
protein sequences (
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of length L, where i is the number of mutations, i! is the factorial of
i) remains unfeasible. Substantial efforts have previously been
made to predict mutational effects. Traditional modeling
approaches aim to approximate mutational effects using one or
a small subset of protein properties. For instance, variations in the
physicochemical properties of amino acids may be used to
estimate mutation tolerance.16 Alignment-based methods lever-
age evolutionary properties by identifying conserved regions or
mutational patterns within multiple sequence alignments
(MSAs).17–19 Stability predictors primarily operate on the principle
of protein folding energy to assess functional changes resulting
from mutations.20 Supervised learning methods learn the map-
ping from sequences or structures to a specific protein property
using annotated datasets.3,21,22 While these methods are
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undoubtedly useful for predicting mutation effects, their perfor-
mance is contingent on the depth of MSAs, the availability of
labeled datasets, or the type of proteins.
Propelled by the swift advancement of natural language-

processing techniques, sequence-based representation learning
models or protein language models (e.g., Unirep,7 ESM23 and
ProtTrans24) emerge as an unsupervised and MSA-free approach
to predict mutation effects.25,26 Despite these promising devel-
opments, the accurate prediction of mutation effects remains a
challenge. This is largely due to the lack of detailed structure
context in these models, which is more evolutionarily conserved
than sequences and includes crucial long-range contact informa-
tion for protein functionality.27 The recently published AlphaMis-
sense28 has demonstrated remarkable efficacy in predicting the
pathogenicity of missense variants through the utilization of
protein structure context. Nonetheless, its reliance on MSAs
introduces a significant time burden in searching and processing
MSAs.29

In this study, we introduce Protein Mutational Effect Predictor
(ProMEP), a multimodal and MSA-free method that enables zero-
shot prediction of mutation effects. To accurately predict the
effects of mutation, we first develop a deep representation
learning model as a base module in ProMEP, which integrates
both sequence and structure context by tapping into ~160 million
proteins in the AlphaFold protein structure database.30 ProMEP
achieves state-of-the-art (SOTA) performance in predicting the
effects of mutations. Owing to the MSA-free nature, ProMEP is 2–3
orders of magnitude faster than AlphaMissense, and demon-
strated superior performance for proteins where MSAs are
unavailable. Besides, ProMEP accurately predicted the mutational
consequence on editing enzymes TnpB31 and TadA,32,33 and
successfully guided the development of high-performance gene-
editing tools based on their engineered variants. The gene-editing
efficiency of the 5-site mutant TnpB increased to 74.04% at the
RNF2 site 1. For the 15-site mutant TadA, the corresponding base
editing tool exhibited an A-to-G conversion frequency of up to
77.27% at the HEK site 7 A6 while significantly reducing bystander
and off-target effects compared to ABE8e.32 Collectively, ProMEP
not only demonstrates superior performance in predicting the
mutational effects of proteins in a zero-shot manner, but also
establishes intelligent strategies to engineer proteins with
enhanced functionality and minimal experimental burden. Pro-
MEP enables high-throughput and cost-effective exploration of
the vast uncharted realms of protein space, as well as facilitates
intelligent protein engineering and design.

RESULTS
A multimodal deep representation learning model for
proteins
To integrate both sequence and structure information of proteins,
we developed a multimodal deep representation learning model
(Supplementary information, Fig. S1a; Materials and methods)
with ~659.3 million parameters. The model was trained on ~160
million AlphaFold2 structures by completing the missing elements
from corrupted input using both sequence and structure
information (Materials and methods). We utilized the protein
point cloud as a novel representation of protein structures,
allowing ProMEP to incorporate structure context at atomic
resolution (Materials and methods; Supplementary information,
Fig. S1b, c). Besides, we adopted a rotation- and translation-
equivariant structure embedding module to capture this structure
context, which is invariant to three-dimensional (3D) translations
and rotations (Materials and methods; Supplementary informa-
tion, Fig. S1d).
To evaluate the performance of our proposed model, a

thorough assessment was conducted using 15 datasets containing
protein annotations, including the Enzyme Commission (EC)

number, gene ontology (GO) terms, and protein–protein interac-
tions (PPIs) (Materials and methods). Leading deep representation
learning methods that solely utilize sequence (e.g., UniRep7 and
ESM23) or structure (e.g., GearNet33), and existing shallow multi-
modal methods (e.g., DeepFRI34) that integrate sequence and
simplified structure information were used for comparison. Our
proposed model demonstrates SOTA performance across all seven
function annotation datasets and eight PPI prediction datasets
(Supplementary information, Fig. S2 and Tables S1, S2). Through
robustness tests conducted on 4 function annotation datasets and
3 PPI prediction datasets (Materials and methods), we observed
that our multimodal representations can capture functional
properties even in proteins with low sequence similarity or low
structure similarity (Supplementary information, Fig. S3). Extensive
generalization tests (Materials and methods) demonstrated that
our multimodal representations facilitated one-shot function
prediction (Supplementary information, Fig. S4a, b) and general-
ized well across species (Supplementary information, Fig. S4c).
Collectively, our proposed model illuminates a multimodal

approach to learn both sequence and structure context from
massive protein datasets. It summarizes arbitrary protein struc-
tures into semantically rich representations approximating protein
functions and achieves superior and generalizable performance
across comprehensive benchmarks.

Zero-shot prediction of mutation effects on proteins based on
multimodal representations
Based on our multimodal deep representation learning model, we
proposed ProMEP (Fig. 1a) to predict the mutation effects on
proteins in a zero-shot manner. The log-ratio heuristic, which
compares the probabilities of wild-type (WT) and mutated amino
acids, has proven effective in estimating mutation effects.18,25,26

While previous methods calculate this score solely conditioning on
sequence context, our multimodal architecture allows ProMEP to
quantify the log-likelihood of protein variants with combinational
sequence and structure contexts (Fig. 1b). By comparing
probabilities of the WT sequence and the mutant sequence,
ProMEP could accurately depict the protein fitness landscape and
guide protein engineering by recognizing beneficial (multiple)
mutants (Fig. 1c).
To benchmark whether ProMEP could predict mutation effects

for proteins spanning diverse functions, we sourced three
representative proteins for which experimental measurements of
protein variant effects are available: the SUMO-conjugating
enzyme UBC9 dataset,35 the RPL40A dataset36 and the immuno-
globulin G-binding protein G dataset12 (Materials and methods).
Spearman’s rank correlation between the model predictions and
the experimental measurements was utilized as the standard
metric to evaluate the performance of the model.26,28,37 Leading
deep learning methods for mutation effect prediction were
evaluated for comparison, including both MSA-based methods
(e.g., AlphaMissense28 and EVE37) and MSA-free methods (e.g.,
ESM2_3B and ESM2_650M,29 ESM1v25 and Tranception26).
ProstT5,38 a structure-enhanced protein language model was also
evaluated as a baseline method. ProMEP shows the best
correlation with experimental measurements compared to other
methods on all three datasets (Fig. 2a). Especially for the protein G
dataset that contains multiple mutations, ProMEP achieves a
Spearman’s rank correlation of 0.53 compared with 0.47 for the
next-best model, AlphaMissense.
To validate the generalization ability of ProMEP in predicting

mutation effects, we assessed model predictions against the
ProteinGym benchmark.26 1.43 million variants from all 53
proteins derived from prokaryotes, human and other eukaryotes
collected in the ProteinGym benchmark were included. These
proteins are measured by different assays, range in length
(72–2016 aa) and take part in diverse biological processes (e.g.,
response to antibiotic, transcription and catalysis). Despite this
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huge divergence, ProMEP achieves an average Spearman’s rank
correlation of 0.523, on par with AlphaMissense (average Spear-
man’s rank correlation of 0.520, P value= 0.91; t-test, two-sided)
and ESM2_3B (average Spearman’s rank correlation of 0.443,
P value= 0.03; t-test, two-sided) (Fig. 2b). For datasets containing
mutants with multiple mutation sites, ProMEP consistently
demonstrates comparable performance to AlphaMissense (aver-
age Spearman’s rank correlation of 0.522 vs 0.518, P value= 0.95;
t-test, two-sided) (Fig. 2c). Evaluations on protein structure
resolution demonstrated that ProMEP achieves similar perfor-
mance when structures predicted by AlphaFold2 or ESMFold29 are
used (Supplementary information, Fig. S5). Besides, ProMEP also
tolerates structural noise and achieves superior performance
relative to GEMME,39 which is the third-best model during
evaluation, even when 5-Å jitter is introduced in predicted
structures.
Taken together, ProMEP demonstrates the ability to accurately

interpret the underlying impact of mutations. The exceptional
prediction efficiency and generalization ability of ProMEP imply its

potent potential in predicting mutational effects in proteins
without prior knowledge.

Characterization of sequence and structure contexts captured
by ProMEP
The multimodal architecture enables ProMEP to detect both the
interaction between sequentially nearby amino acids (sequence
context) (Fig. 3a) and the interaction between spatially nearby
amino acids (structure context) (Fig. 3b). To interpret these
contexts at different scales, we made an in-depth analysis of
ProMEP.
First, we assessed the perception ability of the sequence

context in ProMEP. Since ProMEP utilizes the attention mechanism
to capture the sequence context, we quantified the attention
score for all amino acids in a protein and analyzed whether this
score is related to the functional sites (Materials and methods),
which play a crucial role in molecular interactions and are vital for
modeling the effects of mutations.40,41 For instance, the amino-
glycoside 3′-phosphotransferase (APH(3′)-II) dataset within the

Fig. 1 A multimodal mutation effect predictor for protein engineering tasks. a ProMEP combines the sequence context and the structure
context of a protein to accurately predict mutation effects in a zero-shot manner. It takes an arbitrary WT protein as input and uses the pre-
trained multimodal deep representation learning model to calculate semantic-rich representations for each amino acid of a protein.
Specifically, for arbitrary mutations, ProMEP first extracts both sequence embeddings and structure embeddings from the WT protein. These
embeddings are then aligned and fed into the pre-trained transformer encoder to generate protein representations at residual resolution.
With the sequence decoder, fine-grained protein representations are eventually decomposed into the conditional probabilities on each amino
acid under the contexts of both sequence and structure. Effects of an arbitrary mutation can be interpreted as the difference in predicted log-
likelihood between the mutated sequence and the WT sequence. A customized protein point cloud is adopted to introduce protein structure
context at atomic resolution. b 3D translations and rotations of the input protein structure will not affect the structure context of a protein.
ProMEP applies a rotation- and translation-equivariant structure embedding module to guarantee such invariance. c ProMEP can be used to
guide protein engineering without the requirements for labeled datasets or a holistic understanding of the protein structure and molecular
function. It enables the user to recognize beneficial (multiple) mutants by efficiently traversing the protein fitness landscape.
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ProteinGym benchmark encompasses the functional site annota-
tions of the protein. We observed that ProMEP placed the most
attention on Asp208, which serves as a Mg2+-binding site of
APH(3′)-II (Fig. 3c), and achieved a top-1 hit ratio (Top-1 HR) of
100%. Similar phenomena were noted in other proteins in the
ProteinGym benchmark (Supplementary information, Fig. S6a). We
also constructed a functional site identification benchmark, which
contains 1325 proteins randomly selected from Swiss-Prot, to
examine the sequence context perception ability of ProMEP
(Materials and methods). Although identifying functional sites in a
protein can be challenging without expert knowledge of its
structure and molecular function, we found that the amino acid
receiving the most attention in ProMEP is likely to correspond to a
functional site (with a 48.30% Top-1 HR within the Swiss-Prot
dataset). Besides, ProMEP demonstrates superior performance
than two structure-based functional site prediction baselines34,42

on all three metrics, including the normalized discounted
cumulative gain (NDCG), and the mean reciprocal rank (MRR)
(Fig. 3d).
Subsequently, we examined the ability of ProMEP to capture

the local secondary structure context at each position within a
protein. The accuracy of the mapping between the ProMEP

representation of each amino acid and the corresponding actual
secondary structure labels was used as our measurement
(Materials and methods). For APH(3′)-II which also encompasses
experimentally determined tertiary structure, ProMEP achieves an
accuracy of 0.85 in capturing the actual secondary structure
(Fig. 3e). To further validate its performance, we assessed ProMEP’s
ability to classify secondary structures using standardized bench-
marks, including CASP12, TS115 and CB513 (Materials and
methods). In-silico comparisons were conducted with various
baselines, which include pre-trained protein language models and
alignment-based methods. ProMEP outperforms all baseline
methods across three common datasets (Fig. 3f). For CB513,
ProMEP achieves an accuracy of 0.74 compared with 0.70 for the
next-best model, ESM1b. Furthermore, the evaluation on three
additional benchmarks confirms its superior capability to accu-
rately capture local structure context, including B-factor and
solvent-accessible surface area (Supplementary information,
Fig. S6b; Materials and methods).
Additionally, we assessed the perception capability of ProMEP

in terms of the global protein folding context by employing a
multi-class fold classification benchmark. This benchmark consists
of 13,265 domains that were carefully selected from the Structural

Fig. 2 Performance of ProMEP in the prediction of mutation effects. a Spearman’s rank correlation between predicted mutation effects and
experimental measurements across three representative DMS datasets (Materials and methods). Compared with the current SOTA methods,
ProMEP achieves significantly better performance on all proteins (P value < 0.00001). b Spearman’s rank correlation of ProMEP on the
ProteinGym benchmark, which contains 1.43 million variants covering 53 proteins derived from prokaryotes, human and other eukaryotes.
ProMEP shows comparable performance with AlphaMissense and achieves superior performance than a comprehensive suite of baselines
(P value < 0.05). c Performance comparison between ProMEP and AlphaMissense on single mutations (left) and multiple mutations (right) in
the ProteinGym benchmark.
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Classification of Proteins-extended (SCOPe) v2.07 database
(Materials and methods). In comparison to previous structure-
based models, which were trained based on either contact maps
or protein graphs, the representations generated by ProMEP
exhibit a remarkable ability to be accurately categorized into the
correct fold classes (Supplementary information, Fig. S6c). More
specifically, ProMEP demonstrates a substantial improvement in
the classification of fold classes that are sparse in nature, such as
multi-domain proteins (class e, F1 score of 0.92 of ProMEP vs 0.71
of the next-best model, GraSR) and small proteins (class g, F1 score
of 0.92 of ProMEP vs 0.62 of the next-best model, GraSR).

Finally, the ablation study of ProMEP on three datasets
demonstrates that both the sequence context learned by the
sequence embedding module and the structure context learned
by the structure embedding module markedly contribute to the
improved performance (Supplementary information, Fig. S7).
Collectively, these findings demonstrated that ProMEP is capable
of capturing both the sequence context and the structure context
of a protein. Furthermore, the quantitative and visually inter-
pretable multimodal context provides significant insights for
biologists to understand the molecular function of both annotated
and unannotated proteins.

Fig. 3 ProMEP captures both the sequence context and the structure context of a protein. a, b An example of the sequence context (a) and
the structure context (b) of a protein during mutation effect prediction. For an arbitrary amino acid, we refer to the sequence context as those
sequentially nearby amino acids with a maximum context size of 1024. We refer to the structure context as those spatially nearest neighbor
amino acids with a maximum number of 30. c Visualization of interactions between sequential amino acids on the real structure of APH(3′)-II
(UniProt accession ID: P00552). Left: more salient residues are highlighted in red in the presented structure. Right: the quantified interaction
score of each position is presented in the functional site identification map. Actual functional sites (active/binding sites) are labeled as the red
line. The interaction scores are labeled as the gray line. d Generalization tests of sequence context perception ability of ProMEP on a functional
site identification benchmark (Materials and methods). We report the Top-1 HR, NDCG and MRR of each method. e Visualization of the
secondary structure context on the real structure of APH(3′)-II. Left: residues with a higher probability corresponding to β-sheet are
highlighted in red, and a higher probability corresponding to α-helix are highlighted in blue. Right: the quantified prediction score of each
position is presented in the secondary structure heat map. Actual secondary labels are indicated as the red line. The predicted scores of
ProMEP are labeled as the gray line. f Generalization tests of secondary structure context perception ability of ProMEP on an 8-class secondary
structure classification benchmark. Other pre-trained protein language models (e.g., ESM1b and UniRep) and an alignment-based method
(Alignment) are evaluated. We report the accuracy of each method on three test sets.
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Predicting mutation effects for proteins with low number of
homologs using ProMEP
While AlphaMissense and other MSA-based methods depend on
MSA to predict the impacts of mutations, ProMEP is an MSA-free
method that can be used to explore unseen protein space. To
validate this ability of ProMEP, we first evaluated ProMEP on
proteins with low number of homologous sequences derived from
the pathogenicity prediction benchmark (Materials and methods).
AlphaMissense was evaluated as a representative MSA-based
method. Six leading MSA-free methods (i.e., ESM2_3B,
ESM2_650M, ProstT5, ESM1b, ESM1v and Tranception) were also
evaluated. We observed that, without fine-tuning, ProMEP can
accurately classify pathogenic variants for proteins with < 100
high similarity sequences (Fig. 4a; Supplementary information,
Fig. S8). For protein Q9BYX4 that is encoded by gene IFIH1,
ProMEP achieves an area under the receiver operating character-
istic curve (auROC) of 0.878 compared with 0.762 for AlphaMis-
sense. For de novo variants from Deciphering Developmental
Disorders (DDD) cohort,43 ProMEP also demonstrates comparable
performance to AlphaMissense (Fig. 4b).
Furthermore, we sourced a stability benchmark that contains de

novo designed proteins for evaluation.15 Specifically, it consists of
776,000 high-quality folding stability values for all single amino
acid variants and selected double mutants from 331 natural and
148 de novo designed protein domains. Most of these de novo
designed protein domains exhibit a maximum identity (max ID) of
60% with any publicly available natural protein in the non-
redundant (NR) protein sequence database (Supplementary
information, Fig. S9a). We predicted the structures of all 479
protein domains via ESMFold.29 Since AlphaMissense did not
provide pre-trained model weights, it was not evaluated on this
dataset. Instead, we used GEMME39 for performance comparison,
which is also an MSA-based method and performs quite well in
the ProteinGym benchmark. For each protein, we calculated the
Spearman’s rank correlation between model predictions and the
measured thermodynamic folding stability (ΔG) of missense
variants. Notably, irrespective of whether the protein domains
are natural or de novo designed, ProMEP demonstrates signifi-
cantly superior performance compared to other methods
(Fig. 4c, d). For natural protein domains, ProMEP outperforms
ESM2_3B with an average Spearman’s rank correlation of 0.601
compared to 0.544 (P < 0.0001, t-test, two-sided). Specifically, in
the case of de novo designed proteins, ProMEP achieves an
average Spearman’s rank correlation of 0.478, a substantial
improvement over the average Spearman’s rank correlation of
0.340 attained by ESM2_650M (P < 0.0001, t-test, two-sided), the
next-best MSA-free model. GEMME could not predict the effects of
mutations on the majority of de novo proteins (131/148) because
of the deficiency of MSAs.
To further elucidate the functional implications of ProMEP

predictions, we compared the model’s fitness score with
changes in protein thermodynamic stability (ΔΔG) of missense
variants on individual de novo designed proteins. Across all
mutants of de novo designed proteins, the median ΔΔG is
−0.62 kcal/mol (Supplementary information, Fig. S9b), indicating
that a missense variant is typically more unstable than the WT.
For example, on three de novo designed proteins that share a
max ID of < 10%, the distribution of ProMEP fitness scores shows
a substantial difference between stable (ΔΔG > 0) and unstable
(ΔΔG < 0) variants (Fig. 4e; Supplementary information,
Fig. S9c–e). We visualized the fitness score on EHEE_rd2_0487
(40 aa, max ID < 10%) and compared the normalized measure-
ments of ΔΔG with the normalized prediction scores of both
ProMEP and ESM1b (Fig. 4f). Notably, ProMEP exhibits a higher
degree of concordance between its predictions and the
empirically measured ΔΔG values compared to ESM1b, implying
a closer association between ProMEP predictions and protein
fitness.

In addition to predicting mutation effects for low-homology
proteins, ProMEP enables more efficient predictions of mutation
effects. While AlphaMissense and other MSA-based methods
require expensive time to search and process MSAs, ProMEP
avoids this bottleneck by learning sequence context and structure
context from massive datasets. Analogous to the evaluation
strategy used in the previous work,29 ProMEP makes a prediction
on a protein with 1000 residues in 0.3 s, 296 times faster than
AlphaMissense (Materials and methods; Fig. 4g). The speed
advantage of ProMEP primarily comes from bypassing MSA
processing and improvements in model architecture. Instead of
utilizing multi-layer Evoformers for processing MSAs like Alpha-
Missense, ProMEP uses a multimodal architecture to process a
single sequence. On shorter sequences, we observed a ~1700-fold
improvement in the speed of model prediction.
Overall, these observations indicate that ProMEP could be

beneficial for estimating mutation effects on proteins with a
limited number of homologs, especially for de novo designed
proteins where MSA-based approaches lack statistical power.

ProMEP-guided engineering of RNA-directed nuclease TnpB
ProMEP exhibits a remarkable proficiency in precisely forecasting
the consequences of mutations within proteins, indicating its
applicability for advancing protein engineering endeavors aimed
at amplifying specific functionalities. We experimentally validate
this ability of ProMEP using the gene editing-related enzymes,
which have elicited considerable interest due to their vast
potential in applications ranging from therapeutic interventions
for various diseases to agricultural breeding practices.44–46 We first
focused on the transposase-related RNA-guided nuclease
TnpB,31,47 whose relatively low editing activity in mammalian
cells limits its wide applications.
Since structure-guided substitution of amino acid residues with

arginine (R) has been shown to improve the editing activity of
CRISPR-Cas proteins in mammalian cells,48–52 we applied ProMEP
to predict the fitness score of all X-to-R mutants (e.g., S72R) of
TnpB. Thus, the top 10 X-to-R mutants with the highest (beneficial)
fitness scores or the bottom 10 X-to-R mutants with the lowest
(deleterious) fitness scores were selected for experimental
validation. The results showed that 7 out of the top 10 beneficial
mutants exhibit increased activity of TnpB, indicating an accuracy
rate of 70%, while all of the top 10 deleterious mutants show
decreased activity, indicating an accuracy rate of 100% (Fig. 5a, b).
Among 10 beneficial mutants identified by ProMEP, S72R exhibits
the highest editing efficiency and results in ~1.56-fold activity
improvement relative to the WT (Fig. 5a). We also analyzed the
probability distributions of all amino acid types at different
positions (Supplementary information, Fig. S10 and Data S1).
ProMEP exhibits a high degree of confidence in predicting top-
ranked beneficial mutations (e.g., S57R and S217R) as well as all
deleterious mutations. For deleterious mutations (e.g., A198R and
V171R), the WT amino acids predominate the probability
distribution.
Furthermore, we used ProMEP to predict the effects of multi-site

mutations. All triple X-to-R mutants of TnpB (8,510,740 mutants)
were analyzed. All of the top 10 beneficial mutants exhibit at
least 1.5-fold improvement in editing efficiency relative to the WT
(P value < 0.05) (Fig. 5c). Then, we applied ProMEP to predict the
editing efficiency of all quintuple X-to-R mutants (Materials and
methods). The top 10 mutants were selected and named TnpB-AI-
5.n(1–10). TnpB-AI-5.n(1–10) all demonstrate robust activity at
three endogenous sites in HEK293T cells (Fig. 5d). Notably, TnpB-
AI-5.6 (TnpB-D191A/S72R/K84R/E168R/K251R/V374R) shows a sig-
nificantly increased editing efficiency at the EMX1 site 1, from
16.64% in the WT to 51.78%. Concurrently, TnpB-AI-5.6 shows an
enhanced gene-editing efficiency at RNF2 site 1, reaching up to
74.04%, in contrast to 24.66% observed in the WT (Fig. 5d). Based
on prior structural data analysis,53,54 the amino acid mutation sites
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of TnpB-AI-5.6 are located within the REC, WED and RuvC domains
(Supplementary information, Fig. S11a). To further evaluate the
characteristics of TnpB-AI-5.6, we chose a panel of 13 target loci
from five genes and compared the editing activities between

TnpB-AI-5.6 and TnpB-WT. The editing efficiencies of TnpB-AI-5.6
at these 13 loci are 1.31–4.73 times higher than those of TnpB-WT
(Fig. 5e). Meanwhile, analysis of insertion and deletion (InDel)
patterns reveals that TnpB-AI-5.6 induces larger deletions

Fig. 4 ProMEP is an MSA-free method that benefits less-studied or de novo designed proteins. a A comparison of prediction performance,
assessed through the auROC metric, was conducted between ProMEP and AlphaMissense using example proteins selected from ClinVar. The
protein name is presented in the format “[HUGO symbol]/[Uniprot accession ID]”. Missense variants, depicted as points, are graphically represented
against ProMEP pathogenicity scores on the y-axis and amino acid positions on the x-axis. Variants predicted as likely pathogenic are denoted in
red, while those predicted as likely benign are shown in blue. If a variant has a clinical label in ClinVar, it is portrayed as a brighter circle. Solid circles
signify variants predicted by ProMEP, whereas hollow circles represent variants predicted by AlphaMissense. b The performance of ProMEP on the
pathogenicity prediction benchmark, which is composed of de novo variants identified within both patients and healthy controls participating in
the DDD cohort. c, d The performance of ProMEP on a stability benchmark. Other MSA-free methods (e.g., ESM2_3B, ProstT5 and Tranception) and
an MSA-based method (GEMME) are evaluated as performance baselines. We report the Spearman’s rank correlation of eachmethod on natural (c)
and de novo protein (d) domains, respectively. e The distribution of mutation effect scores (log-likelihood ratio, LLR) of ProMEP and ESM1b across
two sets of variants on a de novo designed protein domain (EHEE_rd2_0487). ΔΔG values are used to distinguish different classes of variants.
f Heat maps of measured ΔΔG and predicted effects of amino acid substitutions on a de novo designed protein domain (EHEE_rd2_0487). g The
speed of ProMEP vs AlphaMissense and GEMME in processing proteins with sequence lengths up to 1000 (Materials and methods).
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compared to the WT (Fig. 5f; Supplementary information,
Fig. S11b). The analysis of off-target effects demonstrated that
the enhanced enzymatic activity of TnpB-AI-5.6 concurrently
results in a degree of non-specific cleavage (Supplementary
information, Fig. S11c).

To determine whether the enhanced activity of TnpB-AI-5.6
could enable efficient base editing, we constructed nuclease-
deactivated TnpBs by introducing the D191A mutation (dTnpB-WT
representing TnpB-D191A and dTnpB-AI-5.6 representing TnpB-
D191A/S72R/K84R/E168R/K251R/V374R). Futhermore, we
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constructed adenine base editor (ABE) and cytosine base editor
(CBE) based on dTnpB-WT and dTnpB-AI-5.6, respectively (Fig. 5g).
Testing at four endogenous sites in HEK293T cells, we found that
ABE-dTnpB-AI exhibits the highest A-to-G conversion efficiency of
42.07% at the CLIC4 site 3 A6, outperforming ABE-dTnpB-WT’s
efficiency of 21.61% (Fig. 5h). Across all editing sites, ABE-dTnpB-AI
achieves efficiency improvements ranging from 1.91- to 26.9-fold
compared to ABE-dTnpB-WT (Fig. 5h). Consistently, CBE-dTnpB-AI
achieves efficiency improvements ranging from 2.17- to 16.64-fold
compared to CBE-dTnpB-WT at four target sites (Fig. 5i). Together,
our results indicate that ProMEP can efficiently forecast the
mutational effect of TnpB, and can further guide the engineering
of TnpB to generate a versatile genome editor.

ProMEP-guided engineering of adenosine deaminase TadA
To examine the applicability of ProMEP in the engineering of other
enzymes or target proteins, we focused on the tRNA adenosine
deaminase TadA,55,56 which acquired a new function as a
deoxyadenosine deaminase57 with the double mutation (A106V,
D108N). Fusing this mutant with Cas9 nickase (D10A) creates an
adenine base editor (ABE1.2) with limited A-to-G editing ability. To
develop a precise and efficient ABE, we re-evolved ABE1.2 through
ProMEP. We used ProMEP to compute the fitness scores for all
3173 single mutants of ABE1.2, and selected the top 10 beneficial
mutants for validation. Five of the ten beneficial mutants exhibit
average editing efficiencies greater than ABE1.2, indicating an
accuracy rate of 50%, while the editing efficiencies for all top 10
deleterious mutants are lower than ABE1.2, indicating an accuracy
rate of 100% (Fig. 6a, b). Especially, the E134S and E134G variants
demonstrate significant improvements in editing efficiency of 2.12-
fold and 2.50-fold compared to ABE1.2 (P value < 0.05) (Fig. 6a),
respectively. The analysis of probability distributions of all amino
acid types at different positions (Supplementary information,
Fig. S12 and Data S2) shows high confidence of ProMEP in
predicting beneficial and deleterious mutants. The WT amino acids
of deleterious mutations (e.g., G105K and G31L) predominate the
probability distribution, resembling the case of TnpB.
With the success in predicting activities of high-order mutants

of TnpB, we directly utilized ProMEP to construct 41 TadA high-
order mutants with at least ten mutations (Supplementary
information, Fig. S13a). To differentiate these variants, we named
them TadA-AI-n.x, where n represents the number of mutations
contained within each variant on the basis of ABE1.2 and x
numbers the variants harboring the same number of mutations
(e.g., TadA-AI-10.2 indicates the 2nd TadA variant comprising ten
mutations in addition to A106V and D108N). We assessed the
activity of these new ABE variants in HEK293T cells and found that
among all the evaluated TadA multi-site mutants, 18 of them
exhibit an editing efficiency exceeding 40% at the PD1 sg4 A6
position (Fig. 6c). Subsequently, the top 15 ABE variants were
further validated at five additional endogenous sites in
HEK293T cells. The result shows that the editing efficiency of
TadA-AI-15.8 consistently surpassed those of other evaluated
multi-site mutants at these five sites (Fig. 6d).

Next, we used TadA-AI-15.8 to construct an ABE using designs
similar to ABE8e and ABE9.9 Also, we inserted TadA-AI-15.8
between nCas9 P1249 and E1250 (TadA-AI-15.8-In) (Fig. 6e).58,59

TadA-AI-15.8, TadA-AI-15.8-In, ABE8e and ABE9 were compared in
parallel for their A-to-G editing efficiency at nine endogenous sites
(Fig. 6f). Further improvement of editing efficiency was observed
for TadA-AI-15.8-In compared to TadA-AI-15.8 (47.54% vs 16.31%
on CCR5 sg5 A5 and 77.27% vs 72.62% on HEK site 7 A6), which is
consistent with prior studies showing that the embedding of TadA
into nCas9 enhances the editing capabilities of ABEs.58,59 Upon
integrating the average A-to-G conversion frequency across 23
endogenous sites, TadA-AI-15.8-In exhibits high editing activity at
positions A5 and A6 of the editing window, with bystander editing
effects close to those of ABE9 (44.88% vs 52.19% on A5 and
56.12% vs 59.46% on A6) (Fig. 6g). Next, we evaluated the cytosine
deaminase activity of these ABEs. At three target sites, a significant
decrease of cytosine conversion activity was observed for TadA-AI-
15.8 and TadA-AI-15.8-In compared with ABE8e; the average
editing efficiencies of TadA-AI-15.8, TadA-AI-15.8-In and ABE8e are
0.53%, 1.00% and 9.66% on position 6, respectively (Fig. 6h). The
off-target effect analysis demonstrated that TadA-AI-15.8 and
TadA-AI-15.8-In induced lower Cas9-dependent and Cas9-
independent off-target effects than ABE8e (Supplementary
information, Fig. S13b, c). Furthermore, RNA off-target analysis of
TadA-AI-15.8 and TadA-AI-15.8-In shows 1.98-fold and 2.04-fold
reduction compared to ABE8e (Supplementary information,
Fig. S13d). Together, the ProMEP-evolved TadA variant TadA-AI-
15.8 exhibits comparable editing activity and cytosine deaminase
activity to those of ABE9 (Fig. 6g, h). Meanwhile, TadA-AI-15.8, with
only four overlapped mutation sites with ABE8e on the basis of
ABE1.2 (Fig. 6i; Supplementary information, Fig. S13e), demon-
strates significantly diminished bystander and DNA/RNA off-
target effects compared to ABE8e. In summary, our results
demonstrated that ProMEP can accurately predict the mutational
effects of TadA, and further guide the engineering of TadA with
tens of mutations.

DISCUSSION
For efforts ranging from the design of new functional proteins, to
the quantification of pathogenicity for less-studied protein
variants, to the evolutionary prediction of new viruses, accurate
and unsupervised prediction of mutation effects is critical to a
wide range of applications. In this study, we present ProMEP for
zero-shot prediction of mutation effects on proteins and
demonstrate how ProMEP can be used to guide protein
engineering (Fig. 1). A key aspect of this work distinguishing
ProMEP from existing methods is its underlying multimodal deep
representation model. Current leading approaches, such as
DeepSequence,18 MSA-Transformer60 and Tranception,26 largely
operate on sequence information of proteins for mutation effect
prediction. In comparison, we hypothesize that leveraging
structure context will improve the accuracy of mutation effect
prediction since protein functions are largely encoded in its

Fig. 5 The engineering of TnpB guided by ProMEP enhances its editing efficiency in mammalian cells. a Editing efficiency of TnpB variants
harboring either top 10 beneficial or deleterious mutations at EMX1 site 1 is presented as the comparative fold change in InDel efficiency of
these single-mutation variants relative to that of the WT TnpB. b Accuracy of the identification of both beneficial and detrimental single
mutations in TnpB by ProMEP. c Editing efficiency of TnpB variants with triple mutations at EMX1 site 1. Data are presented as the fold change
in InDel efficiency for TnpB variants with triple mutations relative to that of WT TnpB InDel efficiency. d The editing efficiency of WT TnpB and
its quintuple mutants was assessed at three endogenous genomic loci in HEK293T cells. NC negative control. e Comparison of the editing
efficiencies of TnpB and TnpB-AI-5.6 at 13 genomic loci in human HEK293T cells. NC negative control. f Distribution of deletions generated by
the WT TnpB and TnpB-AI-5.6 in HEK293T cells at the AGBL1 site 1. The average efficiency of three biological replicates is symbolized by a
single dot. g Schematic construct designs for ABEs derived from dTnpB and dTnpB-AI-5.6 with the WT TadA and ABE8e (TadA*), and miniature
CBEs derived from dTnpB and dTnpB-AI-5.6 with the mutant APOBEC3A* (Y130F) and uracil glycosylase inhibitor (UGI). h A-to-G conversion
efficiency in endogenous loci with ABEs derived from dTnpB and dTnpB-AI-5.6. i C-to-T conversion efficiency in endogenous loci with CBEs
derived from dTnpB and dTnpB-AI-5.6. For a, c–e, h, i, data are means ± SD from three independent biological replicates.
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tertiary structures. To this end, we first develop a multimodal
deep learning model that systematically learns both sequence
context and structure context from ~160 million proteins with
reliable structures (Supplementary information, Figs. S1–S4). We
address the challenges of learning structure context at atomic

accuracy from hundreds of millions of protein structures via our
proposed protein point cloud and the multimodal architecture. By
modeling the protein fitness landscape under the contexts of both
sequence and structure, ProMEP significantly outperforms tradi-
tional sequence-based methods in predicting mutation effects
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(Figs. 2, 3). Specifically, for low-homology proteins or de novo
designed proteins, ProMEP shows consistently superior perfor-
mance (Fig. 4).
ProMEP uses protein structures predicted by ESMFold29 or

AlphaFold261 to predict mutation effects. This is a major advantage
that enables ProMEP to predict mutation effects for any protein as
long as its amino acid sequence is available for structure
prediction. Since experimentally determined 3D structures are
not available for most proteins,62 this is critical for the application
of ProMEP. The results show that, compared with using
experimentally determined 3D structures, ProMEP still achieves
competitive performance in modeling mutation effects based on
predicted structures, especially those predicted by AlphaFold2
(Supplementary information, Fig. S5). Moreover, robustness tests
demonstrate that ProMEP could tolerate 5-Å jitter in predicted
structures and still outperforms the current leading methods. On
the one hand, these results demonstrate that incorporating
structure information is important to accurately decode mutational
effects. On the other hand, as structure prediction methods keep
evolving, combining more accurate predicted structures could
further improve the performance of ProMEP. In addition, without
necessitating the structures of all protein variants, ProMEP uses a
single WT protein structure for mutation effect prediction. This
strategy allows ProMEP to introduce structure context selected
through evolution, and explore gigantic protein space without
sacrificing computational efficiency.
Benefiting from the increasing availability of protein structures

predicted by AlphaFold2 and other advanced computational
methods, the integration of protein structures into protein
language models has emerged as a pressing question within the
community. However, only limited efforts have been made.38,63–66

For instance, ProstT538 and SaProt63 utilize Foldseek67 to represent
protein structures as token sequences, subsequently employing
these sequences as training data to fine-tune or retrain existing
protein language models. While these methodologies open new
avenues for the development of structure-enhanced protein
language models, they have not yet been extensively employed
for learning structural context on a large scale, nor have they been
rigorously evaluated in the context of real-world protein
engineering challenges. In comparison to these approaches, this
paper introduces a novel and multimodal approach for predicting
mutation effects. Through advancements in model architecture,
the scale of training data, training objectives and downstream
evaluations, our proposed method attains SOTA performance
across a series of benchmarks and facilitates practical protein
engineering tasks.
Both ProMEP and the recently published AlphaMissense aim to

utilize structure context for mutation effect prediction, but they
apply diverse strategies to achieve this goal. AlphaMissense is
built on the AlphaFold methodology, which allows AlphaMissense
to directly extract structure context from protein sequences and
predict the effect of mutation. While this is a major advantage in
AlphaMissense, it also leads to requirements for MSAs. In contrast,
ProMEP is an MSA-free method that learns multimodal context

from millions of proteins and then uses the learned knowledge to
extract structure context from predicted structures. Our evaluation
demonstrates that ProMEP achieves comparable performance
with AlphaMissense on multiple benchmarks. As MSA-free
structure prediction methods (e.g., ESMFold29 and RGN268) are
emerging, the MSA-free approach of ProMEP has two notable
advantages. First, it allows ProMEP to predict mutation effects for
proteins where MSAs are unavailable, such as proteins with low
number of homologs or de novo designed proteins (Fig. 4a–f).
Second, ProMEP inference is 2–3 orders of magnitude faster than
AlphaMissense because of architecture improvement and no need
to process the MSA branch (Fig. 4g). In summary, compared with
AlphaMissense, ProMEP provides a fast and accurate method for
mutation effect prediction, enabling the exploration of the
gigantic protein fitness landscape in practical timescales.
Traditional directed evolution involves the iterative process of

randomly constructing different mutants and screening for
improved variants, followed by experimental quantification or
qualitative screening of individual variants to identify the best
ones. However, this process entails labor-intensive experiments
and is often constrained by the throughput of screening and
selection methods. Natural language-processing techniques are
evolving rapidly. The previous research endeavors have sought to
explore the application of protein language models in protein
engineering tasks.69,70 However, these endeavors have predomi-
nantly focused on either developing new protein language
models without assessing their applicability to practical protein
engineering tasks or employing existing models without further
innovation. In contrast, this study has advanced in both aspects.
ProMEP can accurately predict the consequences of multi-site
mutations without any preliminary samples, thereby manifesting
remarkable predictive accuracy. This heralds a transformative
paradigm in protein engineering, obviating the need for
annotated datasets or an exhaustive grasp of protein structural
and functional intricacies, and enabling expeditious protein
evolution in a computational milieu. Utilizing ProMEP-guided
protein engineering, we develop the small yet highly active TnpB
quintuple mutants, and further derive base editors based on these
variants, which comply with the packaging volume constraints of
adeno-associated virus. Concurrently, the 15-site mutation engi-
neering of the deaminase TadA guided by ProMEP further
demonstrates the generalization performance of our model,
providing advantageous tools for gene editing and therapy.
Recent exploratory efforts in metagenomics have yielded a
significant discovery of Cas proteins and deaminases,71,72 each
exhibiting unique properties, providing ProMEP with an abundant
repository of initial templates. As a straightforward and cost-
effective tool for protein engineering, ProMEP offers an intelligent
strategy to enhance protein functions, facilitating swift and
efficient engineering modifications to generate novel proteins,
and exhibits outstanding ability in the design of protein variants
with multiple-site mutations.
Currently, ProMEP can quantify the effect of multiple amino-

acid substitutions in arbitrary protein sequences, but cannot

Fig. 6 ProMEP identifies beneficial mutations from the gigantic sequence space in the engineering of TadA. a Editing efficiency of TadA
variants harboring top 10 single beneficial mutations or deleterious mutations at an endogenous genomic locus (PD1 sg4). Data shown are the
comparative fold change in A-to-G conversion efficiency of TadA single mutants relative to ABE1.2. b Accuracy of the identification of both
beneficial and deleterious single mutations in TadA by ProMEP. c Base editing efficiency of ABE1.2, ABE8e and TadA multi-site mutants at PD1 sg4
in HEK293T cells. NC negative control. d Base editing efficiency of ABE1.2, ABE8e and TadA multi-site mutants at five endogenous genomic loci in
HEK293T cells. e The architecture of TadA-AI-15.8, TadA-AI-15.8-In, ABE8e and ABE9. f The A-to-G conversion efficiency of TadA-AI-15.8, TadA-AI-
15.8-In, ABE8e and ABE9 was examined at nine endogenous genomic loci in HEK293T cells. g Average A-to-G conversion efficiency of TadA-AI-
15.8, TadA-AI-15.8-In, ABE8e and ABE9 at the 23 target sites. Data are means from three independent experiments. h The C-to-T/G/A conversion
efficiency of TadA-AI-15.8, TadA-AI-15.8-In, ABE8e and ABE9 is examined at three endogenous genomic loci in HEK293T cells. NC negative control.
i Secondary structure elements of the TadA enzyme are shown. The locations of the substrate-binding loops are indicated in gray, and the
mutations in TadA-AI-15.8 and ABE8e are highlighted in red and yellow, respectively. In d, f, h, the heat map represents the average editing
percentage derived from three independent experiments. For a, c, data are means ± SD from three independent biological replicates.
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handle InDels, which could also cause functional changes and
affect organismal adaptations.73,74 Switching the training objec-
tive from masked-language-modeling to next-token-prediction
could tackle this issue, but might require a larger scale
architecture and larger training dataset to develop an optimal
next-token-prediction model.75 Due to the current limitation of
context size (Materials and methods), ProMEP works the best for
proteins shorter than 1024 aa, which covers ~95.88% Uniparc
sequences.76 For proteins longer than this threshold, such as the
spike protein of SARS-CoV-2 (1273 aa), ProMEP needs to split the
protein into overlapped segments and run multiple times to
capture the whole sequence context and structure context. With
the advent of natural language-processing techniques such as
recurrent memory transformer,77 we will update a long-context
and InDels-compatible version of ProMEP in the future. Presently,
ProMEP incorporates both sequence context and structure context
of a protein monomer for predicting mutation effects. Notably, the
inclusion of PPIs or the prediction of binding affinities between
multiple proteins or molecules has not been integrated as a
module within ProMEP. The incorporation of PPIs is a promising
avenue to broaden the utility and advancement of our model.
In conclusion, ProMEP is a general and MSA-free computational

method that enables zero-shot prediction of mutation effects on
diverse proteins. ProMEP achieves SOTA performance in a
comprehensive suite of benchmarks, with a tremendous improve-
ment in speed. Importantly, ProMEP demonstrates great potential
in guiding protein engineering with tens of mutations. ProMEP will
enable the exploration of the vast uncharted realms of protein
space and greatly benefit studies in biomedicine and synthetic
biology.

MATERIALS AND METHODS
Construction of protein point cloud
An arbitrary protein structure can be represented as a contact map (a L × L
matrix where each element is the distance between two residues of a
protein with length L) or a graph (e.g., nodes are residues, and the edges
are inter-residue interactions). While a contact map disregards atomic
structural information (e.g., coordinates of each atom), a graph contains
fine-grained details in protein structures but is often computationally
expensive. Point cloud is a commonly used format for 3D data and has
shown tremendous success in many areas, including computer vision,
autonomous driving and robotics.78 A point cloud can be represented as
an unordered set of 3D points {Pi| i= 1, …, n}, where all points are
homogeneous and each point Pi is a vector of its (x, y, z) coordinates.
Compared with contact map and protein graph, point cloud has the
advantage of preserving atomic geometric information without sacrificing
computational efficiency.
Compared with the naïve point cloud, which is unordered and

homogeneous, our proposed protein point cloud consists of ordered
and heterogeneous points that are extracted from its raw structure.
Specifically, each point corresponds to the alpha C atom of an amino acid.
In addition to the 3D coordinates of each point (x, y, z), the type of residue
each point belongs to (R) and the position of each residue in the protein
sequence of length L (P) is attached as point features.
Definition of each point in protein point cloud: [x, y, z, R, P],
R ∈ (G, A, V, L, I, S, T, C, M, D, E, N, Q, R, K, F, Y, W, P, H)
P ∈ (1, 2, 3, …, L)

Architecture of the multimodal deep representation
learning model
To decipher protein functions at the residual resolution, we develop a
multimodal protein representation learning model (~659.3 million para-
meters). It applies an encoder–decoder architecture to simultaneously
learn sequence context and structure context from millions of proteins
(Supplementary information, Fig. S1). For a protein of length L, the encoder
takes the masked sequence and the masked protein point cloud as input
and generates a K-dimensional feature vector for each amino acid. The
latent representations (L × K) are then fed into the decoder to complete
the missing elements of the corrupted sequence and protein point cloud. K
is set to 1280 during training and inference.

The sequence embedding module, the transformer encoder module and
the sequence decoder module apply similar networks to that of the current
protein language models.23,24 Specifically, the transformer encoder module
is a 33-layer stacked Transformer, and each layer consists of one layer
normalization block, one 20-head attention block and one feed-forward
network. The sequence decoder, comprising two linear layers with GELU
activation and layer normalization, serves to decode the multimodal
features (L × K) of a protein into the probability distribution of each token
in the alphabet (L × 33).
The global features of a protein tertiary structure should be invariant to

arbitrary input poses, which means that 3D translations and rotations of
the input protein structure should not affect the output. To guarantee such
invariance, we chose the NVIDIA-optimized version of SE(3)-Transformer79

as the structure embedding module, which contains one 8-head attention
block interspersed with one normalization module, one TFN layer and one
max pooling layer. We used 1 layer SE(3)-Transformer for large-scale
training. The structure decoder employs a three-layer multi-layer
perceptron (MLP) network with ReLU activation to decode the multimodal
features (L × K) of a protein into the 3D coordinates of each alpha C atom
(L × 3).
To capture the structure context of a protein, the structure embedding

module first calculates the K nearest neighborhoods centered on each
point as well as their relative positions. Next, an equivariant weight matrix
is built upon the Clebsch–Gordon coefficient and spherical harmonics to
guarantee the equivariance of point features during transformation. Third,
the attention mechanism is applied to pass features between adjacent
points. Finally, point features are aggregated and pooled to output the
final structure context.

Model training
We used proteins from the AlphaFold protein structure database as the
self-supervised training dataset. It contains ~200 million structures
predicted by AlphaFold2. We removed proteins shorter than 64 aa and
those with average pLDDT (predicted Local Distance Difference Test) score
lower than 70. It deserves to be mentioned that we did not impose a
minimum threshold on the average pLDDT of a predicted structure during
the inference stage. We randomly selected ~0.5 million proteins for
validation. The final training dataset contains ~160 million proteins. Both
amino acid sequence and protein point cloud were extracted from the raw
protein structure for multimodal training. Since ~95.88% Uniparc
sequences contain fewer than 1024 aa, we set the context size to 1024.
For proteins longer than 1024 aa, we sampled the start position of amino
acids from uniform distribution [1, n – x+ 1] where n is the length of
protein minus 1024, and x is sampled from uniform distribution [0, n]. For
proteins shorter than 1024 aa, padding tokens were appended to their
sequence, and random alpha C atoms selected from the raw structures
were appended to the extracted protein point clouds.
The extracted amino acid sequence and protein point cloud were then

corrupted and recovered by the proposed multimodal model during
training. To mask the protein sequence, we randomly sampled 15% of
tokens from the sequence after tokenization as utilized in BERT80 and
ESM.23 Each of the sampled token was replaced with a special mask token
with 80% probability, a randomly chosen alternate amino acid token with
10% probability, and the original input token (i.e., no change) with 10%
probability. To mask the protein point cloud, we referred to the commonly
used mask ratio in current point completion networks81,82 and chose to
mask 256 points (25% of 1024) from the original data. Specifically, we
calculated the central point of the protein and chose 256 nearest neighbor
points centered on it. We masked the coordinates of these points and
trained the proposed multimodal network to automatically recover them.
The loss function is a sum of a categorical cross-entropy (CE) loss and a

permutation-invariant chamfer distance (CD) loss.83 In particular, the CE
loss measures the differences between the model’s predictions and the
true token for masked amino acid sequence. The CD loss quantifies the
completion results by calculating the average nearest squared distance
between the recovered protein point cloud and the ground truth. By
minimizing the CE loss and the chamfer distance loss, our proposed model
learns high-order representations of a protein in a self-supervised manner.
All layers except the transformer encoder module are initialized from a

zero-centered normal distribution with a standard deviation of 0.02. The
transformer encoder module is initialized with parameters of ESM1b.23 We
trained the multimodal deep representation learning model for 380 K
steps using Adam optimizer (β1= 0.9, β2= 0.999) at initial learning rate
1e−4 with batch size of 480. The learning rate increases linearly during a
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warm-up period of 10,000 steps. Afterward, the learning rate follows an
inverse square root decay schedule. The training was conducted on 15
nodes interconnected with InfiniBand, where each node contains 8 NVIDIA
A100 GPUs.

Benchmarking multimodal representations with function-
related datasets
We used 15 function-related datasets (see Supplementary information,
Table S3) to benchmark the performance of our multimodal deep
representation learning model compared to a comprehensive suite of
baselines. We used the standard partition of each dataset and ensured that
the training set and the test set were non-redundant. Protein representa-
tions generated by our model are either fed into an MLP or integrated into
a customized model to make final predictions. According to the down-
stream network, two types of representations are used, including the
residual-level representation of the protein (protein length × 1280), and
the molecular-level representation that averaged across the length of the
protein (1280). Details are introduced as follows.

EC annotation tasks. EC number84 is a commonly used classification
scheme that specifies the catalytic function of an enzyme by four digits.
Four diverse datasets were used for benchmarking. The EC-PDB dataset,
which was constructed by Gligorijevi´c et al.,34 consists of 19,198 non-
redundant proteins and covers 538 third and fourth levels EC numbers
of the EC tree. It was partitioned into training, validation and test sets,
with approximate ratios of 80%/10%/10%. Proteins in the test set have
varying degrees of sequence identity and structure identity (30%, 40%,
50%, 70% and 95%) to the training set (see Supplementary information,
Tables S4, S5). Hermosilla et al.85 constructed the EC-384 dataset, which
contains 37,428 proteins from 384 fourth-level EC numbers. The entire
dataset was split into training, validation and test sets. In addition,
proteins in each set do not have more than 50% of sequence similarity
with proteins from the other sets. The EC-New-392 dataset and the EC-
Price-149 dataset are test sets used in contrastive learning-enabled
enzyme annotation (CLEAN).86 Specifically, EC-New-392 consists of 392
proteins covering 177 different EC numbers from Swiss-Prot released
after April 2022. EC-Price-149 is a collection of 149 proteins validated by
experiments described by Price et al.87 We replaced the raw input of
CLEAN with representations generated by our proposed model and kept
the model unchanged. Then we used the same training set to train
CLEAN (denoted by Ours-CLEAN) and tested its performance on both EC-
New-392 and EC-Price-149.

GO annotation tasks. GO annotations capture statements about how a
gene functions at the molecular level (MF), where in the cell it functions
(CC) and what biological processes (BP) it is involved.88,89 The GO-MF, GO-
CC and GO-BP datasets were constructed by Gligorijević et al.34 They only
selected GO terms with at least 50 and no more than 5000 samples,
forming ~36 K non-redundant PDB chains that cover 489, 320 and 1943 GO
terms at different hierarchies in MF, CC and BP, respectively. We used the
same partitioning scheme to split these protein sequences into training,
validation and test sets, with approximate ratios of 80%/10%/10%. Proteins
in the test set have varying degrees of sequence identity and structure
identity (30%, 40%, 50%, 70% and 95%) to the training set (see
Supplementary information, Tables S4, S5). Furthermore, each protein in
the test set has corresponding experimentally determined PDB structures
and at least one experimentally determined annotation. Each GO term was
treated as a separate label during training and testing. Hierarchies and
distances between GO terms were not considered.

Cross-species PPI prediction tasks. The cross-species PPI prediction task
involved experiments conducted on the D-SCRIPT dataset,90 which is
derived from the STRING database. This dataset comprehensively covers
PPIs across various species, including human, mouse, fly, yeast and
Escherichia coli. In the human subset, there are ~38,000 PPIs in the training
set and 25,000 in the test set. All PPIs from other species were integrated
into the test set, with 22,000 PPIs for E. coli and 55,000 for fly, yeast and
mouse. Negative samples were generated by randomly pairing proteins
from the non-redundant set, with their quantity being ten times that of the
positive samples. This methodology aligns with the understanding that
true PPIs are infrequent. For predictive modeling, a human PPI-trained
model was employed to predict PPIs in the test set. Importantly, all protein
structures used in this study were sourced from the AlphaFold protein
structure database.

Virus–human PPI prediction tasks. The virus–human PPI prediction task is
conducted in our study. We employed three datasets curated by Dong
et al.91 to assess the performance of our model in predicting virus–human
PPIs. These datasets encompass interactions between human proteins and
virus proteins such as Ebola and H1N1. Each dataset comprises thousands
of human proteins and hundreds of virus proteins (refer to Supplementary
information, Table S6 for details). The structures of human proteins were
obtained from the AlphaFold protein structure database, while the
prediction of virus protein structures was carried out using ESMFold. The
number of both negative and positive PPIs for training in the Ebola dataset
was 11,341, while 150 non-redundant PPIs were used as the test set. In the
H1N1 dataset, the training split includes 10,858 negative and positive PPIs,
while the test split comprises 381 non-redundant instances of negative
and positive interactions. In the DENOVO dataset, the training set is
composed of 5020 positive samples and 4734 negative samples, and the
test split consists of 425 non-redundant instances of positive and
negative PPIs.

Multi-class PPI prediction tasks. The multi-class PPI prediction task is
undertaken using two datasets, namely SHS148K and STRING, curated by
GNN-PPI.92 These datasets comprise 44,488 and 593,397 multilabel PPIs,
respectively. Both two datasets employ two heuristic evaluation schemes
based on the PPI network for splitting. Specifically, the Breadth-First Search
(BFS) and Depth-First Search (DFS) algorithms are utilized to explore ~20%
of the PPIs, forming the test set. All PPIs are categorized into seven types:
activation, inhibition, reaction, binding, expression, catalysis and post-
translational modifications. Each pair of interacting proteins is associated
with at least one of these labels. The protein structures utilized in the
analysis are retrieved from the AlphaFold protein structure database,
encompassing 5189 proteins in SHS148K and 15,335 proteins in STRING.
For EC-PDB, EC-384, GO-BP, GO-MF, GO-CC, PPI-Mouse, PPI-Fly and PPI-E.

coli, we respectively constructed an MLP classifier as described in ref. 33 to
decode the representations generated by different methods (see
Supplementary information, Tables S1, S2). For PPI-SHS148K and PPI-
STRING, we constructed an eight-layer stacked transformer with a hidden
size of 256. While CNN, ResNet, LSTM and Transformer were initialized
randomly and trainable,93,94 the parameters of other pre-trained models
were frozen during training. In particular, pre-trained parameters of
UniRep,7 ESM1b23 and ProtT524 were downloaded and used. Models and
results of other pre-trained models were obtained from corresponding
publications (Supplementary information, Table S7).33,85,92,95–99

For the rest of the datasets, our proposed model acted as a plugin
model that generated latent representations for proteins and utilized
existing customized models for further prediction. Specifically, we used
CLEAN,86 for EC-New-392 and EC-Price-149. We replaced the raw input of
CLEAN with representations generated by our proposed model and kept
the model unchanged. For PPI-DENOVO, PPI-EBOLA and PPI-H1N1, we
used multimodal representations as the input of the graph model
proposed by Dong et al.91 and kept all hyper-parameters unchanged.
Results of other methods were obtained from corresponding publications.
We probed the robustness of our proposed model in learning

sequence–function and structure–function relationships from proteins
with low sequence/structure similarity on downstream tasks. Specifically,
BLAST was used to align the protein sequences of the test set to the
training sequences and computed the identity score. We used TMScore100

to assess the topological similarity between protein structures of the test
set and the training set. Five similarity cutoffs were used to partition each
test set into multiple groups (see Supplementary information, Tables S4,
S5).

Multimodal context benchmarking
We used three benchmarks to investigate whether the sequence context
and the structure context of a protein could be captured by ProMEP.

Protein sequence context. We evaluated the micro-structure perception
ability of our proposed multimodal network by quantifying its attention on
functional sites. During training and inference, it applied the attention
mechanism101 to probe sequence context and structural context.
Calculating the attention score between residues of a protein allowed us
to identify key positions that the model focused on. We randomly selected
10,000 proteins from Swiss-Prot and filtered out proteins without
functional site annotations. We used the 80% identity-filtered subset,
which contains 1325 proteins. We ranked all residues based on the
attention score during the evaluation. Specifically, we computed the
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average attention score across all 33 layers and 20 heads during the
quantification of the attention score for each amino acid in the sequence.
Examples of attention visualization are shown in Fig. 3c and Supplemen-
tary information, Fig. S6a.
DeepFRI,34 HEAL42 and a random approach (denoted as Random) were

used as baselines. Specifically, DeepFRI is a graph convolutional network
that employs a pre-trained protein language model to extract sequence
features and further constructs a residue graph to predict protein
functions. In addition, DeepFRI could identify the contribution of each
residue to the predicted function. We utilized the official model
checkpoints of DeepFRI and used the Molecular Function branch for
evaluation. HEAL is a deep learning model for protein function prediction,
which could capture structural features via a hierarchical graph
transformer. We downloaded the pre-trained parameters of HEAL and
applied the gradient-weighted Class Activation Map (grad-CAM)102 to rank
the activation score of each residue. Random is a baseline strategy that
randomly ranks the importance of each residue. We reported the average
performance of Random across five runs. We used the commonly used
Top-1 HR, NDCG and MRR as evaluation metrics.

Local structure context. To benchmark the ability of the proposed
multimodal network to capture local structure context, we used the
dataset constructed by Klausen et al.103 as the training and validation set. It
contains 10,837 crystal structures obtained from PDB that filtered at the
25% identity threshold as well as the 2.5 Å resolution threshold. Among
these structures, 10,337 structures were used as the training set, and 500
randomly selected structures were left out as the validation set. CB513,104

CASP12104 and TS115105 were used as test sets, which contain 507, 21 and
115 non-redundant structures, respectively. All proteins in the test set
share no more than 25% sequence identity with the proteins present in the
training set. Each amino acid of each structure was mapped to 8-class (Q8)
secondary structure labels as described in ref. 106 Our proposed model
acted as an encoder that generated residual-level representations, which
were then fed into an MLP classifier as described in ref. 94 It is important to
acknowledge that during the pre-training stage, our proposed multimodal
deep representation learning model processed unlabeled protein struc-
tures without prior knowledge of the actual secondary structure labels
assigned to each amino acid. Results of other methods were obtained from
ref. 94 (Supplementary information, Table S7).
We also constructed two small-scale datasets to further benchmark

multimodal representations in the condition of scarce training samples. The
PDB-100 dataset consists of 100 single-domain proteins that are randomly
selected from the SCOP database.107 For each protein, we obtained its
structure and secondary structure annotations for each of the positions from
the PDB.62 In addition to the SCOP-100 dataset, we constructed the CATH-
100 dataset by randomly selecting 100 proteins from the dataset collected
by Zhou et al.108 Each protein in CATH-100 has experimentally determined
3D structure as well as annotated B-factor and solvent-accessible surface
area for each of the positions. While PDB-100 is a 3-class classification task,
CATH-100 corresponds to two regression tasks. We compared the
performance of our proposed multimodal network with several leading
methods, including UniRep, ESM1b and ProtT5. For each task, we
constructed a random forest model to make predictions on the basis of
representations generated by each of thesemethods, respectively. We report
the performance of each model in a 5-fold cross-validation manner on the
entire dataset. We used the random forest model trained on SCOP-100 for
subsequent secondary structure benchmarking and visualization.

Global structure context. The SCOPe database organizes protein domains
into multiple hierarchies, including Family, Superfamily and Fold.107 In
particular, the basis of classification for Folds is purely structural. As
described in ref. 109 we used the 40% identity-filtered subset of SCOPe
v2.07 as the benchmark set. It contains 13,265 domains that can be
classified into seven classes (see Supplementary information, Table S8). We
constructed a five-layer MLP (batch size: 24, learning rate 3e−5, dropped
out ratio 0.2, Adam optimizer) as the decoder to classify multimodal
representations to a specific fold class. We report the average F1 score of
the 5-fold cross-validation results on the entire dataset. Leading structure-
based methods were used as baselines, including GraSR and DeepFold.
GraSR uses a contrastive learning framework to capture protein features
from a protein graph of protein structure.109 DeepFold extracts structural
motif features from protein contact maps via a deep convolutional neural
network.110 SGM103 and SSEF104 are classical structural classification tools
that uses 30 global backbone topological measures and frequencies of
1500 secondary structure triplets to encode protein structures,

respectively. The performance of these methods are obtained from
refs. 109,110 (Supplementary information, Table S7).

Zero-shot protein fitness modeling
ProMEP quantifies the log-likelihood of protein variants under the context
of both sequence and structure. The calculation is shown in the equation.
To model the fitness of a protein, the WT sequence S and structure context
C are fed into ProMEP, which in turn outputs a sequence of log
probabilities. We calculated the conditional probabilities of mutated
amino acid mt and WT amino acid wt at each mutational position t. The
sum over all mutated positions T is the final fitness score of a protein
variant.
X

t2T
log pðxt ¼ xmt

t jS�t; CÞ � log pðxt ¼ xwtt jS�t ;CÞ

We first evaluated ProMEP on three representative datasets. Specifically,
the UBC9 dataset was constructed by Weile et al.35 and comprises
experimental data obtained from growth-based complementation assays,
where the fitness of 2563 protein variants with single mutations was
estimated. Roscoe et al.36 constructed the RPL40A dataset that contains
1380 single mutations by quantifying yeast growth rate as a measure of
experimental fitness. The protein G dataset12 contains 1045 single
mutations and 535,917 double mutations with measured binding affinity.
We then used 66 DMS datasets that cover 53 proteins from the

ProteinGym benchmark26 for the generalization test. All proteins derived
from prokaryotes, human and other eukaryotes collected in the
ProteinGym benchmark were included. Nineteen proteins derived from
viruses were not used for evaluation because of the biases in the pre-
training dataset.30 We used ESMFold to predict the structure of the WT
protein in these datasets. For each WT protein, we collected ~300
homologous sequences from the NR database with sequence identity
lower than 80% and predicted their structures via ESMFold. We then used
these homologous samples to fine-tune ProMEP for 3 epochs with a
learning rate of 1e−4. The fine-tuning procedure enables ProMEP to gain a
better understanding of sequence and structure contexts from homologies
sampled through evolution. AlphaMissense, which is the best method for
mutation effect prediction, was used as a leading baseline. The SOTA
protein language model, ESM2_3B and ESM2_650M, as well as the
structure-enhanced protein language model, ProstT5, were also evaluated
as baseline models. To predict mutation effects with ProtsT5, we first
extracted residue embeddings of each protein, and then used VESPA to
calculate the logits score. The predicted score of multiple mutations in
ProtsT5 was obtained by adding the score of each single mutation. Results
of other baseline methods were obtained from the ProteinGym benchmark
(Supplementary information, Table S7).26

Pathogenic variant classification
The datasets employed for the pathogenicity prediction task are derived
from two distinct sources: the ClinVar test set111 and de novo variants
identified in individuals with rare diseases.
The ClinVar test set comprises a total of 30,884 pathogenic and 51,988

benign variants, distributed across 7951 proteins. To validate the ProMEP
and AlphaMissense models on proteins characterized by shallow MSA
depths, proteins with fewer high similarity sequences were selected.
Specifically, we ascertained the number of high similarity sequences for
proteins within the ClinVar dataset by aligning them with the Non-
Redundant Protein Database using BLAST. Hits with an identity below 0.95
or coverage below 0.5 were systematically filtered out. We adhered to the
criteria established by AlphaMissense,28 wherein proteins are retained only
if they meet a minimum threshold of five benign and five pathogenic
variants. We chose proteins with high similarity sequences < 100.
The second dataset is composed of de novo variants identified within

both patients and healthy controls participating in the DDD cohort.43 This
dataset comprises a total of 410 variants distributed across 156 proteins.
In the pathogenicity prediction task, ProMEP is not fine-tuned. For a

given position i within the protein, the pathogenic likelihood of a residue
undergoing mutation from amino acid type w to type m is calculated as
follows:

Pi wjmð Þ ¼ Sigmoid logitwi � logitmi � τ
� �

(1)

where logit represents the output of ProMEP, τ signifies a handcraft
threshold. Specifically, τ is set to 6 during evaluation. A variant is
considered pathogenic if Pi (w|m) > 0.5.
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In addition to AlphaMissense, we performed a comparative analysis with
several MSA-free baseline models, including ESM1b, ESM1v and Tranception.
Pathogenicity calculations for ESM1b and ESM1v were conducted utilizing
Eq. 1, with τ maintained consistently in accordance with ProMEP guidelines.
Equation 1 is similarly applied to Tranception; however, τ is specifically set to
0. It is noteworthy that the hyperparameter τ exclusively impacts the
accuracy metric, but with no discernible influence on the auROC metric.

ProMEP vs AlphaMissense and GEMME timing experiments
We randomly collected proteins with lengths from 100 aa to 1000 aa from
UniProt. We compared the model inference of ProMEP and AlphaMissense.
Time costs of preparing input for the model (e.g., searching MSAs from
sequence databases in AlphaMissense, or predicting protein structure from
protein sequence) and model initialization (e.g., Jax graph compilation times
in AlphaMissense, or pre-trained weight loading times in ProMEP) were
excluded. Since the trained AlphaMissense model weights are not released,
we used randomly initiated weights during evaluation and did not count the
weight loading times in AlphaMissense. We evaluated the model inference
time of predicting mutation effects via ProMEP or AlphaMissense. For each
length, we report the average time costs of at least three proteins. All
experiments were run on a single NVIDIA V100 GPU.

ProMEP-guided protein engineering of TnpB
We began by ranking protein variants with single mutation. Specifically, we
constructed a virtual saturation mutagenesis library that only contains
single variants (7752 variants). We then ranked all variants via the
calculated fitness score. Since X-to-R mutations (e.g., S72R) are commonly
used in the engineering of CRISPR-Cas proteins, we chose the top 10
beneficial X-to-R variants and top 10 deleterious X-to-R variants from the
entire ranked list for further evaluation. We also constructed a virtual
mutagenesis library that consists of triple X-to-R mutants (8,510,740
mutants). Again, we calculated the fitness score of each variant. According
to the experimental data from top 10 beneficial X-to-R single mutants, we
filtered out mutants that contain neutral or negative mutations (Y388R,
S217R, L398R, T405R, L406R, K44R and H403R) from top-ranked beneficial
mutants. The top 10 beneficial triple mutants from the mutagenesis library
were selected for further evaluation. P values were derived by a two-tailed
Student’s t-test. All statistical analyses were performed on n = 3
biologically independent experiments.
To generate variants with more mutations, we fine-tuned ProMEP based

on the experimental results of TnpB mutants. The primary aim is to
distinguish beneficial mutations from deleterious ones. In particular, TnpB
mutants exhibiting a fold change > 1.2 were designated as positive
samples, while those displaying a fold change < 0.8 were classified as
negative samples. The fine-tuning dataset, consisting of 27 samples, was
divided into a training set (80%) and a validation set (20%). We used a
binary CE loss during the fine-tuning process:

loss ¼ � y log P xð Þ þ 1� yð Þ log 1� P xð Þð Þð Þð Þ

Specifically, the label of each sample is denoted as y (where
y= 1 signifies beneficial mutations and y= 0 signifies deleterious
mutations). P xð Þ ¼ Sigmoid mt � wtð Þ, is the predicted fitness score
determined by ProMEP, in which wt and mt is the logits of WT and
mutation types, respectively.

ProMEP-guided protein engineering of TadA
We constructed a virtual saturation mutagenesis library that only contains
single mutation for TadA. To preserve its specialty as a deoxyadenosine
deaminase, mutations at positions 106 and 108 were filtered out. We
calculated the fitness scores for the rest 3135 variants and chose the top 10
beneficial variants and top 10 deleterious variants for further evaluation.
To guide the screening of TadA mutants with more than 10 mutations,

we utilized ProMEP to identify the top 40 beneficial single mutants and
assessed their editing efficiency (Supplementary information, Data S3).
Based on these experimental data, we constructed two variants, namely,
TadA-AI-8 and TadA-AI-14, which incorporate 8 and 14 mutations,
respectively. Subsequently, we used ProMEP to investigate three subspace
of TadA mutants, and selected 40 mutants with the highest fitness scores.

Plasmid vector construction
Plasmid amino acid sequences are listed in Supplementary information,
Data S4. The TnpB gene was optimized for expression in human cells

through codon optimization, and the optimized sequence was synthe-
sized for vector construction by Sangon Biotech. We inserted the
ultimately optimized sequence into the pST1374 vector, which contains
the CMV promoter and a nuclear localization signal. The construction of
TnpB mutants is achieved through site-directed mutagenesis. PCR
amplifications were performed using Phanta Max Super-Fidelity DNA
Polymerase (Vazyme). Following digestion with DpnI (New England
BioLabs), the PCR products were then ligated using 2× MultiF Seamless
Assembly Mix (ABclonal). Ligated products were transformed into DH5α E.
coli cells. The success of the mutations was confirmed via Sanger
sequencing. The modified plasmid vectors were purified using a TIANpure
Midi Plasmid Kit (TIANGEN). ABE-dTnpB-WT and ABE-dTnpB-AI were
generated as described previously, albeit with procedural modifica-
tions.112 TadA-TadA* sequences were fused at 3′-region of dead TnpB
(TnpBD191A) or dead TnpB-AI-5.6 (TnpBD191A/S72R/K84R/E168R/K251R/V374R)
with 32-aa linkers using 2× MultiF Seamless Assembly Mix (ABclonal).
The CBE-dTnpB-WT and CBE-dTnpB-AI vectors were constructed by
insertion of dTnpB or dTnpB-AI between human APOBEC3A(Y130F113)
and two UGIs. Various mutants of TadA sequences were synthesized by
Sangon Biotech. Then, TadA and its variants were cloned into a vector
containing nCas9(D10A) and nuclear localization signal. All guide RNA
plasmids were cloned using T4 DNA Ligase (New England Biolabs). Oligos
for targeting spacers were annealed and ligated into BsaI (New England
BioLabs)-digested PGL3-U6 backbone vectors. The spacer sequences of
guide RNA used in the study are shown in Supplementary information,
Data S5. The final constructed vectors were all validated for accuracy by
Sanger sequencing.

Cell culture and transfection
HEK293T cells were maintained in Dulbecco’s modified Eagle medium
(Gibco) supplemented with 10% fetal bovine serum (Gemini) and 1%
penicillin–streptomycin (Gibco) in an incubator (37 °C, 5% CO2). For InDel
analysis, HEK293T cells were transfected at 80% confluency with a density
of ~1 × 105 cells/well in a 24-well plate. For TnpB InDel analysis, 500 ng of
TnpB plasmid, 500 ng of reRNA plasmid were co-transfected into
HEK293T cells using ExFect Transfection Reagent (Vazyme). For base
editing, 500 ng of base editor plasmid and 500 ng of sgRNA plasmid were
co-transfected into HEK293T cells using ExFect Transfection Reagent
following the manufacturerʼs protocol.

DNA extraction and deep sequencing
The transfected cells as described above, are washed with PBS (Gibco)
and extracted using QuickExtract DNA Extraction Solution (Lucigen).
Samples are incubated at 65 °C for 60 min and heat-inactivated at 98 °C
for 3 min. The lysed products were used as templates for the first round
PCR (PCR1). PCR1 is conducted with PCR1-primers (see Supplementary
information, Data S5) to amplify the genomic region of interest using
Phanta Max Super-Fidelity DNA Polymerase (Vazyme). PCR1 was
performed under the following cycle conditions: 98 °C for 3 min, (98 °C
15 s, 60 °C 15 s, 72 °C 30 s) × 29, 72 °C for 3 min. Following the
confirmation of successful PCR1 amplification through gel electrophor-
esis, the PCR1 products were pooled in equal moles and then purified,
getting them ready for the second round of PCR (PCR2). The PCR2
products were amplified using index primers (Vazyme) and purified by
FastPure Gel DNA Extraction Mini Kit (Vazyme) for sequencing on the
Illumina NovaSeq platform. PCR2 was performed under the following
cycle conditions: 98 °C for 45 s, (98 °C 15 s, 60 °C 15 s, 72 °C 30 s) × 6, 72 °C
for 3 min. InDel frequencies, A-to-G or C-to-T conversions at each target
site were analyzed using CRISPResso2 (https://github.com/pinellolab/
CRISPResso2).

DNA off-target analysis
To evaluate the specificity of TnpB, TnpB-AI and TadA variants, we
employed CRISPR RGEN Tools (Cas-OFFinder, http://www.rgenome.net/cas-
offinder/) to predict potential off-target sites. For TnpB, the PAM of
research was set to “TTGAT” and the mismatches were set to 5. For base
editing, the PAM was defined as “NGG” with a mismatch tolerance of 4.
Subsequently, we retrieved 1000-bp sequences encompassing these
potential off-target sites from UCSC (https://genome.ucsc.edu/) and
designed suitable primers for amplifying these specific sequences.
Targeted deep sequencing was conducted to evaluate off-target
efficiencies. The primers used to amplify potential off-target sites are
listed in Supplementary information, Data S6.
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R-loop assay for Cas9-independent DNA off-target analysis
In general, a base editor-expressing plasmid and SpCas9 sgRNA were co-
transfected into HEK293T cells in 24-well plates along with nSaCas9 and
nSaCas9 sgRNA plasmids at each R-loop site, followed by culturing for 72 h.
After 72 h, the transfected cells were digested with 0.25% trypsin (Gibco).
Genomic DNA was isolated utilizing QuickExtract DNA Extraction Solution
(Lucigen).

RNA sequencing experiments
For the RNA sequencing experiment, HEK293T cells were seeded in 10-cm
dishes. 10 μg base editor plasmid and 10 μg of sgRNA plasmid were co-
transfected into HEK293T cells using ExFect Transfection Reagent. After
3 days, cells were washed with 1× PBS, lysed with RNAiso Plus (TaKaRa).
Total RNA was extracted utilizing the Trizol method, subsequently assessed
for purity using NanoDrop One, and its integrity was evaluated with
Agilent 2100. Following this, mRNA enrichment and purification from
eukaryotic total RNA were executed with the VAHTS mRNA Capture Beads
kit (Vazyme), and RNA was fragmented through ion interruption to attain
insert sizes ranging from 250 bp to 450 bp. cDNA first-strand synthesis is
conducted using fragmented RNA as a template, succeeded by second-
strand cDNA synthesis employing the first-strand cDNA as a template, and
subsequent double-stranded cDNA end repair and dA-tailing. Following
the ligation of universal adapters, bead-based purification was utilized, and
fragment selection was executed for sizes ranging between 250 bp and
350 bp. PCR amplification was conducted, incorporating primer double-
end indexes, and the products underwent bead-based purification to yield
the complete library. Second-generation sequencing technology, lever-
aging the Illumina NovaSeq 6000 sequencing platform, was employed for
paired-end sequencing of the library.

Transcriptome-wide RNA analysis
The raw data were processed by fastp v0.23.4 with adapter trimming, low-
quality base trimming (-q 20, -r, -W 10, -c), low complexity filtering and
length filtering (-l 75). The clean data were aligned to the reference
genome hg38 by using hisat2 v2.2.1. Samtools v1.18 was used to sort and
index mapping results. The sorted mapping results underwent duplicate
marking and base quality recalibration using MarkDuplicates, BaseRecali-
brator and ApplyBQSR in GATK toolkit v4.2.5.0. The variants were detected
using HaplotypeCaller. The single nucleotide polymorphism (SNP) variants
were further filtered to retain SNP variants with base-quality score > 25,
mapping quality score > 20, Fisher strand values < 30.0, qual by depth
values > 2.0 and sequencing depth > 20. The depth for a given off-target
edit should be at least 10× and these edits are required to have at least
99% of reads supporting the reference allele in the WT samples.

DATA AVAILABILITY
Protein structures used for training are publicly available in AlphaFold protein
structure database (https://www.alphafold.ebi.ac.uk/). Public datasets that we used
for performance evaluation are obtained from corresponding publications. Please
refer to Materials and methods for more details. The deep sequencing data from this
study have been submitted to the National Center for Biotechnology Information
Sequence Read Archive database under accession number GSE261254,
PRJNA1080466 and PRJNA1080297. Source data are provided with this paper
(https://github.com/wenjiegroup/ProMEP).

CODE AVAILABILITY
The source codes of ProMEP are available at https://github.com/wenjiegroup/ProMEP.
We predicted protein structures via ESMFold (https://github.com/facebookresearch/
esm) and AlphaFold2 (https://github.com/deepmind/alphafold). Deep sequencing data
were analyzed with CRISPResso2 (https://github.com/pinellolab/CRISPResso2). Protein
structures were visualized with PyMOL (https://pymol.org/2/). Sequence alignments
were visualized with ESPript (https://espript.ibcp.fr/ESPript/ESPript/). The probability
distributions of all amino acid types at different positions were visualized with
WebLogo (https://weblogo.threeplusone.com/).
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