Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysregulation in keratinocytes drives systemic lupus erythematosus onset

A Comment to this article was published on 17 January 2025

Abstract

Systemic lupus erythematosus (SLE) is a complex, multiorgan autoimmune disorder. Although it is widely believed that SLE originates from immune cell dysregulation, the etiology of SLE is not yet clear. Here, we propose a new theory in which SLE can be directly initiated by molecular alterations in keratinocytes rather than immune cells. We found that the level of peroxisome proliferator-activated receptor gamma (PPARγ) is substantially reduced in the skin lesions of patients, and replicating this reduction in mice led to rapid disease onset with multiple hallmarks of SLE. As PPARγ decreases in keratinocytes, which is accompanied by increased occupancy of interferon regulatory factor 3 at the type I interferon locus, dendritic cells (DCs) are recruited to the epidermis and are activated by keratinocyte-secreted type I interferon. These activated DCs migrate to local draining lymph nodes, where they activate CD4+ T cells in a non-MHC II-dependent manner, promoting their differentiation into effector T cells and thus contributing to disease onset. Our study revealed that the dysregulation of keratinocytes can be a pathogenic driver of SLE and describes a new mouse model that mimics human SLE. Our data also emphasize the pivotal role of skin immunity in the onset of systemic autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21:605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tian J, Zhang D, Yao X, Huang Y, Lu Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modeling study. Ann Rheum Dis. 2023;82:351–6.

    Article  PubMed  Google Scholar 

  3. Kobayashi T, Naik S, Nagao K. Choreographing Immunity in the Skin Epithelial Barrier. Immunity. 2019;50:552–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. 2019;19:19–30.

    Article  CAS  PubMed  Google Scholar 

  5. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14:289–301.

    Article  CAS  PubMed  Google Scholar 

  6. Tsujihana K, Tanegashima K, Santo Y, Yamada H, Akazawa S, Nakao R, et al. Circadian protection against bacterial skin infection by epidermal CXCL14-mediated innate immunity. Proc Natl Acad Sci USA. 2022;119:e2116027119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stull C, Sprow G, Werth VP. Cutaneous Involvement in Systemic Lupus Erythematosus: A Review for the Rheumatologist. J Rheumatol. 2023;50:27–35.

    Article  CAS  PubMed  Google Scholar 

  8. Epstein JH, Tuffanelli D, Dubois EL. Light Sensitivity And Lupus Erythematosus. Arch Dermatol. 1965;91:483–5.

    Article  CAS  PubMed  Google Scholar 

  9. Sanders CJ, Van Weelden H, Kazzaz GA, Sigurdsson V, Toonstra J, Bruijnzeel-Koomen CA. Photosensitivity in patients with lupus erythematosus: a clinical and photobiological study of 100 patients using a prolonged phototest protocol. Br J Dermatol. 2003;149:131–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hile GA, Coit P, Xu B, Victory AM, Gharaee-Kermani M, Estadt SN, et al. Regulation of Photosensitivity by the Hippo Pathway in Lupus Skin. Arthritis Rheumatol. 2023;75:1216–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Der E, Suryawanshi H, Morozov P, Kustagi M, Goilav B, Ranabothu S, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol. 2019;20:915–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Psarras A, Alase A, Antanaviciute A, Carr IM, Md Yusof MY, Wittmann M, et al. Functionally impaired plasmacytoid dendritic cells and nonhaematopoietic sources of type I interferon characterize human autoimmunity. Nat Commun. 2020;11:6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sarkar MK, Hile GA, Tsoi LC, Xing X, Liu J, Liang Y, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77:1653–64.

    Article  CAS  PubMed  Google Scholar 

  14. Tsoi LC, Hile GA, Berthier CC, Sarkar MK, Reed TJ, Liu J, et al. Hypersensitive IFN Responses in Lupus Keratinocytes Reveal Key Mechanistic Determinants in Cutaneous Lupus. J Immunol. 2019;202:2121–30.

    Article  CAS  PubMed  Google Scholar 

  15. Billi AC, Ma F, Plazyo O, Gharaee-Kermani M, Wasikowski R, Hile GA, et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci Transl Med. 2022;14:eabn2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Luo S, Zhan Y, Wang J, Zhao R, Li Y, et al. Increased Expression of PPAR-γ Modulates Monocytes Into a M2-Like Phenotype in SLE Patients: An Implicative Protective Mechanism and Potential Therapeutic Strategy of Systemic Lupus Erythematosus. Front Immunol. 2020;11:579372.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao W, Berthier CC, Lewis EE, McCune WJ, Kretzler M, Kaplan MJ. The peroxisome-proliferator activated receptor-γ agonist pioglitazone modulates aberrant T-cell responses in systemic lupus erythematosus. Clin Immunol. 2013;149:119–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol. 2021;12:624112.

    Article  Google Scholar 

  19. Aprahamian TR, Bonegio RG, Weitzner Z, Gharakhanian R, Rifkin IR. Peroxisome proliferator-activated receptor gamma agonists in the prevention and treatment of murine systemic lupus erythematosus. Immunology. 2014;142:363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasni S, Temesgen-Oyelakin Y, Davis M, Chu J, Poncio E, Naqi M, et al. Peroxisome proliferator activated receptor-γ agonist pioglitazone improves vascular and metabolic dysfunction in systemic lupus erythematosus. Ann Rheum Dis. 2022;81:1576–84.

    Article  CAS  PubMed  Google Scholar 

  21. Sahu RP, DaSilva SC, Rashid B, Martel KC, Jernigan D, Mehta SR, et al. Mice lacking epidermal PPARγ exhibit a marked augmentation in photocarcinogenesis associated with increased UVB-induced apoptosis, inflammation and barrier dysfunction. Int J Cancer. 2012;131:E1055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanley K, Jiang Y, Crumrine D, Bass NM, Appel R, Elias PM, et al. Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier. J Clin Invest. 1997;100:705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chong HC, Tan MJ, Philippe V, Tan SH, Tan CK, Ku CW, et al. Regulation of epithelial–mesenchymal IL-1 signaling by PPARbeta/delta is essential for skin homeostasis and wound healing. J Cell Biol. 2009;184:817–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michalik L, Desvergne B, Tan NS, Basu-Modak S, Escher P, Rieusset J, et al. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice. J Cell Biol. 2001;154:799–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelson WG, Sun TT. The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol. 1983;97:244–51.

    Article  CAS  PubMed  Google Scholar 

  26. Cottle DL, Ursino G, Jones LK, Tham MS, Zylberberg AK, Smyth IM. Topical Aminosalicylic Acid Improves Keratinocyte Differentiation in an Inducible Mouse Model of Harlequin Ichthyosis. Cell Rep Med. 2020;1:100129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang M, Cao P, Zhao Z, Wang Z, Jia C, Guo Y, et al. An Enhanced Expression Level of CXCR3 on Tfh-like Cells from Lupus Skin Lesions Rather Than Lupus Peripheral Blood. Clin Immunol. 2021;226:108717.

    Article  CAS  PubMed  Google Scholar 

  28. Hanaoka H, Nishimoto T, Okazaki Y, Takeuchi T, Kuwana M. A unique thymus-derived regulatory T-cell subset associated with systemic lupus erythematosus. Arthritis Res Ther. 2020;22:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patel J, Vazquez T, Chin F, Keyes E, Yan D, Diaz D, et al. Multidimensional Immune Profiling of Cutaneous Lupus Erythematosus In Vivo Stratified by Patient Response to Antimalarials. Arthritis Rheumatol. 2022;74:1687–98.

    Article  CAS  PubMed  Google Scholar 

  30. Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I, et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci USA. 2009;106:7119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muth S, Schütze K, Schild H, Probst HC. Release of dendritic cells from cognate CD4+ T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. Proc Natl Acad Sci USA. 2012;109:9059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Azukizawa H, Sano S, Kosaka H, Sumikawa Y, Itami S. Prevention of toxic epidermal necrolysis by regulatory T cells. Eur J Immunol. 2005;35:1722–30.

    Article  CAS  PubMed  Google Scholar 

  33. Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis. 2023;82:999–1014.

    Article  CAS  PubMed  Google Scholar 

  34. Barker JN, Mitra RS, Griffiths CE, Dixit VM, Nickoloff BJ. Keratinocytes as initiators of inflammation. Lancet. 1991;337:211–4.

    Article  CAS  PubMed  Google Scholar 

  35. Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S, Voll RE, et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun. 2006;9:173–87.

    CAS  PubMed  Google Scholar 

  36. Kuhn A, Herrmann M, Kleber S, Beckmann-Welle M, Fehsel K, Martin-Villalba A, et al. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum. 2006;54:939–50.

    Article  PubMed  Google Scholar 

  37. Scholtissek B, Zahn S, Maier J, Klaeschen S, Braegelmann C, Hoelzel M, et al. Immunostimulatory Endogenous Nucleic Acids Drive the Lesional Inflammation in Cutaneous Lupus Erythematosus. J Invest Dermatol. 2017;137:1484–92.

    Article  CAS  PubMed  Google Scholar 

  38. Golan DT, Borel Y. Increased photosensitivity to near-ultraviolet light in murine SLE. J Immunol. 1984;132:705–10.

    Article  CAS  PubMed  Google Scholar 

  39. Mondini M, Vidali M, Airò P, De Andrea M, Riboldi P, Meroni PL, et al. Role of the interferon-inducible gene IFI16 in the etiopathogenesis of systemic autoimmune disorders. Ann N Y Acad Sci. 2007;1110:47–56.

    Article  CAS  PubMed  Google Scholar 

  40. Skopelja-Gardner S, An J, Tai J, Tanaka L, Sun X, Hermanson P, et al. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci Rep. 2020;10:7908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Skopelja-Gardner, S, Tai J, Sun X, Tanaka L, Kuchenbecker JA, Snyder JM, et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc Natl Acad Sci USA. 2021;118:e2019097118.

  42. Kolios AGA, Tsokos GC. Skin-kidney crosstalk in SLE. Nat Rev Rheumatol. 2021;17:253–4.

    Article  PubMed  Google Scholar 

  43. Stannard JN, Kahlenberg JM. Cutaneous lupus erythematosus: updates on pathogenesis and associations with systemic lupus. Curr Opin Rheumatol. 2016;28:453–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mori S, Kohyama M, Yasumizu Y, Tada A, Tanzawa K, Shishido T, et al. Neoself-antigens are the primary target for autoreactive T cells in human lupus. Cell. 2024;187:6071–87.

    Article  CAS  PubMed  Google Scholar 

  45. Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, et al. Psoriasis. Nat Rev Dis Prim. 2016;2:16082.

    Article  PubMed  Google Scholar 

  46. Williams HC, Burney PG, Pembroke AC, Hay RJ. The U.K. Working Party’s Diagnostic Criteria for Atopic Dermatitis. III. Independent hospital validation. Br J Dermatol. 1994;131:406–16.

    Article  CAS  PubMed  Google Scholar 

  47. Tian J, Zhang D, Kurbatov V, Wang Q, Wang Y, Fang D, et al. 5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic STING. EMBO J. 2021;40:e106065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khsheibun R, Paperna T, Volkowich A, Lejbkowicz I, Avidan N, Miller A. Gene expression profiling of the response to interferon beta in Epstein‒Barr-transformed and primary B cells of patients with multiple sclerosis. PLoS One. 2014;9:e102331.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zheng M, Hu Z, Mei X, Ouyang L, Song Y, Zhou W, et al. Single-cell sequencing shows cellular heterogeneity of cutaneous lesions in lupus erythematosus. Nat Commun. 2022;13:7489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The CAMS Innovation Fund for Medical Sciences grant No. 2021-I2M-1-059. Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences grant Nos. 2021-RC320-001 and 2020-RC320-003. National Natural Science Foundation of China grant No. 81830097 and No. 82203933. the Special Program of the National Natural Science Foundation of China grant No. 32141004.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JT, QL. Methodology: JT, DZ. Visualization: JT, LS, DZ. Funding acquisition: QL. Project administration: QL. Supervision: JT, QL. Writing – original draft: JT, LS. Writing – review & editing: LS, XY, JL, MZ, SK, and DY.

Corresponding author

Correspondence to Qianjin Lu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests. QL and DY are editorial board members of Cellular & Molecular Immunology, but they have not been involved in the peer review or the decision-making of the article.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Shi, L., Zhang, D. et al. Dysregulation in keratinocytes drives systemic lupus erythematosus onset. Cell Mol Immunol 22, 83–96 (2025). https://doi.org/10.1038/s41423-024-01240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-024-01240-z

Keywords

This article is cited by

Search

Quick links