
REVIEW ARTICLE OPEN

Mitochondrial DNA-triggered innate immune response:
mechanisms and diseases
Ming-Ming Hu 1,2✉ and Hong-Bing Shu1,2✉

© The Author(s) 2023

Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released
mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes.
These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these
processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is
a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus
on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway
under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and
MITA/STING.
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CYTOPLASMIC NUCLEIC ACID-SENSING PATHWAYS
The innate immune arm of the immune system forms the first line
of host defense against pathogen infection, and it is initiated via
the recognition of conserved microbial structures by cellular
pattern recognition receptors (PRRs) [1–6]. After viral infection,
invading viral nucleic acids, such as viral RNA (vRNA) or DNA
(vDNA), are recognized by PRRs, which initiate signaling pathways
that ultimately induce the expression of type I interferon (IFN),
proinflammatory cytokine, and other antiviral effector genes [3–7].
These downstream effectors inhibit viral replication, induce
apoptosis in infected cells, and promote activation of the adaptive
immune response, leading to antiviral immune responses [1–6]. In
contrast, viruses evolve multiple strategies to evade the host
immune response to maintain their survival and persistent
infection [7–14]. The relative power of these two opposing forces
determine the eventual outcomes of the viral infection of a host.
After RNA virus infection of mammalian cells, vRNA invading the

cytoplasm is sensed by RIG-I-like receptors (RLRs), which include
RIG-I and MDA5 [1–3, 7]. After sensing vRNA, RLRs undergo
conformational changes, oligomerization, and then translocation
to mitochondria [15, 16], where they interact with Virus-Induced
Signaling Adaptor (VISA, also called MAVS, Cardif, and IPS-1)
[17–20]. VISA then recruits WDR5, TRAF and cIAP proteins, the
kinases TBK1 and IKK, and the transcription factors IRF3 and NF-κB
[21–26]. In these complexes, activated TBK1 and IKK phosphor-
ylate and activate IRF3 and NF-κB, respectively, leading to their
translocation into the nucleus and expression of downstream
antiviral genes [1, 2]. The RLR-VISA axis activity is regulated by

cofactors, distinct posttranslational modifications and regulators
of posttranscriptional modifications to ensure efficient initiation of
innate antiviral immunity and its timely termination in the late
phase of infection [16, 23, 24, 27–43].
After DNA virus infection of mammalian cells, vDNA is sensed by

a widely expressed enzyme called cyclic GMP–AMP synthase
(cGAS) [4, 44–46]. Various studies have demonstrated that cGAS
not only recognizes a wide range of microbial DNA but also senses
mitochondrial DNA (mtDNA) and cellular nuclear DNA (nDNA)
aberrantly localized to the cytosol after infection or under stress or
pathological conditions [47–54]. After binding to cytosolic DNA,
cGAS undergoes phase separation and forms “DNA-cGAS” liquid
droplets to achieve optimal activation, after which it catalyzes the
synthesis of cyclic GMP–AMP (cGAMP) from the substrates GTP
and ATP [46, 55]. Newly synthesized cGAMP binds to Mediator of
IRF3 Activation (MITA) (also known as STING and ERIS) in the
endoplasmic reticulum (ER), which promotes MITA/STING oligo-
merization and trafficking from the ER to perinuclear punctate
structures [56–62]. During the cellular trafficking processes, MITA/
STING recruits TBK1 and IRF3, leading to IRF3 phosphorylation,
dimerization and translocation into the nucleus to drive the
transcription of type I IFN genes [56, 60, 63–66]. Additionally,
NF-κB is activated by the MITA/STING-associated complex, leading
to the transcription of inflammatory cytokine genes [67]. The
cGAS-MITA/STING axis is extensively regulated by cofactors. For
example, ZCCHC3, G3BP1 and PCBP1 promote cGAS binding to
DNA [68–70]; ZDHHC1 and sulfated glycosaminoglycans (sGAGs)
are important for cGAMP-triggered dimerization/oligomerization
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of MITA/STING [59, 61]; and iRhom2, SNX8, VPS34 and ARMH3
are critically involved in MITA/STING trafficking and activation
[60, 62, 71]. The cGAS-MITA/STING axis is also extensively
regulated by posttranslational modifications, such as cGAS
acetylation [72, 73] and phosphorylation [74–77], MITA/STING
phosphorylation [38, 78–80], and polyubiquitination [81–90].
These positive and negative regulating modification of cGAS-
MITA/STING axis components ensures efficient and proper innate
immune responses to DNA viruses. Because of the critical
importance of the cGAS-MITA/STING pathway in the innate
immune response to DNA viruses, it is extensively targeted by
DNA viruses to enable viral immune evasion [13, 91–103].
Interestingly, in addition to induction of the innate immune
response, activation of the cGAS-STING axis has also been
reported to cause other effects, such as controlling autophagy
[104], mRNA translation [105], IRF3-independent function [106],
which contribute to several pathological processes, including
clearance of invading pathogens, cell senescence and organ
fibrosis, as well as the antitumor response.
It has been established that infection with RNA viruses is mainly

sensed by RIG-I and MDA5, while infection with DNA viruses is
mostly sensed by cGAS. It has been shown that Rig-i-/- mouse
embryo fibroblasts (MEFs) do not produce type I IFNs in response
to Sendai virus (SeV), vesicular stomatitis virus (VSV), influenza
virus, paramyxovirus, Japanese encephalitis virus (JEV), and
hepatitis C virus (HCV) [107–109], while Mda5-/- MEFs do not
respond to picornaviruses such as encephalomyocarditis virus
(EMCV) and Theiler’s virus [110]. Moreover, Rig-i-/- and Mda5-/- mice
show increased susceptibility to infection with VSV and EMCV,
respectively [111]. These studies suggest that different RNA viruses
can be sensed by distinct RLR family members. Various studies
indicated that cGas-/- and Mita-/- knockout mice produce much
lower levels of type I IFNs and other cytokines after DNA virus
infection and are highly susceptible to infection with DNA viruses,
such as herpes simplex virus-1 (HSV-1) and vaccinia virus
(VACV), suggesting that the cGAS-MITA/STING pathway is critically
important for the innate immune response to DNA viruses [44, 68].
However, various studies have shown that deficiency in cGAS or
MITA/STING did not completely abolish the expression of antiviral
effector genes triggered by DNA viruses [44]. It has been shown
that some AT-rich DNA viruses can be transcribed into vRNA by
RNA polymerase III, which is sensed by RIG-I, initiating innate
immune signaling [112–115]. On the other hand, various reports
have demonstrated that the expression of type I IFNs and
downstream interferon-stimulating genes (ISGs) following infec-
tion with certain RNA viruses is abrogated in cGas-/- and Mita-/-

knockout cells, suggesting that the cGAS-MITA/STING pathway
also participates in the innate immune response to certain RNA
viruses [48, 116–120]. Clearly, the cytoplasmic RNA- and DNA-
sensing pathways are common in host cells and antagonize RNA
or DNA viruses (Fig. 1). Moreover, infection with certain RNA
viruses causes mtDNA release from mitochondria into the cytosol,
which triggers the innate immune response via the cGAS-MITA/
STING axis [48, 121]. Various studies have demonstrated that
mtDNA is released after cells undergo a specific type of stress, and
this mtDNA is critically involved in inflammatory and autoimmune
responses [122, 123]. These studies suggest that mtDNA release
under various stress conditions may be a convergent and
common mechanism underlying cellular defense.

MTDNA IS RELEASED FROM MITOCHONDRIA INTO THE
CYTOSOL UNDER STRESS CONDITIONS
Mitochondria are important organelles in eukaryotic cells, as they
synthesize ATP and metabolites [124]. Mitochondria can respond to
external or endogenous stresses that trigger mitochondrial
autophagy (mitophagy), mtDNA release, and apoptosis, and thus,
they ultimately regulate of the survival or death of stressed cells

[124–126]. Although the mechanisms underlying mitophagy and
apoptosis have been extensively studied in recent decades, the
mechanisms and effects of mtDNA release have only been studied
in recent years. In cells under stress, mtDNA is released into the
cytoplasm where it is sensed as a danger signal and thus activates a
variety of signaling pathways in cells, including the cGAS-mediated
innate immune response [48], absent in melanoma 2 (AIM2)- or NLR
family pyrin domain-containing 3 (NLRP3)-mediated inflammation
[127–131] and genomic DNA damage repair [132]. Recently, Z-DNA-
binding protein 1 (ZBP1) has been reported to stabilize Z-form
mtDNA and act as a cooperative partner for the cGAS response to
mitochondrial genome instability [133]. In this article, we focus on
the mechanisms of mtDNA release and its effects on the innate
immune response under stress conditions or after viral infection.
Circular mtDNA in vertebrates is maternally inherited and encodes

eleven subunits of the mitochondrial electron transport chain and
two subunits of ATP synthase. These proteins provide the wiring for
the oxidation phosphorylation (OXPHOS) system [134, 135]. mtDNA
also encodes 22 tRNAs and two rRNAs that are essential for mRNA
translation in the mitochondrial matrix. The other mitochondrial
proteins, including the various factors needed for mtDNA replication,
repair and gene expression, are encoded by cellular DNA and are
targeted to or imported into mitochondria [124]. In addition to acting
as coding genes, mtDNA can be released into the cytosol under
various cellular stress conditions (Fig. 2), leading to innate immune
and inflammatory responses [48]. The release of mtDNA from
mitochondria to the cytosol can be triggered by different factors,
including radiation exposure, microbial infection, inflammatory
conditions, toxic substances or drugs, and gene mutation or deletion
[122, 123]. For example, radiation therapy can cause mitochondrial
stress (mitostress) in tumor cells, which results in the release of
mitochondrial contents, including cytochrome c and mtDNA, into the
cytosol [136–138]. Viral infection can cause mitochondrial stress and
release of mtDNA via Ca2+ uptake by the mitochondrial calcium
uniporter (MCU) in a variety of cells [48, 118, 121]. The proin-
flammatory cytokines TNF and IL-1β have been reported to trigger
mtDNA release in a variety of cells, such as myeloid cells, fibroblasts
and epithelial cells, leading to activation of cGAS [139, 140]. A variety
of foreign substances, including liposomes and crystalline silicon,
have been reported to induce mtDNA release and thus activate
innate immune and inflammatory responses [74, 141]. In addition, the
release of mtDNA from mitochondria to the cytosol can be triggered
by mutation or deletion of certain mitochondrion-related genes,
which are involved in maintaining mitochondrial structure, mtDNA
stabilization or mitophagy [48, 142–144]. These studies indicate that
mtDNA release from mitochondria to the cytosol is triggered by
divergent factors in different cell types, suggesting that mtDNA
release is a basic and common cellular response to stress conditions.

MOLECULAR MECHANISMS OF MTDNA RELEASE
mtDNA is normally wrapped with Transcriptional Factor A
Mitochondrial (TFAM) in the mitochondrial matrix [124]. Studies
have shown that TFAM-coated mtDNA is stable and more resistant
to ROS oxidation, while newly synthesized naked mtDNA is more
susceptible to oxidation and leakage into the cytosol [128, 145].
Studies have shown that mtDNA undergoes oxidation and then
fragmentation into 500–650 bp fragments by the DNA enzyme
Flap Endonuclease 1 (FEN1) before its release into the cytosol,
while 8-oxoguanine DNA glycosylase (OGG1) can mediate
mtDNA glycosylation and thereby protect mtDNA from fragmen-
tation [145] (Fig. 2). Studies have proven that oxidized mtDNA
induces a greater immunostimulatory effect both in vitro and
in vivo [146, 147]. However, the molecular mechanisms of the
oxidation and fragmentation of mtDNA under different stress
conditions need to be further elucidated.
Mitochondria are bilayer membranous organelles that consist

of the outer mitochondrial membrane (OMM) and inner
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mitochondrial membrane (IMM) [124]. mtDNA needs to cross
the IMM and OMM for export from the mitochondrial matrix into
the cytosol. Recent studies indicate that major IMM pores include
the mitochondrial permeability transition pore (MPTP), which is a
nonspecific mitochondrial channel that is activated by Ca2+ influx
[49, 145, 148], and inner mitochondrial membrane (IMM)
herniation, which is triggered by oligomerization of Bcl-2-
associated X protein (BAX) and Bcl-2 homologous antagonist/
killer (BAK) [50]. Under oxidative stress, voltage-dependent anion
channel 1 (VDAC1) located at the OMM can oligomerize and
mediate mtDNA release. In the presence of mtDNA fragments,
VDAC1 oligomerization is accelerated [149]. VDAC1 was initially
considered a component of the MPTP; however, an analysis of
VDAC1-deficient mice showed that VDAC1 deficiency exerted no

marked effects on MPTP formation, which indicated that VDAC1 is
dispensable for MPTP formation or a compensatory system
consisting of other VDAC family members is involved [150]. How
MPTP opening and VDAC1 oligomerization synergistically mediate
mtDNA release is still unknown. Of course, VDAC2/3 might
compensate for VDAC1 deficiency. During apoptosis, the forma-
tion of BAX/BAK macropores causes OMM permeabilization and
mtDNA extrusion [50]. Under certain stress conditions, mtDNA
may cross the IMM and OMM via one or more of these pores and
eventually leak into the cytosol. The detailed mechanisms
explaining how these pores are formed and regulated need
further investigation. Recently, vaccinia-related kinase 2 (VRK2)
was identified as a regulator of VDAC1 oligomerization [121].
Virus-induced mtDNA release into the cytosol is markedly
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Fig. 1 Cytoplasmic nucleic acid-sensing pathways. After RNA virus infection of mammalian cells, the invading vRNA is sensed by RLRs, which
include RIG-I and MDA5, in the cytoplasm. After sensing vRNA, RLRs are translocated to mitochondria, where they interact with VISA. VISA
then recruits WDR5 and TRAF proteins, the kinases TBK1 and IKK, and the transcription factors IRF3 and NF-κB. In these complexes, activated
TBK1 and IKK phosphorylate and activate IRF3 and NF-κB, respectively, leading to their translocation into the nucleus and expression of
downstream antiviral genes. After DNA virus infection of mammalian cells, vDNA is sensed by cGAS. After binding to cytosolic DNA, cGAS
catalyzes the synthesis of cGAMP from the substrates GTP and ATP. cGAMP binds to MITA/STING at the endoplasmic reticulum (ER), which
promotes MITA/STING oligomerization and trafficking from the ER to perinuclear punctate structures. During trafficking, MITA/STING recruits
TBK1 and IRF3, leading to IRF3 phosphorylation, dimerization and translocation into the nucleus to drive the transcription of type I IFN genes.
Additionally, NF-κB is activated by the MITA/STING-associated complex, leading to the transcription of inflammatory cytokine genes. The
cGAS-MITA/STING axis is extensively regulated by cofactors, such as ZCCHC3, G3BP1, PCBP1, ZDHHC1, iRhom2 and ARMH3. Some AT-rich viral
DNA sequences can be transcribed to vRNA by RNA polymerase III, and they are sensed by RIG-I to initiate innate immune signaling. Infection
with certain RNA or DNA viruses causes mtDNA release from mitochondria into the cytosol, which triggers the innate immune response via
the cGAS-MITA/STING axis. Cytoplasmic RNA- and DNA-sensing pathways are common used in host cells and antagonize either RNA or DNA
viruses. RIG-I retinoic acid-inducible gene I; MDA5 melanoma differentiation-associated protein 5; VISA virus-induced signaling adaptor; WDR5
WD repeat-containing protein 5; TRAF TNF receptor-associated factor; TBK1 TANK-binding kinase 1; IKK inhibitor of nuclear factor kappa-B
kinase; IRF3 interferon regulatory factor 3; cGAS cyclic GMP-AMP synthase; MITA mediator of IRF3 activation; STING stimulator of interferon
gene; ZCCHC3 zinc finger CCHC domain-containing protein 3; G3BP1 GTPase activating protein (SH3 domain) binding protein 1; PCBP1
Poly(rC)-binding protein 1; ZDHHC1 zinc finger DHHC domain-containing protein 1; iRhom2 inactive rhomboid protein 2; ARMH3 Armadillo-
like helical domain-containing protein 3

M.-M. Hu and H.-B. Shu

1405

Cellular & Molecular Immunology (2023) 20:1403 – 1412



impaired in VRK2-deficient cells [121]. It has also been suggested
that rapid Ca2+ uptake via the mitochondrial calcium uniporter
(MCU) precedes MPTP opening and subsequent VDAC1 oligomer-
ization [121, 145]. Additionally, Prohibitin 1 (PHB1) has been
reported to regulate mtDNA release by inhibiting mPTP opening
[151]. Whether other events, such as mitochondrial ROS accumu-
lation, trigger MPTP opening and how stress conditions signal
these events are unanswered questions. Furthermore, even
though BAX/BAK oligomerization can lead to mtDNA release
during apoptosis, the release of mtDNA mediated by VDAC but
not BAX/BAK oligomerization has been shown to be involved in
most diseases (see below).

PHYSIOLOGICAL AND PATHOLOGICAL EFFECTS OF MTDNA
RELEASE
mtDNA released into the cytosol is sensed by the widely
expressed DNA sensor cGAS in a DNA sequence-independent
manner. The cGAS response results in the synthesis of cGAMP
and subsequent MITA/STING-dependent signaling events, lead-
ing to the expression of type I IFNs and various inflammatory
cytokines, including TNF superfamily members, interleukins and
chemokines [45, 63]. Notably, most of the physiological and

pathological effects of mtDNA release are mediated by these
cytokines (Fig. 2).

mtDNA release contributes to host defense against viral
infection
Various studies have demonstrated that infection with either DNA
or RNA viruses triggers mtDNA release from mitochondria into the
cytosol, where it activates the cGAS-MITA/STING axis, leading to the
activation of downstream antiviral effectors [48, 116, 121, 152, 153].
Depletion of mtDNA by ethidium bromide (EB) or dideoxycytidine
(ddC) downregulates the transcription of IFNB1 and other
antiviral genes after HSV-1 infection [48, 121]. Deficiency of
VRK2, which is a regulator of VDAC1 oligomerization and mtDNA
release, renders mice more susceptible to infection with both the
DNA virus HSV-1 and the RNA virus EMCV [121]. Although rapid
induction of type I IFNs limits virus propagation, a sustained
increase in the levels of type I IFNs in the late phase of infection is
associated with aberrant inflammation and poor clinical out-
comes. It has been suggested that in patients with COVID-19, the
cGAS-MITA/STING pathway is critical to the type I IFN immuno-
pathology of extrapulmonary complications in lung endothelial
cells after mtDNA release [11, 154, 155]. There is accumulating
evidence showing that mtDNA sensing by the cGAS-MITA/STING
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pathway plays a critical role in antiviral host defense, but how
viral infection triggers Ca2+ import into mitochondria via MCU to
induce mitostress and how MPTP-VDAC oligomer-mediated
mtDNA release is regulated after viral infection are not fully
understood. Furthermore, whether specific viral mechanisms
suppress mtDNA release to enable immune evasion is also an
unanswered question.

Radiation-induced mtDNA release benefits antitumor therapy
Previous studies have demonstrated that ionizing radiation-
mediated tumor regression is dependent on the activation of the
cGAS-MITA/STING axis in dendritic cells (DCs) [138]. Accordingly,
activation of MITA/STING by cGAMP enhances radiation-triggered
antitumor immunity [138]. Recently, studies have also demonstrated
that mtDNA released into the cytosol of irradiated tumor cells failed
to activate the cGAS-MITA/STING pathway due to caspase
3/9-mediated suppression of this signaling pathway [136, 156]. In
this context, caspases have been reported to cleave cGAS and IRF3
to suppress type I IFN activation [157]. The combination of radiation,
a caspase inhibitor and an anti-PD-L1 antibody promoted antitumor
therapy [136]. Additionally, it has been reported that mtDNA drives
abscopal responses to radiation exposure that are inhibited by
autophagy [137]. Autophagy-deficient cells secrete increased
amounts of type I IFNs, suggesting that autophagy inhibitors may
serve as potential drugs for increasing the efficacy of radiation
therapy in cancer patients [137].

mtDNA release causes autoimmune, neurodegenerative and
metabolic diseases
Activation of IRF3 and induction of type I IFNs protect the host
against infection and cancer, but excessive IFN responses
triggered by self-DNA (including mtDNA) under sterile conditions
cause autoinflammatory conditions such as Aicardi–Goutières
syndrome (AGS), STING-associated vasculopathy of infancy (SAVI)
and systemic lupus erythematosus (SLE) [158, 159]. Neutrophil
extracellular traps (NETs) have been implicated in autoimmunity,

and NETs enriched with oxidized mtDNA are interferongenic and
contribute to lupus-like disease [160]. Another study also indicated
that mtDNA fragments released following VDAC oligomerization
promoted lupus-like disease [149]. The VDAC inhibitor VBIT-4
reduced mtDNA release, the IFN response and disease severity in a
mouse model of SLE [149].
Recently, studies have demonstrated that deregulation of the

cGAS-MITA/STING axis is involved in multiple sterile inflammatory
diseases, such as myocardial infarction, heart failure, cardiac
hypertrophy, aortic aneurysm and dissection, obesity, and
nonalcoholic fatty liver diseases [161–169]. This is because of
the large loads of damage-associated molecular patterns, includ-
ing mtDNA and/or DNA in extracellular vesicles liberated
during recurrent injury to metabolic cellular organelles and
tissues, which are sensed by the cGAS-MITA/STING pathway
[170, 171]. Furthermore, although the cGAS-MITA/STING pathway-
mediated immune response is often neuroprotective, excessive or
sustained activation of this pathway in the brain causes
neuroinflammation and neurodegeneration [172, 173]. Therefore,
targeting the cGAS-MITA/STING pathway can have potential
therapeutic benefits in patients with one of several neurodegen-
erative disorders, including Alzheimer’s disease [174], Parkinson’s
disease [175], and amyotrophic lateral sclerosis (ALS) [49].

INTERVENTION OF DISEASES BY TARGETING THE CGAS-MITA/
STING PATHWAY
Since deregulation of the mtDNA-cGAS-MITA/STING pathway
causes aberrant innate immune and inflammatory responses
and pathological effects, great efforts have been made to identify
strategies for selective modulation of the cGAS-MITA/STING axis in
various diseases, and these strategies include identification of
agonists of the cGAS-MITA/STING axis to use as vaccine adjuvants
or as anticancer and antiviral immunostimulatory agents, as well
as identification of selective inhibitors of the axis to use as
potential drugs for treating inflammatory and autoimmune

Table 1. Small-molecule compounds that target MITA/STING and cGAS

Biological effects Refs

MITA/STING agonists

ADU-S100, BMS-986301,
MK-1454

For treatment of advanced solid tumors with monotherapy and combined ICIs [181, 201, 202]

Di-ABZI Caused regression of solid tumors [182, 203]

C11, BNBC Activate MITA/STING-mediated immune responses and block replication of multiple
alphavirus types

[183, 184]

MSA-2 Exhibits antitumor immune activity and synergizes with anti-PD-1 antibody treatments [185]

SR-717 Exhibits antitumor activity [186]

Kitacinnamycin 8 Increases cGAMP-induced IFN-β expression [204]

α-Mangostin, G10 Activate the MITA/STING-TBK1-IRF3 pathway and repolarize M2 macrophages into M1
macrophages

[187, 188]

DSDP Induces MITA/STING-dependent cytokine production and inhibits the replication of a variety
of viruses

[189]

MITA/STING inhibitors

C-176, C-178, H-151 Exerts therapeutic effects in Trex1−/− tumor model mice [193]

NO2-Fas Exhibits suppressive activity in THP-1 cells and BMDMs [194]

Tetrahydroisoquinolines Inhibit cGAMP- induced IFN-β secretion in THP-1 cells [204]

Astin C Exhibits suppressive activity in mouse and human fibroblasts [191]

cGAS inhibitors

RU.521 Suppresses cGAS activity in macrophages [196]

PF-06928215 Suppresses cGAS activity in THP-1 cells [195]

Hydroxychloroquine, quinacrine Inhibit IFN-β production in cells and block cGAS-DNA binding [198, 199]

Suramin Inhibits IFN-I production in THP-1 cells [200, 205]
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diseases. Specific agents targeting cGAS and MITA/STING are
summarized in Table 1.

MITA/STING agonists
Activating the cGAS-MITA/STING pathway can enhance the
antitumor immune response [176]. In addition, MITA/STING agonists
can be used as adjuvants to develop vaccines against certain
infectious diseases [177]. To date, most MITA/STING activators have
been synthetic cyclic dinucleotides (CDNs), such as ADU-S100 [178],
BMS-986301 (Clinical Trials.gov ID: NCT03956680) and MK-1454
[179]. Intratumoral injection of these CDNs induces intense
antitumor T-cell immune responses and generates immune
memory, leading to complete tumor regression as well as
prevention of distal metastasis of lung cancers [180, 181].
Considering the high polarity and proteolytic tendency of the

abovementioned cyclic dinucleotide agonists, their clinical applica-
tion potential is limited. In recent years, nonnucleotide derivatives
have gained prominence due to their high specificity and effective-
ness. For example, amide compounds, such as amide benzimidazole
(ABZI) and its derivatives, Compounds 16 g, 24b, and 24e, N-
(methylcarbamoyl)-2-[5] phenylacetamide (C11), 6-bromo-n-
(naphthalen-1-yl)-benzo (d), and dioxole-5-carboxamide (BNBC), have
been identified as human MITA/STING agonists [182–184]. These
compounds, when given intravenously, exerted potent antitumor
effects in mice bearing subcutaneous tumors. Furthermore, other
compounds, such as MSA-2 [185] and SR-717 [186], have also been
identified as MITA/STING nonnucleotide agonists. These compounds
can induce IFN-β production in tumors and a long-lasting antitumor
immune response and can also exert synergistic effect when
administered with an anti-PD-1 antibody therapy [185, 186]. MSA-2
and SR-717 show the potential for clinical application because of their
oral availability characteristics and simplified administration mode.
Additionally, flavonoid compounds have been reported to be MITA/
STING agonists; they include α-mangostin, G10, and dispiro
diketopiperazine (DSDP) [187–189]. The effects of these agonists on
antitumor activities need to be investigated.

MITA/STING inhibitors
Two main approaches have been utilized to identify MITA/STING
inhibitors. The first approach involves the design of molecules that
target the CDN-binding site, thereby functioning as competitive
inhibitors of MITA/STING activation. This class of MITA/STING
inhibitors mainly includes tetrahydroisoquinolines [190] and astin
C [191]. The second approach is to identify molecules that bind to
either the Cys88 or the Cys91 residue of the human MITA/STING
protein, each of which is a target for palmitoylation [192].
Tetrahydroisoquinolines bind to MITA/STING dimers in 2:2 ratio
and thus inhibit cGAMP-induced IFN-β secretion from THP-1 cells
[190]. Astin C is a natural product that binds competitively to the
CDN site and blocks the recruitment of IRF3 to the MITA/STING
signalosome. Furthermore, astin C inhibits the expression of type I
IFNs in Trex1-/- BMDMs and mice [191]. To date, several different
chemicals targeting MITA/STING palmitoylation residues have been
reported, including nitrofurans (C-176 and C-178) [193], indole urea
(H-151) [193] and nitro fatty acids [194]. Mice administered C-176
exhibited markedly reduced production of serum type I IFNs
induced by MITA/STING agonists. Additionally, pretreatment of
Trex1-/- mice with C-176 led to a significant reduction in type I IFN
levels and the number of inflammatory signatures in the heart [193].
Intraperitoneal administration of H-151 inhibited the systemic
cytokine response triggered by a MITA/STING agonist [193].
Additionally, certain nitro fatty acids reduced type I IFNs in response
to DNA viral infection in both THP-1 cells and BMDMs [194].

cGAS inhibitors
Two classes of cGAS inhibitors have been developed for the
treatment of inflammatory and autoimmune diseases. The first
class of cGAS antagonists bind to the enzymatic active site,

resulting in competition with the ATP or GTP substrate or the
product cGAMP. The second class of cGAS antagonists block DNA
binding to cGAS, thereby inhibiting the initial step in cGAS
activation. The catalytic site inhibitors of cGAS include PF-
06928125 [195], RU.521 [196] and G150 [197], and the action of
most has been validated only in vitro. For example, RU.521 has
been shown to be a selective inhibitor of cGAS that reduced the
Ifnb1 mRNA level in bone marrow-derived macrophages (BMDMs)
from Trex1-/- mice [196]. Inhibitors that disrupt the DNA-binding
activity of cGAS are mainly antimalarial drugs. It has been reported
that antimalarial drugs, including hydroxychloroquine and quina-
crine, can be used for SLE treatment since these drugs suppress
IFN-β expression by blocking the cGAS–dsDNA interaction [198,
199]. It has also been reported that suramin can bind to cGAS and
disrupt the formation of the cGAS–dsDNA complex [200]. In vivo
studies on the functions of these selective cGAS inhibitors are
needed to validate their roles in the intervention of inflammatory
and autoimmune diseases in the future.

CONCLUDING REMARKS
Studies in recent years have established critical roles for mtDNA
release in cellular defense against various stress conditions,
including stress caused by infection with various types of viruses,
deregulation of autophagy and introduction of DNA aberrations.
Studies have identified components involved in mtDNA release
from mitochondria into the cytosol after viral infection or under
other stress conditions. However, more studies are needed to
identify the common and distinct mechanisms of mtDNA release
under different stress conditions. Released mtDNA is sensed by
cGAS, which triggers MITA/STING-mediated innate immune
responses. However, deregulation of the mtDNA-cGAS-MITA/STING
axis activity leads to inflammatory and autoimmune diseases as well
as cancer. In recent years, small molecules targeting MITA/STING or
cGAS have been developed for potential application in cancer
immunotherapy or the treatment of inflammatory and autoimmune
diseases. Further studies on the molecular mechanisms underlying
the mtDNA-cGAS-MITA/STING axis will certainly provide a more
comprehensive understanding of cellular defense against viral
infection and other stress conditions and help in the development
of novel strategies for the intervention of serious human diseases,
including inflammatory/autoimmune diseases and cancer.
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