Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate lymphoid cell memory

Abstract

Innate lymphoid cells (ILCs), including natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells, comprise the first line of innate immune defense against pathogens and tumors. Over the past decade, accumulating evidence has demonstrated immunological memory in ILC subsets: for example, NK cells recall haptens, viruses, and cytokines; ILC1s recall haptens; and ILC2s recall cytokines. Although the development and functions of ILCs mirror those of T-cell subsets, ILC and T-cell memory exhibit both common characteristics and specific properties. Encouragingly, ILC memory has been found to confer benefits in long-term tumor control and vaccination, providing insight for novel memory ILC-based tumor immunotherapy and vaccine-development strategies. In this review, we discuss the evidence supporting ILC memory and present a comprehensive framework of the ILC memory system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Spits, H. et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  2. Eberl, G., Colonna, M., Di Santo, J. P. & McKenzie, A. N. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    CAS  PubMed  Google Scholar 

  4. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    CAS  PubMed  Google Scholar 

  5. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    CAS  PubMed  Google Scholar 

  7. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 (2017). e712.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+lymphoid cells. Nature 463, 540 (2009).

    PubMed  Google Scholar 

  9. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722 (2008).

    PubMed  PubMed Central  Google Scholar 

  11. Cupedo, T. et al. Human fetal lymphoid tissue–inducer cells are interleukin 17–producing precursors to RORC+CD127+natural killer–like cells. Nat. Immunol. 10, 66 (2008).

    PubMed  Google Scholar 

  12. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+cell populations in gut and skin. Nat. Immunol. 10, 75 (2008).

    PubMed  Google Scholar 

  13. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  14. Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect CD4+CD3− LTβ+cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    CAS  PubMed  Google Scholar 

  15. O’Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    PubMed  Google Scholar 

  16. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA 106, 1915–1919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Reeves, R. K. et al. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 16, 927–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez-Verges, S. et al. Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 108, 14725–14732 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, X. et al. Memory formation and long-term maintenance of IL-7Ralpha(+) ILC1s via a lymph node-liver axis. Nat. Commun. 9, 4854 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198–208 (2016).

    CAS  PubMed  Google Scholar 

  22. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng, H., Sun, R. & Liver-resident, N. K. cells and their potential functions. Cell. Mol. Immunol. 14, 890 (2017).

    CAS  PubMed Central  Google Scholar 

  25. Peng, H., Wisse, E. & Tian, Z. Liver natural killer cells: subsets and roles in liver immunity. Cell. Mol. Immunol. 13, 328–336 (2016).

    CAS  PubMed  Google Scholar 

  26. Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang, L. et al. Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J. Autoimmun. 67, 29–35 (2016).

    CAS  PubMed  Google Scholar 

  29. Yu, Y. et al. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 539, 102–106 (2016).

    CAS  PubMed  Google Scholar 

  30. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, L. H., Shin, J. H., Haggadone, M. D. & Sunwoo, J. B. The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J. Exp. Med. 213, 2249–2257 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van den Boorn, J. G. et al. Inflammasome-dependent induction of adaptive NK cell memory. Immunity 44, 1406–1421 (2016).

    PubMed  Google Scholar 

  33. Wight, A. et al. Critical role for the Ly49 family of class I MHC receptors in adaptive natural killer cell responses. Proc. Natl. Acad. Sci. USA 115, 11579–11584 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Sullivan, T. E., Sun, J. C. & Lanier, L. L. Natural killer cell memory. Immunity 43, 634–645 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Nabekura, T. & Lanier, L. L. Antigen-specific expansion and differentiation of natural killer cells by alloantigen stimulation. J. Exp. Med. 211, 2455–2465 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nabekura, T. & Lanier, L. L. Activating receptors for self-MHC class I enhance effector functions and memory differentiation of NK cells during mouse cytomegalovirus infection. Immunity 45, 74–82 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nabekura, T. et al. Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40, 225–234 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, J. C. et al. Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J. Exp. Med. 209, 947–954 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Madera, S. et al. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J. Exp. Med. 213, 225–233 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Madera, S. & Sun, J. C. Cutting edge: stage-specific requirement of IL-18 for antiviral NK cell expansion. J. Immunol. 194, 1408–1412 (2015).

    CAS  PubMed  Google Scholar 

  41. Nabekura, T., Girard, J. P. & Lanier, L. L. IL-33 receptor ST2 amplifies the expansion of NK cells and enhances host defense during mouse cytomegalovirus infection. J. Immunol. 194, 5948–5952 (2015).

    CAS  PubMed  Google Scholar 

  42. Beaulieu, A. M., Zawislak, C. L., Nakayama, T. & Sun, J. C. The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat. Immunol. 15, 546–553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Geary, C. D. et al. Non-redundant ISGF3 components promote NK cell survival in an auto-regulatory manner during viral infection. Cell Rep. 24, 1949–1957 (2018). e1946.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rapp, M. et al. Core-binding factor β and Runx transcription factors promote adaptive natural killer cell responses. Sci. Immunol. 2, pii: eaan379 (2017).

    Google Scholar 

  45. min-Oo, G., Bezman, N. A., Madera, S., Sun, J. C. & Lanier, L. L. Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J. Exp. Med. 211, 1289–1296 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. O’Sullivan, T. E., Johnson, L. R., Kang, H. H. & Sun, J. C. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43, 331–342 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Bezman, N. A. et al. Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 13, 1000–1009 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. min-Oo, G. & Lanier, L. L. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J. Exp. Med. 211, 2669–2680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lau, C. M. et al. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19, 963–972 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rapp, M., Wiedemann, G. M. & Sun, J. C. Memory responses of innate lymphocytes and parallels with T cells. Semin. Immunopathol. 40, 343–355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).

    CAS  PubMed  Google Scholar 

  53. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cui, G. et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cong, J. et al. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell. Metab. 28, 243–255 (2018). e245.

    CAS  PubMed  Google Scholar 

  56. Cichocki, F. et al. ARID5B regulates metabolic programming in human adaptive NK cells. J. Exp. Med. 215, 2379–2395 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Orange, J. S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 132, 515–526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bjorkstrom, N. K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med. 208, 13–21 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Beziat, V. et al. CMV drives clonal expansion of NKG2C+NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur. J. Immunol. 42, 447–457 (2012).

    CAS  PubMed  Google Scholar 

  60. Ram, D. R. et al. Tracking KLRC2 (NKG2C)+memory-like NK cells in SIV+and rhCMV+rhesus macaques. PLoS. Pathog. 14, e1007104 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Martinez-Martin, N. et al. An unbiased screen for human cytomegalovirus identifies neuropilin-2 as a central viral receptor. Cell 174, 1158–1171 (2018). e1119.

    CAS  PubMed  Google Scholar 

  62. Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    CAS  PubMed  Google Scholar 

  63. Rolle, A. et al. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+NK cell expansion. J. Clin. Invest. 124, 5305–5316 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Zhang, T., Scott, J. M., Hwang, I. & Kim, S. Cutting edge: antibody-dependent memory-like NK cells distinguished by FcRgamma deficiency. J. Immunol. 190, 1402–1406 (2013).

    CAS  PubMed  Google Scholar 

  65. Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shah, S. V. et al. CMV primes functional alternative signaling in adaptive Δg NK cells but is subverted by lentivirus infection in rhesus macaques. Cell Rep. 25, 2766–2774 (2018). e2763.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Luetke-Eversloh, M. et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS. Pathog. 10, e1004441 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Li, T. et al. Respiratory influenza virus infection induces memory-like liver NK cells in mice. J. Immunol. 198, 1242–1252 (2017).

    CAS  PubMed  Google Scholar 

  69. Dou, Y. et al. Influenza vaccine induces intracellular immune memory of human NK cells. PLoS. One. 10, e0121258 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Keppel, M. P., Yang, L. & Cooper, M. A. Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. J. Immunol. 190, 4754–4762 (2013).

    CAS  PubMed  Google Scholar 

  71. Ni, J. et al. Adoptively transferred natural killer cells maintain long-term antitumor activity by epigenetic imprinting and CD4(+) T cell help. Oncoimmunology 5, e1219009 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Romee, R. et al. Cytokine activation induces human memory-like NK cells. Blood 120, 4751–4760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sojka D. K., et al. Cutting edge: local proliferation of uterine tissue-resident NK cells during decidualization in mice. J. Immunol. 201, 2551–2556 (2018).

    CAS  PubMed  Google Scholar 

  74. Fu, B. et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47, 1100–1113 (2017). e1106.

    CAS  PubMed  Google Scholar 

  75. Gamliel, M. et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity 48, 951–962 (2018). e955.

    CAS  PubMed  Google Scholar 

  76. Ni, J., Miller, M., Stojanovic, A., Garbi, N. & Cerwenka, A. Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. J. Exp. Med. 209, 2351–2365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8, 357ra123–357ra123 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Vosshenrich, C. A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7, 1217–1224 (2006).

    CAS  PubMed  Google Scholar 

  79. Luther, C., Warner, K. & Takei, F. Unique progenitors in mouse lymph node develop into CD127+NK cells: thymus-dependent and thymus-independent pathways. Blood 117, 4012–4021 (2011).

    CAS  PubMed  Google Scholar 

  80. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    CAS  PubMed  Google Scholar 

  81. Mackley, E. C. et al. CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6, 5862 (2015).

    CAS  PubMed  Google Scholar 

  82. Robinette, M. L. et al. IL-15 sustains IL-7R-independent ILC2 and ILC3 development. Nat. Commun. 8, 14601 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Knolle, P. A. & Wohlleber, D. Immunological functions of liver sinusoidal endothelial cells. Cell. Mol. Immunol. 13, 347 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Marra, F. & Tacke, F. Roles for chemokines in liver disease. Gastroenterology 147, 577–594 (2014). e571.

    CAS  PubMed  Google Scholar 

  85. Liang, B. et al. Role of hepatocyte-derived IL-7 in maintenance of intrahepatic NKT cells and T cells and development of B cells in fetal liver. J. Immunol. 189, 4444–4450 (2012).

    CAS  PubMed  Google Scholar 

  86. Sawa, Y. et al. Hepatic interleukin-7 expression regulates T cell responses. Immunity 30, 447–457 (2009).

    CAS  PubMed  Google Scholar 

  87. Kaplan, D. H., Igyarto, B. Z. & Gaspari, A. A. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 12, 114–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Carbone, T. et al. CD56highCD16-CD62L- NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J. Immunol. 184, 1102–1110 (2010).

    CAS  PubMed  Google Scholar 

  89. Mazo, I. B. et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+T cells. Immunity 22, 259–270 (2005).

    CAS  PubMed  Google Scholar 

  90. Taniguchi, H., Toyoshima, T., Fukao, K. & Nakauchi, H. Presence of hematopoietic stem cells in the adult liver. Nat. Med. 2, 198 (1996).

    CAS  PubMed  Google Scholar 

  91. Kotton, D. N., Fabian, A. J. & Mulligan, R. C. A novel stem-cell population in adult liver with potent hematopoietic-reconstitution activity. Blood 106, 1574–1580 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    CAS  PubMed  Google Scholar 

  93. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    CAS  PubMed  Google Scholar 

  94. Kondrack, R. M. et al. Interleukin 7 regulates the survival and generation of memory CD4 cells. J. Exp. Med. 198, 1797–1806 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    CAS  PubMed  Google Scholar 

  96. Becker, T. C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T Cells. J. Exp. Med. 195, 1541–1548 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Purton, J. F. et al. Antiviral CD4+memory T cells are IL-15 dependent. J. Exp. Med. 204, 951–961 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Firth, M. A. et al. Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J. Exp. Med. 210, 2981–2990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Martinez-Gonzalez, I. et al. ILC2 memory: recollection of previous activation. Immunol. Rev. 283, 41–53 (2018).

    CAS  PubMed  Google Scholar 

  100. Martinez-Gonzalez, I., Matha, L., Steer, C. A. & Takei, F. Immunological memory of group 2 innate Lymphoid Cells. Trends Immunol. 38, 423–431 (2017).

    CAS  PubMed  Google Scholar 

  101. Jing, X. et al. The formation of memory-like innate lymphoid cells 2 in allergic asthma. J. Immunol. 198, 194.117–194.117 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (#81788101, 81761128013, 81571522, 91642105, 91542114, and 91542000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Peng, H. & Tian, Z. Innate lymphoid cell memory. Cell Mol Immunol 16, 423–429 (2019). https://doi.org/10.1038/s41423-019-0212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0212-6

This article is cited by

Search

Quick links