
REVIEW ARTICLE OPEN

Orchestration of antiviral responses within the infected central
nervous system
Andreas Pavlou1,4, Felix Mulenge1,4, Olivia Luise Gern1, Lena Mareike Busker1,2, Elisabeth Greimel1, Inken Waltl1 and
Ulrich Kalinke 1,3✉

© The Author(s) 2024

Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research
priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with
high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the
need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights
into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to
protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries
regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the
CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the
current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses
with certain pathological hallmarks observed in neurodegeneration.
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VIRAL ENCEPHALITIS: BROAD SPECTRUM OF VIRUSES WITH
NEUROTROPIC POTENTIAL AND DIFFERENT DISEASE
OUTCOMES
Viral encephalitis is a severe neuropathological condition that is
associated with the presence of certain viruses within the central
nervous system (CNS) that trigger inflammatory responses [1].
Although the syndrome is rare, severe encephalitis can be life-
threatening and may result in serious consequences [1]. Clinically,
viral encephalitis comprises multiple symptoms, ranging from
mild, flu-like manifestations at the initial stage of the disease to
severe, neurological impairments in advanced stages, including
seizures, movement disorders, altered consciousness and even
paralysis requiring immediate hospitalization [1]. Upon pathogen
clearance, a significant number of patients present with long-term
neurological sequelae that may also involve persistent cognitive
dysfunctions and psychiatric deficits, which can drastically affect
the patient´s daily routines [1–3]. Herpes simplex virus type 1 and
2 (HSV-1 and HSV-2, respectively) and varicella zoster virus (VZV)
are the most common pathogens that can cause sporadic cases of
encephalitis [1]. Herpes simplex encephalitis (HSE) has an annual
incidence of approximately 1/250,000 worldwide [1]. During HSE,
inflammatory lesions are usually observed within the mesiotem-
poral and orbitofrontal lobes together with the insular cortex, and
affected individuals are in need of immediate acyclovir treatment

[1]. Rabies virus (RABV), West Nile virus (WNV), Japanese
encephalitis virus (JEV) and Dengue virus (DENV) are zoono-
tic pathogens that can cause endemic cases of viral encephalitis
[1]. Patients infected with RABV develop severe clinical manifesta-
tions such as hypersalivation, hydrophobia, and agitation before
reaching the paralytic form of the disease, which eventually results
in coma [4]. WNV, JEV and DENV are mosquito-borne diseases
that, depending on the immune status of the affected individual,
may be self-limiting and asymptomatic or present with severe
neurological manifestations such as headache, disorientation and
seizures upon virus entry into the CNS [5–7]. Other important
viruses that can cause severe encephalitis include La Crosse virus
(LACV), Nipah virus (NiV), influenza A virus (IAV), eastern equine
encephalitis virus (EEEV) and Chikungunya virus [1]. Since viral
encephalitis is a severe disease characterized by vast complexity,
the majority of the available literature discussed in this review
describes experiments with flaviviruses such as WNV and JEV,
herpesviruses such as HSV-1, rhabdoviruses such as vesicular
stomatitis virus (VSV), and the arenavirus lymphocytic choriome-
ningitis virus (LCMV). Depending on the research question, each of
the above infection models can help to delineate certain aspects
of the disease, while not necessarily similar mechanisms apply to
all viral encephalitis scenarios that are induced by different virus
species and strains. In the mouse system, VSV and LCMV are two
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of the best-characterized pathogens and have been used for
decades to establish the foundation of current knowledge in viral
immunology.

VIRAL CNS INVASION STRATEGIES
Neurotropic viruses exploit various evasion strategies to bypass
the cutaneous, mucosal and brain immune barriers and enter the
CNS. The entry mechanisms of neurotropic viruses were exten-
sively investigated by Cain et al. [8]. Briefly, Trojan horse-mediated
CNS entry has been proposed to be a potential entry mechanism
for WNV and NiV, which is further supported by the fact that both
viruses can infect recirculating leukocytes [8]. Experiments using
mice depleted of neutrophils or mice deficient in leukocyte
adhesion molecules showed increased survival upon WNV
infection, suggesting that the Trojan horse mechanism is indeed
relevant for this virus [9, 10]. Moreover, infection of peripheral
nerves and subsequent retrograde virus transport along axons
into the CNS have been identified as a relevant mechanism in
HSV-1, VZV and RABV infection, as reviewed by Taylor et al. and
others [11]. Interestingly, disruption of the blood–brain barrier by
viral proteases may lead to passive diffusion of infected cells or of
intact virus particles into the CNS, which is an entry mechanism
often observed during infection with flaviviruses such as WNV,
JEV, and Zika virus (ZIKV) [8]. Furthermore, direct infection of brain
endothelial cells may be a relevant CNS entry strategy, as shown in
type I interferon receptor (IFNAR)-deficient mice that were infected
with ZIKV [12]. In vitro experiments have characterized transcy-
tosis as a potential invasion strategy for WNV using replication-
deficient WNV-like particles [13]. Finally, nasal barriers can be
manipulated by certain HSV-1 strains, neuroinvasive IAV, and
potentially also by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) to enter the CNS and cause long-lasting
neurological sequelae [14–16].

NASAL NEUROINVASIVENESS AS A PARADIGM OF VIRAL
ENCEPHALITIS
The olfactory epithelium contains olfactory sensory neurons
(OSNs) that project their axons to single glomeruli within the
glomerular layer of the olfactory bulb (OB) [15]. OSNs encounter a
variety of viral pathogens daily, suggesting that several layers of
immune protection must be in place to protect the CNS from viral
infection via the olfactory route [15]. When viruses with
neurotropic potential infect OSNs, a productive infection may
occur, and virus particles reach the OB by retrograde axonal
transport [15]. More specifically, as has been shown in experi-
ments with pseudorabies virus (PRV), virus particles that enter the
terminal axonal region of neurons induce the synthesis of host
trafficking proteins that are required for efficient axonal transport
of the virus [17].
Compared with mature OSNs, immature OSNs exhibit increased

expression of low-density lipoprotein receptor class A domain-
containing 3 (LDLRAD3), which is the main entry receptor of
Venezuelan equine encephalitis virus (VEEV). Correspondingly,
immature OSNs are more prone to VEEV infection than mature
OSNs [18, 19]. Interestingly, LDLR was also shown to be the main
entry receptor of VSV [20]. For HSV-1 the role of the olfactory entry
route has been unclear for some time. Upon intranasal HSV-1
instillation of mice, robust infection of the olfactory epithelium
and trigeminal ganglia was detected, whereas no productive
replication of the virus was detected either within the OB or in the
CNS parenchyma of wild-type (WT) mice [21]. However, deletion of
Toll-interleukin-1 receptor (TIR) domain-containing adapter
protein-inducing interferon beta (TRIF) and mitochondrial antiviral
signaling protein (MAVS), which inactivates Toll-like receptor (TLR)
3 (TLR3) and RIG-I-like receptor (RLR) signaling, respectively,
renders mice more susceptible to HSV-1 infection, and infected

mice exhibit a phenotype resembling in many aspects that of HSE
patients with inborn errors in the TLR3 axis [22]. Moreover,
experiments in an HSV-1 eye scarification model using reporter
mice and a Cre-expressing virus strain revealed that the virus
replicated in the OB [23]. Once the virus reaches the CNS, innate
immune responses of tissue-resident cells such as astrocytes are
initiated, which are known to be abortively infected by HSV-1 and
to mount robust type I interferon (IFN-I) responses [24, 25] (Fig. 1).
Local IFN-I responses within the infected CNS have been shown to
be protective, especially for neurons and astrocytes, since
cell type-selective IFN alpha/beta receptor subunit 1 (IFNAR1)
deletion renders mice susceptible to intranasal VSV instillation
[26, 27]. Upon VSV infection, IFNAR1 stimulation of neurons and
astrocytes regulates microglial activation, which is accompanied
by a change in microglial morphology [27, 28]. During nasal
infection, microglia are recruited to the site of infection, clonally
expand and cross-present antigens to infiltrating antigen-specific
T cells, this way coordinating the local adaptive immune response
and potentially limiting tissue damage [27, 29] (Fig. 1). The
infiltration of immune cells upon intranasal virus challenge is
controlled by TLR signaling and, more specifically, by the adapter
molecule myeloid differentiation primary response 88 (MyD88),
which regulates chemokine expression in infected neurons [30]
(Fig. 1).
The ability of the nasal barrier to restrict viral neuroinvasion

became relevant during the coronavirus disease 2019 (COVID-19)
pandemic, even though SARS-CoV-2 is mainly a respiratory
pathogen. In the initial stage of the pandemic, anosmia and loss
of taste were considered typical signs of SARS-CoV-2 infection [31].
Histological examinations of the olfactory mucosa revealed few
cases in which OSNs were infected by SARS-CoV-2, suggesting
that under certain conditions, the nasal neuroepithelium could be
a potential route of virus entry into the CNS [32]. However, in mice,
intranasal administration of SARS-CoV-2 resulted in olfactory
dysfunction due to the disruption of olfactory cilia, in which the
olfactory receptors are located, and not due to direct infection of
OSNs [33, 34]. Interestingly, even upon intranasal instillation of
SARS-CoV-2, viral neuroinvasiveness is not observed, and micro-
glia within the OB and hippocampus of hamsters and mice are
activated and express IL-1β, which has been shown to nega-
tively affect the neurogenic potential of neuronal precursors
[35, 36]. Moreover, OSN function is essential for the survival of
periglomerular dopaminergic neurons within the OB. Upon SARS-
CoV-2 challenge in mice, a reduction in the number of tyrosine
hydroxylase-expressing neurons is observed in the OB, suggesting
that the infection has at least a transient effect within the neuronal
compartment of the OB [34]. Whether repeated SARS-CoV-2
infections affects the neuronal compartment of the OB in the
long-term remains to be elucidated. Due to the accumulating
evidence on long-term neurological sequelae in individuals
infected with SARS-CoV-2, delineating whether the nasal barrier
plays a role in regulating CNS-resident cellular responses upon
SARS-CoV-2 infection is mandatory [37].

DECIPHERING GENETIC PREDISPOSITIONS IN PATIENTS WITH
VIRAL ENCEPHALITIS ILLUMINATES RELEVANT IN VIVO
MECHANISMS FOR VIRUS CONTROL WITHIN THE CNS
The identification of single inborn errors in individuals who
suffered from viral encephalitis, along with the monitoring of
clinical parameters, helped to delineate the pathomechanisms of
the disease. First, signal transducer and activator of transcription 1
(STAT1) inborn errors were reported in two infants who
succumbed to a lethal viral disease together with mycobacterial
dissemination, but the viral etiology of the second infant remained
unclear [38]. The first infant succumbed to herpes meningoence-
phalitis after discontinuation of acyclovir treatment. This child had
a homozygous two-nucleotide deletion within exon 20 of STAT1,
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which generated a premature stop codon that resulted in a
truncated form of STAT1 lacking the Src homology 2 (SH2), tail and
transactivation domains [38]. Although the role of type II
interferon (IFN-II) in the pathology of this individual could not
be determined, this was the first reported case highlighting IFN-I
responses as an essential protective mechanism against viral
encephalitis. Later, two children with HSE were identified who
carried a large deletion within the IFNAR1 locus, which does not
directly impair IFNAR1 expression on the cell surface but results in
a truncated intracellular domain that is unable to promote
signaling [39]. Furthermore, interferon regulatory factor 9 (IRF9)
deficiency was identified in a family suffering from multiple
infections, with one miscarriage associated with DENV and ZIKV
coinfection and one child presenting with HSV-1 meningoence-
phalitis [40] (Fig. 2). During the SARS-CoV-2 pandemic, the
discovery that autoantibodies neutralizing IFN-I responses could
be involved in causing enhanced disease severity paved the way
for the evaluation of the role of autoantibodies in several other
viral diseases [41]. Neutralizing autoantibodies against IFN-I were
detected in more than 40% of severely WNV-affected individuals
with life-threatening neurological sequelae such as encephalitis,
meningitis, and paralysis [42]. The reports from the inborn errors
summarized above, together with the finding that an individual
who presented with severe WNV encephalitis recovered upon
subcutaneous IFN-α2 treatment, suggest that IFN-I activation is
essential in both the CNS and peripheral compartments to prevent
the development and progression of viral encephalitis [43].
Interestingly, the WNV patient was reported to be a GATA2
heterozygous single-base deletion carrier. GATA2 deficiency is
known to cause a wide range of clinical phenotypes, including
severe infections.

At the virus-sensing level, impaired TLR3 signaling has been
reported to play a central role in the development of viral
encephalitis, especially in HSE after primary infection. Although
HSV-1 is a DNA virus, during HSV-1 infection, dsRNA intermedi-
ates are formed that can induce TLR3-mediated responses under
certain conditions [44]. In an N-ethyl N-nitrosourea mutagenesis
screen in C57BL/6 mice, mutations were detected that rendered
murine macrophages nonresponsive to certain TLR ligands that
are sensed by endolysosomal TLRs [45]. At the same time, similar
observations were made with peripheral blood mononuclear cells
(PBMCs) and fibroblasts from two individuals who developed HSE
[46]. These observations resulted in the identification of two
distinct mutations of the UNC93B1 gene, which nowadays is
known to control the endolysosomal trafficking and stability of
TLR3, 7, and 9 [45, 47, 48]. Later, the identification of a
heterozygous mutation within the predicted dsRNA binding cleft
of TLR3 discovered in two unrelated children with HSE, together
with HSV-1 infection experiments in neuronal cells repro-
grammed from induced pluripotent stem cells (iPSCs) generated
from these HSE patients, highlighted that TLR3 signaling is
essential within the CNS compartment upon HSV-1 encounter
[49, 50] (Fig. 2).
More recently, mutations in components that are relevant only

for TLR3-mediated signaling (TLR3 specific: TRIF) and that are
relevant for signaling by TLR3 and other sensors (TLR3 nonspecific:
TRAF3, TBK1, IRF3, and IRF7) have been identified in several HSE-
affected individuals, clearly indicating that TLR3 signaling, espe-
cially during childhood, is of key relevance for preventing HSE
[51–55] (Fig. 2). Furthermore, these data provide evidence for the
in vivo relevance of TLR3 for sensing HSV-1. Interestingly,
compound heterozygous TLR3 deficiency was identified in a child

Fig. 1 Schematic depiction of the sequence of immunological events triggered upon CNS virus infection. (1) Upon virus entry into the CNS,
IFN-I signaling is essential for restricting virus propagation and promoting host survival. Astrocytes are important IFN-I producers, and
together with neurons, they regulate the activation of microglia in an IFNAR1-independent manner [24, 25]. Microglial activation and
recruitment to sites of infection are essential for virus control within the infected CNS [27, 29]. (2) Productive virus replication is established
mainly within neuronal cells, leading to the induction of a potent chemokine response, which is tightly regulated by MyD88 signaling in a
neuron-specific manner [30, 138]. Neuronal chemokine responses drive T-cell and monocytic cell recruitment to the infected CNS, which
critically affects the outcome of the infection [30]. (3) At sites of infection, microglia are activated and proliferate, and they cross-present
antigens to antigen-specific T cells within the infected CNS [29]. Infiltrated antigen-specific T cells are locally relicensed by microglia to exhibit
optimal cytolytic activity that causes minimal tissue damage [29, 152]. However, under certain conditions, T-cell restimulation by microglia can
lead to elimination of synapses and cognitive decline upon viral clearance from the CNS [120, 179]
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who developed viral rhombencephalitis caused by a positive-
sense single-stranded RNA enterovirus (EV), echovirus 30 (EV30),
suggesting that in the case of RNA virus infection, intact
TLR3 signaling is also required to prevent encephalitis [56].
Moreover, TLR3 missense mutations and rare genetic variants of
TLR3 that have not yet been functionally characterized were
recently reported in patients with VZV encephalitis, influenza-
associated encephalopathy, and tick-borne encephalitis virus
(TBEV) meningoencephalitis. However, more functional assays
are needed to delineate the underlying mechanisms [57–59].
Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-κB) is a central signaling component that triggers the
transcriptional initiation of several proinflammatory genes [60].
Patients with deficiencies or mutations in its activator NF-κB
essential modulator (NEMO) present with severe immunodefi-
ciency and are highly susceptible to several infectious diseases,
including HSE [61, 62]. RNA polymerase III transcribes nuclear DNA
to ribosomal RNA (rRNA), transfer RNA (tRNA), and other small RNA
species. However, RNA polymerase III additionally converts
cytosolic viral DNA into RNA, which is sensed by RIG-I [63] (Fig. 2).
The importance of RNA polymerase III during DNA virus infection
of the CNS was highlighted by RNA polymerase III mutations
identified in children with severe VZV encephalitis whose PBMCs
showed diminished IFN-I responses upon DNA stimulation [64].
Finally, two individuals who suffered from HSE were identified to
carry nonsynonymous deletion variants in MASP2, which is part of
the lectin pathway and controls the cleavage of the complement
components C2 and C4 [65].

Several animal studies highlighted the significance of RIG-I-like
receptors (RLRs) as the main sensing platform for RNA virus
infections in the CNS compartment [66–69]. The recent identifica-
tion of a homozygous mutant of IFIH1, which encodes melanoma
differentiation-associated protein 5 (MDA5), in a child with
enterovirus 71 (EV71) rhombencephalitis further emphasized the
significance of this sensing pathway in human disease [56].
Although RLR signaling is of key importance for the sensing of
RNA viruses, reports have shown that RLR signaling is also activated
during DNA virus sensing [70]. Interestingly, during HSV-1 infection,
several host-derived noncoding RNAs bind to RIG-I, with the top hits
being 5S ribosomal RNA pseudogenes such as RNA5SP141 [71].
These ribosomal pseudogenes usually bind to proteins and thus
coordinate intrinsic cell functions. However, several viruses that
have sophisticated evasion and transcriptional shutoff strategies,
such as herpesviruses, can downregulate the expression of certain
proteins that are no longer bound by ribosomal pseudogenes, thus
allowing pseudogenes to bind to RIG-I, which results in enhanced
RIG-I activation and increased IFN-I responses [71]. Similarly, a child
who presented with HSE was identified to carry compound
heterozygous mutations in GTF3A, which encodes the transcription
factor TFIIIA that regulates the transcription of ribosomal RNAs
[72, 73]. The identifiedmutations led to impaired binding of TFIIIA to
DNA, which resulted in the diminished initiation of transcription of
several noncoding RNAs, including RNA5SP141. The inability to
transcribe such pseudogenes leads to reduced RIG-I activation and
consequently to impaired protection against HSV-1 infection [72].
These GTF3A-deficient patients presented with a common variable

Fig. 2 Detrimental inborn errors in virus sensing and IFN-I signaling illuminate relevant mechanisms of protection against viral encephalitis.
Inborn errors of components of sensing pathways and IFN signaling important for protective innate immune responses during virus infection
in the CNS that are described in this review are highlighted in bright colors. Mutations in the TLR3 gene were found in patients who presented
with HSE [49] and VZV encephalitis [57], enterovirus rhombencephalitis [56], and influenza A virus-associated encephalitis [58]. Additionally, a
TLR3 mutation was proposed as a TBE risk factor [59]. TLR3 is therefore critical for protective responses during viral encephalitis of multiple
viral etiologies. TLR3 and other TLRs are trafficked and stabilized by UNC-93b [45, 47, 48]. UNC-93b deficiency has been detected in HSE
patients [50]. Furthermore, HSE is associated with mutations in the TLR3 adapter molecule TRIF [54] and in the signaling molecules TRAF3 [53],
TBK1 [52], IRF3 [51], and IRF7 [55]. A mutation in the RNA sensor MDA5 was identified in a child with EV71 rhombencephalitis [56]. Host rRNAs
can trigger RIG-I activation [70]. TFIIA (GTF3A), a transcription factor for the RNA polymerase III complex, induces the transcription of rRNA,
while SnoRNA31 (SNORA31 locus) is responsible for the pseudouridylation of rRNA. HSE is associated with mutations in both GTF3A [72] and
SNORA31 [75], while missense mutations in RNA polymerase III are associated with severe VZV infections, including encephalitis [64]. Defective
genes related to apoptosis and necrosis, such as RIPK3 [78], as well as genes connected to autophagy, including ATG4 and MAP1LC3B2 [79],
have been shown to be associated with HSE. Several inborn errors in genes related to IFNAR signaling, including IFNAR1 [39], STAT1 [38], and
IRF9 [40], are associated with HSE. IRF9 deficiency is further associated with multiple viral infections, including DENV and ZIKV [40]
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immunodeficiency (CVID) phenotype, which has been shown in
several cases to be associated with HSE [72, 74]. Furthermore, five
patients with HSE were identified to have deleterious mutations in
the SNORA31 locus, which is a gRNA regulating chemical
modifications, termed pseudouridylation. SNORA31 mutations
impair the pseudouridylation of the ribosomal 18S RNA U218,
which affects the sensitivity of cortical neurons to HSV-1 infection,
but the precise mechanism is not yet clear [75]. Patients with HSE
associated with primary inborn genetic errors primarily presented
with forebrain HSE. Brainstem viral encephalitis is rare and was
recently identified in several patients carrying mutations in DBR1,
which encodes an RNA lariat-debranching enzyme. The accumula-
tion of intronic RNAs may be toxic to cells, thus rendering the
brainstem neuronal compartment more susceptible to viral
infection and replication. These patients suffer from brainstem
encephalitis due to HSV-1, influenza B virus, or norovirus infection
[76] (Fig. 2).
The mechanisms of cell death and autophagy are important

biological functions, especially during infection, and can even-
tually affect the outcome of infection by regulating the magnitude
of inflammatory responses or the spatiotemporal kinetics of viral
replication and propagation. A histopathological analysis revealed
that many cells in HSE lesions undergo apoptosis [77]. Similarly, a
patient suffering from HSE was recently found to carry compound
heterozygous mutations in RIPK3, which regulates cell-mediated
death via apoptosis and necroptosis [78]. Furthermore, deleterious
mutations in two autophagy genes, ATG4 and MAP1LC3B2, were
identified in two patients who suffered from HSV-2 recurrent
lymphocytic meningitis [79] (Fig. 2). Overall, the identification of
genetic variants associated with viral encephalitis has tremen-
dously expanded the knowledge about relevant pathways in viral
encephalitis. However, the molecular mechanism of most viral
encephalitis cases is still unknown, and additional studies are
needed to elucidate the factors that are relevant for the control of
viral infection within the CNS.

MODELING BRAIN DISEASES USING NEUROIMMUNE
ORGANOIDS
Obtaining non-fixed human brain tissue is still challenging, which
has impeded progress toward elucidating brain pathologies
associated with viral infection. However, the advent of human
iPSC technology has facilitated the development of 3D brain
organoids that can be used to model neurotropic viral diseases
[80]. Brain organoids recapitulate the intricate structure and
diverse functions of the human brain [81], overcoming limitations
associated with conventional 2D cell culture systems [82]. Unlike
classical organoids, the development of neural organoids supple-
mented with microglia, i.e., immunized organoids, has allowed the
exploration and manipulation of immune responses within
organoids. Using immunized organoids, Samudyata et al. [83]
observed microglia-mediated synaptic pruning following viral
infection, which mirrored phenotypes documented in neurode-
generative disorders. Infection studies using brain organoid
models reported ZIKV replication within neural precursor cells,
astrocytes, and neurons, resulting in structural defects and cell
death, which are key features associated with ZIKV-induced
microcephaly [84–86]. Indeed, ZIKV infection in immunized
organoids leads to microglial activation and the subsequent
induction of proinflammatory cytokines such as IL-6, IL-1β, and
tumor necrosis factor (TNF), thus linking microglia with ZIKV-
induced neuropathology [87]. Using human cytomegalovirus
(HCMV), which is another virus associated with microcephaly,
Sun et al. [88] observed a disruption of organoid morphology,
impaired neurogenesis and the formation of neural rosettes
following infection.
Although neurological manifestations in COVID-19 patients

have been reported [89], the neuropathology associated with

SARS-CoV-2 infection remains elusive. Yi et al. [90] reported
pronounced expression of ACE2 in dorsal forebrain organoids and
increased susceptibility to SARS-CoV-2 pseudovirus infection.
Using cortical, hippocampal, hypothalamic, and midbrain orga-
noids, several groups have reported moderate SARS-CoV-2
infection of neurons [91] and astrocytes [92] and robust infection
of choroid plexus epithelial cells [93]. Moreover, by utilizing
forebrain and midbrain organoids, Hou et al. [94] showed an
enhanced replication efficiency of variant Omicron BA.2 with
productive viral infection within dopaminergic neurons, indicating
that SARS-CoV-2 infection can undermine neural circuit integrity.
Although brain organoids have proven to be a suitable method

for modeling certain aspects of viral brain infection in vitro, the
system remains incapable of recapitulating all relevant aspects,
including infiltration of the CNS with peripheral immune cells.
Furthermore, if relevant components of virus control have been
identified in vivo, dissecting whether the respective components
play a role during virus invasion into the CNS or during virus
control within the CNS will remain challenging.

MICROGLIAL RESPONSES DETERMINE ANTIVIRAL OUTCOMES
AND THE ESTABLISHMENT OF LONG-TERM NEUROLOGICAL
SEQUELAE
Microglia are resident mononuclear phagocytes of the CNS that
are relevant for tissue surveillance [95]. Microglia are activated by
a variety of triggers, and their activation is essential for the control
of viral infection in the CNS and thus critically determines disease
outcomes [27, 96–102]. Microglia express a variety of pattern
recognition receptors, including TLRs [103] and RLRs [104], and
therefore readily respond to invading pathogens, including HSV-1
[104], and pathogen-associated patterns (PAMPs), such as the
bacterial cell wall component lipopolysaccharides (LPS) [105] or
double-stranded RNA [106], which arise during the replication of
positive single-stranded RNA-encoded viruses such as WNV
or TBEV.
Postmortem histological analyses of brain tissue from patients

with viral encephalitis revealed the importance of microglia during
the course of the disease, and microglia were found to be located
in close proximity to T cells [101, 107]. The discovery of IL-34 as an
alternative CSF1R ligand that is essential for microglial develop-
ment and the increased sensitivity of IL-34-deficient mice to
infection with attenuated WNV highlighted the role of microglia in
protection against CNS infection [97]. Moreover, microglial
depletion experiments have shown that mice are highly
susceptible to various viral challenges [27, 98–100, 102, 108]. Upon
virus entry into the CNS, microglia are activated, MHC I and MHC II
molecules are upregulated, proliferation and clonal expansion
occur, and microglia are recruited to sites of active viral replication
[27, 29, 101, 109, 110]. Interestingly, in the PRV mouse model,
researchers proposed that microglial recruitment to virus-infected
brain areas is controlled by P2RY12, which senses ATP molecules
released from virus-infected cells [101]. However, monocyte
recruitment to infected areas has been shown to be P2RY12
independent [101]. Consequently, another purinergic receptor,
P2RY13, was also detected to be expressed within the CNS
parenchyma, and it was proposed to be an interferon-stimulated
gene upon intranasal VSV instillation. This result suggested that
purinergic receptors other than P2RY12 and 13 might play a role
in CNS infection [111]. After HSV-1 infection, microglia mount IFN-I
responses in a cGAS/STING-dependent manner [109]. However,
cGAS can also limit IFN-I responses by instructing myeloid cells to
undergo apoptosis and thus protect sensitive neuronal compart-
ments [107]. Interestingly, in a mouse model in which a point
mutation was introduced in the C-terminal tail of STING that is
responsible for IFN-I-mediated responses, STING signaling was not
essential for regulating IFN-I-mediated protection upon HSV-1 eye
scarification infection but rather for regulation of autophagy [112].
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Microglia are capable of phagocytosing and digesting invading
viruses [113], but in some cases, they may also support
intracellular virus replication [114]. Under homeostatic conditions,
ramified, ameboid, and pseudopodic microglia are found in the
CNS [115]. Ramified microglia exhibit long dendrites that enable
efficient surveillance of the environment [116], while ameboid
microglia have an oval-shaped cell body with a ruffled membrane
and contain a larger nucleus [115]. Pseudopodic microglia have a
mixed morphology with a ruffled membrane and few cytoplasmic
projections termed pseudopodia that protrude from their cell
body [115]. Upon activation, microglia typically retract their
dendrites, acquire an ameboid or pseudopodic morphology,
become more motile, and increase their phagocytic capacity
[115, 117].
Microglial activation is critically needed to control viral infection

of the CNS; however, pathological effects following microglial
activation, which are mediated by neurotoxicity or synaptic
elimination during acute inflammation or in the recovery phase
after viral encephalitis, have been observed [118–121]. In fact,
microglial inflammatory responses cause neuronal apoptosis
following LPS stimulation in vitro [118] and after ZIKV infection
in vivo [120]. Post-WNV infection, complement signaling [121]
and IFNGR signaling [120] of microglia promote synaptic
removal, which leads to cognitive deficits. Similarly, in the mouse
viral déjà-vu model infected with LCMV, which closely recapitu-
lates Rasmussen’s encephalitis, myeloid cells contribute to
neuronal synapse removal, which leads to movement impairments
[122]. Therefore, microglial activation is needed for the control of
viral infections in the CNS, but microglia can also cause long-term
neurological sequelae.

CHECKPOINTS OF IMMUNE CELL INFILTRATION DURING CNS
INFECTION
Upon viral CNS entry, immune cells infiltrate the infected CNS
parenchyma to control virus propagation and to restrict viral
dissemination throughout the entire CNS. Infiltration of the
infected CNS with immune cells from the periphery involves
several critical steps. Initially, the drainage of viral antigens, or
even of intact virus particles, to secondary lymphoid organs,
especially the cervical lymph nodes, is a fundamental step in
mounting protective immune responses upon CNS infection.
Furthermore, chemokines produced by tissue-resident cells that
respond to virus infection eventually define which immune cell
types infiltrate the infected brain and to which anatomical
localizations these cells will home. Finally, local relicensing of
immune cells that infiltrate the CNS, such as antigen-specific CD8+

T cells, by tissue-resident cells is needed to coordinate and fine-
tune the function and magnitude of the immune response within
the infected CNS.
The significance of secondary lymphoid organs as highly

organized lymphoid structures that are relevant for the control
of LCMV and VSV infection was revealed by elegant experiments
with alymphoplasia and Hox11-deficient mice [123]. These mice
lack lymph nodes and spleens, respectively, and challenge with
viruses that require T- and B-cell responses to control chronic or
acute infection revealed that secondary lymphoid tissues are
needed for effective T-cell priming and CNS protection [123]. The
recharacterization of the lymphatic drainage system of the CNS
compartment under steady-state conditions paved the way for the
delineation of the role and responses of the lymphatic vessels
during neuroinflammation [124–127]. CNS infection caused by a
broad range of neurotropic pathogens leads to a reduced capacity
of meningeal lymphatic vessels (MLVs) to drain antigens into deep
cervical lymph nodes [128]. Moreover, Japanese encephalitis virus
(JEV) and VSV CNS infections cause downregulation of the
transcription factor PROX1, which is essential for lymphatic valve
function and smooth muscle cell contraction in MLVs, thus leading

to dysfunctional MLVs [128]. Pretreatment of mice with recombi-
nant VEGF-C, which is known to promote an increase in the
diameter of lymphatic vessels and the expansion of functional
MLVs, significantly improved the survival of mice upon JEV
challenge [127, 128]. These data clearly indicate that the lymphatic
system is of pivotal significance and can be therapeutically
exploited during viral encephalitis [126–128]. In experiments with
VSV and vaccinia virus, sinus subcapsular macrophages are
productively infected upon viral particle transport to the draining
lymph node [129]. Then, naïve CD8+ T cells relocalize to the
peripheral interfollicular area adjacent to the sinus subcapsular
macrophage lining. Upon relocalization, T cells interact
with infected or cross-presenting DCs to achieve optimal
activation [129].
The establishment of a chemokine gradient within the

infected CNS is necessary for the induction of immune cell
infiltration, mainly CD8+ T cells, which has been shown to be
essential for protection against neuroinvasive virus infection
[23, 29, 30, 130–135]. The discovery of the measles virus (MV)
receptor CD46 allowed the development of an MV-encephalitis
mouse model using transgenic mice expressing human CD46
under the control of a neuronal promoter [136]. Intracerebral
inoculation of MVs in these transgenic mice leads to predomi-
nant infection of neuronal cells that then express CXCL10 and
CCL5, thus recruiting T cells to the infected CNS parenchyma
[137]. However, in that study, the authors remained unclear on
whether these chemokine responses were essential for protec-
tion. The definitive answer was obtained with CXCL10-deficient
mice that showed increased sensitivity to WNV infection or by
injecting CXCL10-blocking antibodies into infected mice [138].
Compared with WNV- or HSV-1-infected WT mice, CXCL10-
deficient mice showed decreased infiltration of the CNS by
CXCR3+ CD8+ T cells or gB+ CD8+ T cells, respectively [138, 139].
Similar sensitivity to WNV infection as detected in CXCL10-
deficient mice was also observed in CXCR3-deficient mice [140].
Viruses with highly sophisticated immune evasion programs,
such as HSV-1, can downregulate CXCL9 expression via the viral
kinase UL13, thus diminishing the infiltration of CD8+ T cells
within the infected CNS [135]. The observations that MyD88-
deficient mice are heavily susceptible to WNV and VSV brain
infections and that they show reduced numbers of CNS-
infiltrating leukocytes raised the question of whether infected
neurons solely regulate the chemokine response via the adapter
molecule MyD88 [141, 142]. By exploiting the RiboTag approach,
i.e., cell-selective Cre-mediated ribosomal tagging and subse-
quent RNA sequencing of the translatome of selected CNS-
resident cells, neurons were identified to be the major
chemokine producers upon VSV infection of the CNS [30].
Moreover, the selective neuronal reconstitution of
MyD88 signaling within the infected CNS phenocopied the
survival of control mice and decreased the number of CNS-
infiltrating leukocytes upon intranasal VSV infection [30] (Fig. 3).
However, upon intracranial infection with the LCMV Traub strain,
which causes CD8+ T-cell-mediated immunopathology and
meningitis in immunocompetent mice, CXCL10 expression
seems to originate mainly from astrocytes, and
CXCL10 strongly drives the infiltration of CXCR3+ CD8+ T cells
into the meningeal compartment [143, 144]. Notably,
CCR5 signaling has also been shown to have a significant
impact on the protection and infiltration of T cells within the
CNS upon WNV, JEV, and LGTV infection [145–147].
When CD8+ T cells are primed and reach inflamed tissue,

fibroblastic reticular-like cells surrounding the perivascular space
together with the endothelial cells of the meningeal blood vessels
express high levels of CCL21 and CCL19 to promote the migration
of CCR7+ CD8+ T cells within the MHV-A59-infected CNS
parenchyma [148]. CCR7 signaling in these CD8+ T cells facilitates
their exit from the meningeal blood vessels but also drives their
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localization within the infected CNS [148]. CCR7 signaling-
dependent blood vessel exit does not seem to be essential for
the CNS migration of CD4+ T cells [148] (Fig. 3). In contrast,
CXCL12-expressing endothelial cells retain CD8+ T cells within
perivascular spaces upon WNV infection [149]. By antagonizing
CXCR4-CXCL12 signaling, the release of CD8+ T cells to the
infected parenchyma is increased, and therefore viral control is
promoted [149]. The expression levels of CXCL12 are also
regulated by IL-1R signaling, which has been shown to be critical
for T-cell trafficking during neuroinfection [150].
Intraparenchymal antigen-specific T cells interact with microglia

in a process that is essential for viral clearance from the CNS in
models of acute or persistent viral infection [29, 151]. Local
intraparenchymal T-cell restimulation from CNS-resident and
infiltrating antigen-presenting cells can optimally coordinate the
CD8+ T-cell response during viral encephalitis [152] (Fig. 3).
Furthermore, intraparenchymal CD8+ T-cell cytolytic function is
also regulated by the presence of CD4+ T cells upon infection with
the neurotropic mouse hepatitis JHM strain and congenital murine
cytomegalovirus (MCMV) in a manner that requires further
investigation [153, 154].
Although T-cell recruitment is critical for the control of viral

encephalitis, also myelomonocytic cells massively infiltrate the
infected CNS parenchyma. Debate is ongoing since, thus far, only a
few studies have analyzed their roles in viral encephalitis. The
depletion of monocytes and macrophages by treatment with
clodronate-loaded liposomes before WNV and VSV infection
exacerbated the sensitivity of mice to lethal infection with high
rates of viral neuroinvasiveness, highlighting the importance of
myeloid cells at least during the acute phase of infection
[141, 155, 156]. CCR2 is an important chemokine receptor that
regulates the exit of monocytic cells from the bone marrow in mice
[157]. CCR2-deficient animals are highly susceptible to WNV

infection [158]. However, competitive repopulation experiments in
which CCR2−/− and CCR2+/+ monocytes were mixed at a 1:1 ratio
and injected into CCR2-deficient recipient WNV-infected mice
showed that the monocyte cell ratio was similar between the CNS
and blood. Furthermore, the disappearance of CCR2−/− monocytes
from the blood even early after transfer suggested that CCR2 is only
required for monocytes to recirculate from the bone marrow to the
blood and is not needed for monocytes to infiltrate the infected
CNS [158]. In the WNV mouse model, CCL2 and CCL7 are important
ligands for CCR2 and affect monocyte infiltration to the CNS;
however, only CCL7 deficiency is associated with increased
sensitivity to infection [159]. In the TMEV model, hippocampal
neurons are the predominant source of CCL2 upon infection, and
neuron-specific genetic ablation leads to reduced infiltration of
monocytes within the brain [160]. However, an intriguing study
showed that CCR2 deficiency results in better clinical outcomes in
mice upon JEV infection, while CCL2 deficiency renders mice highly
susceptible to infection [161]. CCL2 deficiency led to increased
accumulation of monocytes within the JEV-infected brain compart-
ment, suggesting that monocytes may require other chemokines,
and these results thus contribute to the discussion on whether
excessive monocyte infiltration may cause pathogenic effects on
the CNS parenchyma under certain conditions [161, 162] (Fig. 3).
To this end, in the LCMV model, monocytes and neutrophils
clearly contribute to CNS vascular injury, leading to Evans blue
leakage from the meningeal blood vessels to the CNS parenchyma
[163]. The depletion of neutrophils in CCR2-deficient mice
prolonged the survival of the animals upon LCMV infection [163].
Monocyte recruitment patterns were shown to be affected during
HSV-1 and TMEV infection [110, 164]. These data clearly suggested
that other chemokine receptors, such as CCR5, may also be
involved in the trafficking of monocytes from the periphery to the
CNS [145].

Fig. 3 Chemokines derived from CNS-resident cells drive the recruitment of peripheral leukocytes into the infected brain. T cells are primed
by DCs in secondary lymphoid organs in the periphery and proliferate [250]. Stromal cells (fibroblastic reticular cell-like cells surrounding the
perivascular spaces and endothelial cells of the meningeal blood vessels) secrete CCL19 and CCL21, which recruit CCR7+ CD8+ T cells to the
BBB. CXCL10 and CCL5 derived from neurons in the VSV model [30] or from astrocytes in the LCMV Traub model [143, 144] recruit T cells via
CXCR3 and CCR5, respectively. CXCL10 is especially important for CXCR3+ CD8+ and gB+ CD8+ T cells [138, 139]. CXCR6 signaling leads to the
maintenance of T cells in the CNS. Microglia interact with CD4+ and CD8+ T cells and activate previously primed antigen-specific T cells
[29, 98, 250, 251]. Monocytes are recruited from the blood stream via the CCL2/CCL7–CCR2 axis [159], by CCL2 originating from neurons in the
TMEV model [160]. CCR5 might contribute to leukocyte recruitment during WNV infection [145]
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THE PROTECTIVE EFFECT OF CD8+ T CELLS DURING VIRAL
ENCEPHALITIS
CD8+ T cells play a crucial role during the course of virus infection
and undergo several steps, from antigen-specific T cell priming in
secondary lymphoid organs to T cell infiltration of the CNS and
local T cell restimulation within the CNS, to efficiently restrict viral
propagation within the CNS [165]. The majority of the acquired
knowledge on the role of CD8+ T cells in viral encephalitis
originates from mouse experiments with several model patho-
gens, including WNV, JEV, VSV, LCMV, Borna disease virus, and
HSV-1 [29, 30, 130, 132, 134, 135, 166]. Upon reaching the infected
area of the CNS parenchyma, CD8+ T cells produce molecules that
are relevant for viral clearance. Perforin has been shown to be
essential for CD8+ T-cell function as indicated by perforin-
deficient mice being sensitive to WNV infection [167]. Interest-
ingly, of the few perforin-deficient mice that survived the
infection, the virus could be reisolated from the brain even at
35 days postinfection, suggesting that the ability of perforin to
lyse the cell membrane of infected cells is important for virus
control [167]. Furthermore, similar results were obtained upon
WNV infection in gld mice, which contain a point mutation in FasL,
and in TNF-related apoptosis-inducing ligand (TRAIL)-deficient
mice, suggesting that other CD8+ T-cell-mediated effector
functions are needed to optimally protect against WNV infection
[168, 169]. However, during JEV infection, only IFN-γ seems to
provide a significant survival advantage over other cytolytic
effector pathways, such as the perforin, granzyme A/B and Fas-
mediated death pathways [170, 171]. Notably, CD8+ T cells can
clear infections within the CNS in a noncytopathic manner, as
observed during VSV, Sindbis virus, and MHV brain infection,
which is in contrast to what is usually observed in vitro
[29, 172, 173]. T-cell-dependent cytokine responses, such as those
involving IFN-γ, have been shown to play a central role in
noncytolytic viral clearance within the CNS, although different
neuronal subtypes may exhibit divergent responses to cytokine
stimulation [172]. Interestingly, CD8+ T-cell-mediated lytic gran-
ules were shown to noncytolytically restrict HSV-1 reactivation by
selectively targeting the viral life cycle without causing neuronal
apoptosis [174].
The memory CD8+ T-cell compartment has been shown to play an

important role in suppressing the reactivation of viruses and CNS entry
for recurrent infections. More precisely, intracerebral infection with an
attenuated LCMV strain leads to the generation of tissue-resident
memory CD8+ T cells that seed-specific anatomical locations of the
brain, such as the meninges and the choroid plexus, and undergo
homeostatic proliferation, which is important for their maintenance
within the brain [175]. Interestingly, during reinfection, these memory
CD8+ T cells expand and provide faster viral clearance [175]. Peripheral
infection and immunization can also generate brain-resident CD8+

T cells that seed these specific anatomical locations in the CNS [176].
Furthermore, brain-resident memory CD8+ T cells are also generated
after congenital MCMV infection, and they are long-lived cells seeded
in the CNS [177]. Only prolonged depletion strategies deplete the
resistant memory CD8+ T-cell compartment in the brain, leading to
reactivation of MCMV and subsequent detection of cells expressing
immediate early genes, which suggests viral reactivation [177].
Similarly, the accumulation of memory antigen-specific T cells within
the OB has been observed in an ocular HSV-1 infection model, even
after 60 days post infection [23]. Such brain memory T cells can also be
found in the human brain [178].
Nevertheless, the function of CD8+ T cells is essential during the

acute phase of infection. However, CD8+ T cells may cause severe
neuropathology with cognitive impairment. In a model of WNV-
induced cognitive dysfunction, brain memory CD8+ T cells persist
in the CNS by sensing microglia-derived CXCL16. CXCL16 targets
CXCR6+ CD8+ T cells to promote their maintenance in the brain,
eventually leading to increased IFN-γ production [179] (Fig. 3).
Presynaptic elimination is mediated through microglia-specific

IFNGR signaling, which can cause long-term cognitive impairment
[120].

FROM BULK TO SINGLE-CELL OMICS: TOOLS TO INVESTIGATE
MICROGLIAL BIOLOGY IN HEALTH AND DISEASE
Conventional bulk RNA sequencing
The development of technologies that allow analyses of cellular
transcriptomes, such as quantitative PCR (qPCR) [180], microarrays
[181, 182], NanoString [183] and RNA sequencing (RNA-Seq) [184],
has been instrumental in the identification of core microglial
signatures. Although qPCR, NanoString and microarrays have
offered valuable insights into microglial biology, they have only
allowed low-throughput assessments of the transcriptome.
Ultimately, RNA-seq has become the most valuable technique
for deciphering the transcriptional landscape of microglia.
Through direct sequencing of sorted mouse microglia, Hickman
and colleagues revealed signatures that were highly specific for
microglia, including P2ry12, P2ry13, Tmem119, Gpr34, Siglech,
Trem2, and Cx3cr1. These components constitute the microglial
sensing apparatus, often referred to as the microglial “sensome”
[185]. A comparative analysis of microglial and glial transcriptomes
revealed that the genes P2ry12, Fcrls, Tmem119, Olfml3, Hexb, and
Tgfbr1 are microglia-specific and that TGF-β1 is needed for the
development of microglia [186].
Previous studies aimed at delineating the transcriptome of

human microglia reported enhanced expression of genes
implicated in microglial ramification and motility (P2RY12 and
CX3CR1), synaptic remodeling (C3, C1QA, C1QB, and C1QC), and
the immune response (HLA‐DRA and HLA‐B) in autopsy samples
from patients with epilepsy, brain tumors or acute ischemia
[187, 188]. Moreover, Gene Ontology (GO) analysis of the
microglial transcriptome isolated from postmortem brain tissues
revealed enrichment of GO terms associated with immune
signaling and modulation (CD74, CSFR1, and C1QA‐C), pathogen
and self‐recognition (MyD88, CLECL1, and CIITA), and cell adhesion
and motility (ITGAM, CX3CR1, and ICAM‐1) [188], underscoring the
central role of microglia in the diseased brain.
The classical techniques used to isolate microglia often require

lengthy preparation procedures that potentially introduce ex vivo
transcriptional artifacts. An alternative strategy to study microglia-
specific signatures in vivo is the ribosomal tagging (RiboTag)
approach, which relies on Cre recombinase‐induced expression of
a hemagglutinin (HA) tag fused to the core ribosomal protein 22
(Rpl22) [189], allowing rapid pulldown of RNA. The RiboTag
approach provides a snapshot of RNA actively undergoing
translation at a precise time point. By exploiting the RiboTag
approach in longitudinal translatomic analyses of microglia in a
relapsing–remitting experimental autoimmune encephalomyelitis
(EAE) model, Haimon et al. [190] showed the enrichment of
microglial genes associated with proliferation (Birc5, Lig1, and
Top2a), antigen processing and presentation (Ciita, Cd74, and H2-
Ab1), and the response to IFN-γ, suggesting the establishment of
mutual interactions between disease-experienced microglia and
T cells. With a similar strategy, Acharjee et al. [191] observed
highly dynamic microglial immune responses in various stages of
EAE that differed to some extent between the brain and spinal
cord. Collectively, these studies indicate that microglia exhibit
regional and functional heterogeneity, and since RNAs from bulk
RNA-seq are analyzed en masse, such cellular heterogeneity is
often diluted or even missed entirely.

Single-cell RNA sequencing
Since its invention more than a decade ago, single-cell RNA
sequencing (scRNA-seq) has been transformative for understand-
ing microglia-mediated functions in various neurodegenerative
diseases [192, 193] and viral infections [179, 194, 195]. This
technique deconvolutes cell heterogeneity, thus allowing the
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identification of microglial subsets that are associated with certain
microglial phenotypes. Using 5xFAD mice, which constitute an
animal model of Alzheimer’s disease (AD), Keren-Shaul et al. [192]
identified novel microglial clusters exhibiting distinct expression
signatures that were annotated as neurodegenerative disease-
associated microglia (DAMs). Compared with homeostatic micro-
glia, DAMs exhibited reduced expression of core microglial genes
(P2ry12, Tmem119, Csf1r, and Cx3cr1) and increased expression of
AD risk genes (Apoe, Lpl, Trem2, Tyrobp, and Ctsd), suggesting that
DAMs may directly affect disease progression. In addition,
Deczkowska et al. [196] reported DAM signatures in the SOD1-
G93A model of amyotrophic lateral sclerosis, highlighting that
DAMs represent a general response to different neurodegenera-
tive diseases. In addition to DAMs, Mathys et al. [193] identified
two distinct reactive microglial types expressing IFN genes (Ifitm3,
Irf7, OaS1a, and Zbp1) and MHC genes (H2-D1, H2-Aa, H2-Ab1, and
Cd74) in the hippocampus of a cyclin-dependent kinase 5 (CK-p25)
mouse model. A trajectory analysis revealed the continued
progression of homeostatic microglia to an activated state, which
ultimately branches into DAM, IFN-I, and MHC terminal states
[197]. Notably, IFN- and MHC-expressing microglia were not
unique to neurodegenerative models, as subsequent scRNA-seq
studies on viral infection, LPS stimulation, and glioma identified
them as well. Syage et al. [198] studied JHMV infection and
identified microglial clusters with increased levels of proinflam-
matory genes (Ccl3, Ccl4, and Cxcl10) that appeared to be more
extensively associated with the disease. Specifically, genes
encoding antiviral factors, including Myd88, Rsad2 (Viperin), and
Tmem173 (STING), were highly upregulated in virus-exposed
microglia, indicating a central role for the microglial sensome in
orchestrating the antiviral defense that aids in controlling JHMV
replication. Indeed, ablation of MAVS in the brain was shown to
induce defective interferon responses in microglia, dysregulated
lymphocyte infiltration and enhanced susceptibility to RVFV [68].
In the WNV-infected brain, Spiteri et al. [199] reported that
microglia adopted unique and global transcriptomic profiles in the
lethal progression of WNE. Pseudotime projection revealed the
transition of microglia from homeostatic to antiviral microglia
expressing the genes Tlr3, Tlr7, Ddx58 (RIG-I), Myd88, Irf7, Stat1, and
Ifitm3 at the early onset of disease and then to immune cell-
recruiting microglia expressing an armamentarium of chemotactic
signals, including Ccl3, Ccl4, Ccl5, Cxcl16, Cxcl9, and Il-12b. Indeed,
Il-12b promotes the differentiation of naïve CD4+ T cells into
TH1 cells [200] in response to T-cell-derived IFN-γ in the CNS [201].
Although T cells are critical for CNS viral control, microglia are
pivotal for their recruitment or maintenance within the inflamed
CNS. A recent study by Rosen et al. [179] identified putative
ligand–receptor pairs involved in intercellular communication
between microglia and T cells. Through genetic and pharmaco-
logical manipulation, the CXCL16-CXCR6 axis was shown to be
vital for the maintenance and differentiation of WNV-specific
CD8+ TRM cells in the postinfectious CNS [179]. The persistence of
T cells after viral clearance contributes to microglial activation
[202, 203], leading to synapse elimination in the CA3 region of the
hippocampus in WNV-infected animals [179].

Spatiotemporal omics
While single-cell sequencing platforms provide a higher resolution
of microglial profiles, they require the isolation of cells from
tissues, which inherently leads to a loss of spatial information.
Spatial transcriptomic platforms could validate such a hypothesis
by providing a more integrated analysis that correlates microglial
activation profiles with a specific microenvironmental niche
defined by its cellular composition and tissue architecture.
Maniatis and colleagues reported the regional and temporal
dynamics of microglia in amyotrophic lateral sclerosis (ALS) using
both mouse and human spinal cord tissue [204]. Indeed, they
reported increased expression of Tyrobp and Trem2 in the ventral

horn and ventral white matter, suggesting that TREM2- and
TYROBP-mediated signaling is an early step in disease-relevant
changes in microglial gene expression. Choi et al. [205] reported
abundant expression of Ctsd, Tyrobp, C4b, Lyz2, Cst7, and Ctsz in
microglia in the cerebral cortex, hippocampus, and striatum in the
5XFAD model. The spatial distribution of the DAM signatures
showed an increase in the gray matter of 7-month-old 5XFAD
mice, which reflects an AD phenotype, and a relatively prominent
increase in the white matter of 3-month-old 5XFAD mice [205], re-
emphasizing region- and age-dependent microglial responses
to AD. Although microglia display a stereotypically activated
response to β-amyloid (Aβ) [192, 206, 207], little is known about
the relationship between amyloid plaques and the neurodegen-
erative process [208–210]. Nevertheless, recent studies revealed
the expression of plaque-induced genes (PIGs) in immediate
proximity to plaques in an AD mouse model [211, 212]. The
expression of PIGs is positively correlated with plaque density in
different brain regions and is functionally involved in phagocytic
and degradative processes [212]. Gratuze et al. [213] and Kulkarni
et al. [214] discuss the function of TREM2 in microglia. In brief,
TREM2 deficient microglia show diminished responses upon IL-4
stimulation [215], and TREM2 has been reported to be instru-
mental in the increased density of microglia around plaques [212].
Considering these findings, the hypothesis that microglial contact
with plaques is necessary for microglia to respond appropriately to
amyloid pathology appears reasonable.
Spatial transcriptomics of microglia has been hampered by the

relatively low resolution, low multiplexing capabilities and very
few cells that were analyzed to validate specific genes of interest
[216, 217]. Recently, single-cell proteomics, including multiplexed
ion beam imaging by time-of-flight (MIBI-TOF) and imaging mass
cytometry (IMC), has been developed to capture microglia within
the intricate multicellular microenvironments of the brain
[218, 219]. By profiling the protein spectrum, Mrdjen et al. [220]
identified unique microglial phenotypes summarized as the
microglial state continuum (MSC), which progressively expresses
HLA-DR, MerTK, CD11c, MRP14, and TREM2 within compartmen-
talized brain regions. Notably, the hippocampus and substantia
nigra (SN) were reported to harbor a high MSC, suggesting that
microglia in these regions are skewed toward a more active state.
In contrast, under AD conditions, hippocampal microglia dampen
MSC states, presumably indicating that microglia from hippocam-
pal gray matter under AD conditions are less activated or more
senescent than microglia from healthy hippocampal gray matter.
Vijayaragavan et al. [218] found that microglia increasingly express
DAM signatures, which interact strongly with pathological Tau in
the CA1 region of a patient with AD dementia. By exploiting IMC,
Schwabenland et al. [221] highlight the spatial resolution of CNS-
related encephalopathies, such as microglial nodules, in COVID-19
patients. Indeed, microglial nodules represent microanatomic
immune niches enriched with activated CD8+ T cells [221].

CURRENT INSIGHTS INTO VIRAL INFECTIONS AS POTENTIAL
TRIGGERS AND ACCELERATORS OF NEURODEGENERATION
Viral infections of the brain can lead to acute and chronic
encephalitic processes involving acute and long-term neurological
deficits [1]. In all these scenarios, neuronal death and neuronal loss
can be hallmarks of the respective conditions [1]. Notably, during
viral encephalitis, neurons can undergo apoptosis or cell death in
the acute phase, as well as in the chronic phase of infection.
However, the mechanisms leading to neuronal loss and death can
differ depending on the time course of infection and the
composition of the surrounding cells. Nonetheless, neuronal loss
often leads to long-term sequelae, cognitive deficits, and motor
impairments even months after JEV and WNV infection [6, 222].
Moreover, according to the WHO [223], the risk of developing
epilepsy, which is one of the most common chronic neurological
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diseases among humans that can manifest years after survival of a
JEV infection is up to 30%. Autoimmune encephalitis develops in
approximately 25% of HSE-recovered patients, often months after
the initial recovery [3]. Patients typically develop autoantibodies
against neuronal antigens such as the N-methyl-D-aspartic acid
(NMDA) receptor in the absence of viral detection in cerebrospinal
fluid (CSF), which results in seizures, cognitive dysfunction and
choreoathetosis [3].
During acute viral encephalitis, e.g., encephalitis caused by HSV-1,

spontaneous symptomatic seizures are often observed in patients.
These effects can be triggered by robust inflammatory antiviral
responses within brain tissue, mostly accompanied by the secretion
of a broad range of proinflammatory cytokines, such as TNF, IL-6,
and IL-1β, which have been shown to be involved in acute
symptomatic seizure development [186, 224–226]. Infiltrating
monocytes, especially microglia, are known to actively produce
these cytokines [227]. Notably, acute seizures develop during the
acute phase of viral encephalitis, and neuronal loss can be observed
at these early stages. In a mouse model of viral encephalitis and
temporal lobe epilepsy (TLE), hippocampal neurons undergo cell
death within the first six days post virus infection, suggesting a
direct neurotoxic effect that is mediated by either the virus itself or
by the initiated immune response [228–230]. However, microglial
depletion experiments in models of viral CNS infection have shown
that microglia are essential for the survival of the host and that the
absence of microglia leads to an exacerbation of CNS pathology
[27, 98, 99, 101, 102]. Therefore, these resident immune cells are
crucial for protection in the acute phase of viral encephalitis.
However, microglia are known to mediate synaptic remodeling and
synaptic elimination in a mouse model of WNV-induced cognitive
dysfunction upon viral clearance via complement secretion and IFN-
γ sensing [120, 121]. Complement C3 deficiency can ameliorate
synaptic remodeling and reverse spatial learning deficits in mice
upon WNV infection [121]. Currently, complement-targeting phar-
maceuticals are being tested with promising results in clinical trials
for the treatment of severe neurological disorders [231]. Further-
more, the lipid-binding receptor TREM2, which is predominantly
expressed by tissue macrophages such as microglia, has been
shown to modulate the risk of late-onset AD in genome-wide
association studies [232]. A meta-analysis of studies with HSV-1 viral
DNA data or seropositivity detection in individuals with AD
suggested a correlation between HSV-1 infection and the risk of
developing AD [233]. In this regard, TREM2 expression levels are of
central relevance for microglial function, and TREM2 was recently
shown to be downregulated upon HSV-1 infection in human iPSC-
derived microglia [234].
During the COVID-19 pandemic, many patients experienced

neurologic complications and even long-term sequelae, including
encephalitis/encephalopathies, Guillain–Barré syndrome, stroke, and
seizures [235]. Furthermore, irrespective of the severity of acute
respiratory disease during SARS-CoV-2 infection, postmortem
autopsies of patients who succumbed to COVID-19 revealed only
minimal detection of viral copies within the brain, which indicates
that the observed neurological sequelae are unlikely to be caused by
direct CNS invasion of the virus [236]. However, studies have shown
that brain injury markers, such as NFL, GFAP, and tTau, are elevated
in the CSF of neuro-COVID-19 patients during the acute and chronic
phases [235, 237, 238]. These elevated levels also correlate with
increased levels of inflammatory cytokines, such as IL-6, CCL2, IL-1RA,
and IL-12p40 [235]. These studies suggest that the late innate
immune response signatures of hosts are associated with markers of
dendritic and axonal injury, which indicates neuronal loss. Many
hypotheses about the exact mechanisms underlying how neuro-
pathology develops in COVID-19 patients have been formulated and
investigated in patient cohorts and in vivo studies, including the
involvement of IL-6 and different isoforms of cytokines, the
complement pathway and microthrombosis, neuronal loss and
degeneration, and increases in IL-1β and IL-6 levels within the

hippocampus, leading to decreased neurogenesis and memory
impairment [235]. However, no correlation with respiratory disease
severity or neuropathology was observed in these studies. Due to the
usually undetectable levels of the virus in the CNS, the neuropathol-
ogy seems to be mediated by the immune response, glial activation,
and glial metabolism [235, 239, 240].
Viral CNS infections have also been linked to neurodegenerative

diseases, such as Parkinson’s disease (PD). A pathophysiological
hallmark of PD is the accumulation of aggregated α-synuclein or
tau in the brain, which is suspected to lead to neuronal
degeneration in distinct brain areas [241]. Symptoms do not
manifest until a critical number of neurons are lost, which
complicates the development of treatments and the design of
clinical studies [241]. Some epidemiological evidence suggests
that infections might trigger and/or accelerate neurodegenerative
diseases such as PD. The encephalitis lethargica “epidemic” is an
example of a parkinsonian symptom that occurred after the
Spanish flu pandemic at the beginning of the twentieth century,
although the exact pathophysiology of that phenomenon remains
unclear [242, 243]. The IAV strain H5N1 can migrate into the CNS
and lead to chronic microglial activation and α-synuclein
aggregation followed by neuronal loss in the SN of mice [244].
Infection with a neurotropic IAV induced prion protein misfolding,
suggesting that viruses can potentially initiate protein aggregation
and/or misfolding. Furthermore, evidence for the presence of IAV
in the SN of PD patients was obtained postmortem [245]. In a
mouse model of viral encephalitis caused by western equine
encephalitis virus (WEEV), persistent activation of microglia and
astrocytes was observed, which led to the aggregation of α-Syn
and subsequent loss of dopaminergic neurons in the SN [246]. A
large meta-analysis showed that patients with a history of
infections, especially bacterial infections, had a 20% greater risk
of developing PD (OR 1.20) [247]. Similarly, a prospective cohort
study from Germany revealed that gastrointestinal infections
increase the risk of developing PD [248]. Nonetheless, the exact
mechanisms by which infections enhance the risk of neurode-
generative diseases such as PD and AD remain elusive and are
currently under investigation. However, the exploration of antiviral
treatment options and identification of new treatment targets are
essential for overcoming neurological long-term sequelae in
patients suffering from viral CNS infections.

SUMMARY AND OUTLOOK
During the last few years, a rather detailed view of the
mechanisms of virus control within the infected CNS has emerged.
Many observations made in patients with viral encephalitis could
be further validated in cell culture and mouse models. However,
the key elements involved in virus control within the infected CNS
are still not understood. The latest technological developments
will certainly help researchers obtain a more detailed under-
standing of the spatiotemporal conditions of virus control within
the CNS. In the future, the focus will be on improving the
understanding of cell‒cell interactions between brain-resident
cells and -infiltrating cells. Furthermore, deciphering the relevant
mechanisms of local restimulation of brain-infiltrating antigen-
specific T cells and how their function adapts to local require-
ments will be important. Recently exploited adoptive T-cell
therapies for the treatment of progressive multifocal leukoence-
phalopathy (PML) [249] provide hope that new treatments can be
developed, based on a better understanding of the local
conditions of viral encephalitis.
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