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While immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the clinical management of various
malignancies, a large fraction of patients are refractory to ICIs employed as standalone therapeutics, necessitating the development
of combinatorial treatment strategies. Immunogenic cell death (ICD) inducers have attracted considerable interest as combinatorial
partners for ICIs, at least in part owing to their ability to initiate a tumor-targeting adaptive immune response. However, compared
with either approach alone, combinatorial regimens involving ICD inducers and ICIs have not always shown superior clinical activity.
Here, we discuss accumulating evidence on the therapeutic interactions between ICD inducers and immunotherapy with ICIs in
oncological settings, identify key factors that may explain discrepancies between preclinical and clinical findings, and propose
strategies that address existing challenges to increase the efficacy of these combinations in patients with cancer.
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INTRODUCTION
Immune checkpoint inhibitors (Box 1) have revolutionized the
clinical management of multiple cancer types, including (but not
limited to) melanoma [1], non-small cell lung carcinoma (NSCLC)
[2], and head and neck squamous cell carcinoma (HNSCC) [3].
However, even in oncological settings in which ICIs are approved
by the Food and Drug Administration (FDA) and other regulatory
agencies worldwide, a large fraction of patients are refractory to
immunotherapy with ICIs [4]. Moreover, ICI administration can be
associated with nonnegligible short- and long-term toxicities [5].
Thus, substantial efforts have been dedicated to the identification
of effective and safe combinatorial partners for ICIs for a variety of
cancer types [6].
In this context, considerable attention has been given to the

possibility of combining ICIs with standard-of-care (SOC) therapeu-
tic regimens encompassing conventional chemotherapy, radiation
therapy (RT) and/or targeted anticancer drugs, largely reflecting (1)
the established safety profile of these agents [7, 8], (2) their ability to
promote (at least some degree) tumor debulking [9], and (3) at least
in some settings, their capacity to mediate therapeutically relevant
immunostimulatory effects [10–12]. Indeed, one of the major
determinants of resistance to ICIs in patients with cancer is scarce
infiltration of the tumor microenvironment (TME) at baseline by
cytotoxic T lymphocytes (CTLs) [13], which often correlates with (1) a
reduced tumor mutational burden and hence a low neoantigen
load [14] and (2) limited expression of the coinhibitory ligand CD274
(best known as PD-L1) [15].

Several SOC therapeutics that can convert an immunologically
“cold” (and hence ICI-insensitive) tumor into a “hot” neoplasm that
exhibits an abundant CTL infiltrate and hence responds to ICIs
(Fig. 1) belong to the class of immunogenic cell death (ICD, Box 2)
inducers [16]. These therapeutics, which include specific chemical
entities [10, 11, 17] as well as physical agents [18, 19], indeed,
share the capacity to elicit a type of cell death that—in
immunocompetent, syngeneic hosts—is sufficient to drive
antigen-specific immune responses associated with an effector
phase and the establishment of immunological memory [20].
While some ICD inducers have been shown to positively

cooperate with ICI-based immunotherapy in the clinic, others have
largely failed to unlock the full therapeutic potential of ICIs in
patients with cancer [16]. Here, we critically discuss preclinical and
clinical evidence of successful or unsuccessful interactions
between ICD-inducing agents and immunotherapy with ICIs in
oncological settings, with a specific focus on potential strategies
to ameliorate the clinical efficacy of these combinations.

SUCCESSFUL INTERACTION BETWEEN ICD INDUCERS AND
IMMUNOTHERAPY WITH ICIS
In a number of preclinical and clinical settings, chemical and
physical agents eliciting ICD have been shown to positively
interact with ICIs, resulting in superior therapeutic effects
compared with either approach alone. Interestingly, in multiple
(especially preclinical) scenarios, superior efficacy has been
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obtained by administering ICD inducers and ICIs according to
specific, context-dependent schedules [21] and by using ICD-
inducing chemotherapeutics according to metronomic doses
[22, 23].

Preclinical evidence
ICD-inducing conventional chemotherapeutics have been shown
to cooperate with various ICIs in several syngeneic tumor models.
For example, doxorubicin has been demonstrated to cooperate
with ICIs specific for PD-L1, programmed cell death 1 (PDCD1, best
known as PD-1), cytotoxic T lymphocyte-associated protein 4
(CTLA4) or CD96 in immunocompetent mice bearing subcuta-
neous 4T1 mammary carcinomas [24] or CT26 colorectal
carcinomas (CRCs) [25, 26]. Similar results have been obtained
by combining oxaliplatin with PD-1 or PD-L1 blockers in
immunocompetent mice with subcutaneous MC38 or CT26 CRCs
[26–28], PC3 prostate cancers [29], MOC1 HNSCCs [30], MB49
bladder tumors [31], H22 hepatocellular carcinomas [32], and
MCA205 fibrosarcomas [33]. Notably, at least in some settings,
such a therapeutic cooperativity could be further enhanced by
immunostimulatory interventions beyond ICIs, including a Toll-like
receptor 7 (TLR7) agonist [26, 34] and the systemic induction of
autophagy with so-called caloric restriction mimetics (CRMs)
[33, 35]. Similarly, a FOLFOX-mimicking chemotherapeutic regi-
men (which, among other components, includes oxaliplatin and 5-
fluorouracil) reportedly synergizes with PD-1 blockers against
CT26 CRCs developing in syngeneic immunocompetent BALB/c
mice, a beneficial interaction that can be increased upon the
codelivery of a monoclonal antibody specific for transforming
growth factor beta 1 (TGFB1) [36].
Interestingly, while the ability of cisplatin to elicit bona fide ICD

remains a subject of debate [37, 38], especially in clinical settings
[39], this platinum derivative has been reported to synergize with
a PD-1 blocker in immunocompetent mice bearing subcutaneous
MOC1 HNSCCs [30], as well as with dual PD-1 and CTLA4 blockade
in mice with established AB1 or AE17 mesotheliomas, resembling
5-fluorouracil [40]. The actual capacity of 5-fluororacil to cause ICD,
however, is also controversial [41]. That said, both cisplatin and
5-fluorouracil have been shown to mediate therapeutically
relevant immunostimulatory effects that may offer mechanistic
ground for a positive interaction with ICIs [10]. Notably, another

platinum derivative, PT-112, is a bone fide ICD inducer and indeed
has been shown to synergize with PD-1 as well as PD-L1 blockers
against subcutaneous TS/A mammary carcinomas developing in
syngeneic immunocompetent BALB/c mice [42], suggesting that
the ICD-inducing potential of platinum compounds depends on
specific molecular features of the coordination complex and its
cellular effects rather than on the platinum ion itself [10].
Other ICD-inducing chemotherapeutics that have been shown

to synergize with ICIs in preclinical tumor models include (but are
not limited to): (1) cyclophosphamide, which reportedly coop-
erates with PD-1 or CTLA4 blockers, optionally in the context of
extra immunotherapeutic strategies such as adoptive cell transfer
and vaccination, in mice bearing subcutaneous A20HA lympho-
mas [43] TC-1 lung carcinomas [44] or CT26 CRCs [45]; (2)
mitoxantrone, which has been demonstrated to engage in
positive therapeutic interaction with a PD-1 blockers in MCA205
fibrosarcoma-bearing mice, especially when combined with CRMs
[33]; as well as (3) paclitaxel, which has been reported to
cooperate with a PD-1 blocker against subcutaneous E0771
mammary carcinomas established in C57BL/6 mice [46].
For physical ICD inducers [47], RT delivered according to a

hypofractionated schedule to a single neoplastic lesion has been
demonstrated to synergize with CTLA4 and/or PD-1 blockers in
immunocompetent BALB/c mice bearing bilateral TS/A mammary
carcinomas or 344SQ lung carcinomas s.c., ultimately resulting in
(at least some degree of) control of the contralateral, nonirra-
diated lesion [48–51], as well as in wild-type BALB/c mice with
subcutaneous 4T1 mammary carcinomas, culminating with partial
control of metastatic lung nodules [52]. In the 4T1 model, similar
results have been obtained by combining RT with an ICI specific
for V-set immunoregulatory receptor (VSIR, best known as VISTA)
and metronomic cyclophosphamide [53]. Moreover, superior
therapeutic benefits have been documented when RT was
delivered in the context of CTLA4 or PD-1 blockade along with
the following: (1) cyclophosphamide or doxorubicin, in immuno-
competent C57BL/6 mice with subcutaneous mEER HNSCCs, B16
melanomas or MC38 CRCs [54, 55]; (2) the oncolytic peptide LTX-
315 [56], in wild-type BALB/c mice bearing bilateral subcutaneous
TS/A mammary carcinomas [57]; and (3) an agonistic antibody
targeting TNF receptor superfamily member 9 (TNFRSF9, best
known as CD137 or 4-1BB) or CD40 plus cyclophosphamide, in
immunocompetent mice bearing AT3 mammary tumors s.c. or
orthotopic ID8 ovarian carcinomas, respectively [58, 59]. Similarly,
while photodynamic therapy has been shown to positively
interact with PD-1 or PD-L1 blockers in various syngeneic mouse
models of mammary carcinoma [60, 61] and CRC [60], low-dose
pulsed ultrasound has been reported to synergize with a
monoclonal antibody specific for PD-1 and doxorubicin in
immunocompetent mice bearing orthotopic CT2A or GL261
glioblastomas [62].
Importantly, data from preclinical tumor models suggest that

ICD inducers, as well as other (immuno)therapeutics, engage in
superior interactions with ICIs when (1) the former are adminis-
tered at low doses or according to metronomic schedules, rather
than in an attempt to achieve a maximum-tolerated dose (MTD)
[27, 32, 40], and/or (2) the former are administered according to
specific schedules with respect to the latter, in a highly context-
dependent manner [27, 31, 32, 63]. For example, mice bearing
MC38 CRCs s.c. have been reported to respond to ICI-based
immunotherapy only once previously administered a low dose
(10 mg/kg) but not an ultralow (5mg/kg) or high (20 mg/kg) dose
of oxaliplatin, culminating in improved tumor infiltration by CD8+

CTLs, superior secretion of interferon gamma (IFNG), and
consequently long-term disease control associated with the
development of immunological memory [27]. Similarly, decreasing
the total RT dose or RT dose per fraction has been associated with
superior immunogenicity and hence synergistic interactions with
ICIs in a variety of preclinical tumor models, including

Box 1. Principles of cancer immunotherapy with ICIs

Over the past 15 years, immune checkpoint inhibitors (ICIs) targeting cytotoxic T
lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best
known as PD-1), CD274 (best known as PD-L1) or lymphocyte activating 3 (LAG3)
have been included in the standard management of an increasing number of
oncological indications, de facto revolutionizing cancer care [67]. From a
mechanistic perspective, ICIs mostly operate by (re)activating tumor-targeting
immune responses as mediated by CD8+ cytotoxic T lymphocytes and (at least in a
fraction of malignancies) natural killer (NK) and γδ T cells [192–194]. In line with
this notion, the likelihood of individual patients responding to ICIs (which
significantly varies across tumor types) depends on (1) tumor infiltration by
immune effector cells at baseline, which most often results in interferon gamma
(IFNG)-dependent expression of PD-L1 by malignant and myeloid cells, and (2)
tumor mutational burden, which is largely correlated with the ability of neoplastic
cells to present antigenic determinants that are not covered by central tolerance
and hence can effectively drive adaptive immunity [195]. Moreover, ICIs are
generally associated with both acute and chronic immune-related adverse events
(irEAs) that can affect a variety of organs, in a minority of patients with fatal
complications [196, 197]. Currently, considerable efforts are being devoted not
only to the characterization of other coinhibitory receptors that may be targeted
by ICIs, such as hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM-3)
and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) but also (1) to the
identification of predictive biomarkers other than PD-L1 expression and tumor
mutational burden that may enable improved clinical decision making and (2) to
the development of combinatorial therapeutic regimens that extend the clinical
benefit afforded by ICIs in the context of manageable toxicity [195]. In this context,
various immunogenic cell death (ICD)-inducing standard-of-care (SOC) treatments
are being evaluated as combinatorial partners for ICIs in both preclinical and
clinical settings (see main text).
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immunocompetent mice bearing TS/A mammary carcinomas
[48, 50], ID8 ovarian carcinomas [59], and 344SQ lung adenocarci-
nomas [51]. Moreover, a single administration of low-dose
oxaliplatin (3 mg/kg) has been shown to sensitize C57BL/6 mice
bearing MC38 CRCs to ICIs targeting CTLA4 or PD-1 when
delivered concurrently [64]. Similar results have been obtained
with the concurrent (but not sequential) delivery of ICD-inducing
chemotherapeutics or fractionated RT and an ICI targeting PD-L1
in preclinical models of CRC (CT26), triple-negative breast cancer
(TNBC) (4T1) and glioblastoma [26, 65]. Conversely, the sequential
(but not concurrent) administration of oxaliplatin upfront followed
by a PD-1 blocker has been associated with superior therapeutic
interactions in mice bearing MC38 CRCs [27]. Moreover, the
delivery of cyclophosphamide before an ICI specific for CTLA4 has
been demonstrated to eradicate CT26 CRCs established s.c. in
immunocompetent BALB/c mice, an effect that was lost by the
swapping administration schedule [45].
In summary, abundant preclinical data support the notion that

ICD inducers can positively cooperate with ICIs in vivo, with a
major, context-dependent impact for dose and administration
schedule.

Clinical evidence
A number of combinatorial therapeutic regimens involving one or
more ICD inducer(s) (generally administered according to

standard MTD approaches) and an ICI are currently approved by
the FDA and other regulatory agencies worldwide for use in
patients with cancer [66, 67], strongly supporting the notion that
(at least in some oncological indications) the ability of cancer cells

Fig. 1 ICD as a tool for converting immunologically “cold” tumors into inflamed malignancies. Numerous biological, chemical and physical
agents can elicit immunogenic cell death (ICD), a variant of regulated cell death that, in the context of failing to adapt to stress, antigenicity,
adjuvanticity and permissive microenvironmental conditions, is sufficient to elicit adaptive immune responses specific for cell death-
associated antigens that are associated with an active effector phase and the establishment of long-term immunological memory.
Immunogenic cell death induction is generally associated with the abundant recruitment of immune effector cells and hence can (at least
hypothetically) convert an immunologically cold tumor largely infiltrated by immunosuppressive M2-like tumor-associated macrophages
(TAMs) and regulatory T (TREG) cells into an inflamed neoplasm exhibiting abundant infiltration by dendritic cells (DCs), cytotoxic T
lymphocytes (CTLs) and natural killer (NK) cells. ANXA1 annexin A1, DAMP damage-associated molecular pattern, CALR calreticulin, CXCL10 C-
X-C motif chemokine ligand 10, HMGB1, high mobility group box 1, IFN interferon

Box 2. Principles of immunogenic cell death

Immunogenic cell death (ICD) is a type of regulated cell death (RCD) that culminates with
the activation of an antigen specific, adaptive immune response associated with an
effector phase and the establishment of immunological memory, hence fundamentally
differing from variants of RCD that are immunologically silent or elicit only inflammation
[16]. Thus, ICD not only requires that dying cells express proteins encompassing
antigenic determinants not covered by central tolerance but also requires (1) the
spatiotemporally regulated emission of endogenous adjuvant-like signals that
orchestrate the recruitment and activation of antigen-presenting cells (APCs) or the
precursors thereof, and (2) the existence of microenvironmental conditions that are
permissive for both the priming phase and the effector phase of immunity [198, 199].
Importantly, ICD can be executed via multiple RCDmodalities, including apoptosis [200],
necroptosis [201, 202] and (at least in some circumstances) ferroptosis [148, 203, 204].
Moreover, a number of biological, chemical and physical triggers can elicit ICD, such as
viral pathogens, chemotherapeutic agents, radiation therapy (RT) and photodynamic
therapy [16, 205]. Importantly, bona fide ICD is invariably associated with tumor
infiltration by immune effector cells, notably dendritic cells (DCs), which are part of the
priming phase, and CD8+ cytotoxic T lymphocytes (CTLs), which are part of the effector
phase. Thus, while precisely determining whether a specific agent elicits ICD or other
immunostimulatory effects that convert immunologically cold tumors into inflamed
lesions remains challenging [137], ICD induction stands out as a promising strategy to
improve the clinical efficacy of immune checkpoint inhibitors (ICIs) in patients with
cancer (see main text).
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undergoing ICD to inflame the TME promotes ICI sensitivity
(Table 1).
The IMpassion130 trial, in which patients with metastatic TNBC

were randomly allocated to nab-paclitaxel plus placebo or
atezolizumab (a PD-L1 blocker), demonstrated a significant overall
survival (OS) advantage for individuals bearing PD-L1+ tumors in
the combination arm (median OS: 25.0 vs. 15.5 months), an effect
that was reduced in the intention-to-treat population [68].
Although exploratory, these data were largely confirmed in the
ANASTASE phase III study [69], paving the way for the approval of
this regimen as a first-line therapy for patients with PD-L1+ TNBC,
even though the IMpassion131 trial failed to recapitulate the
findings of IMpassion130 [70], which led the FDA to issue an
official alert (https://www.fda.gov/drugs/resources-information-
approved-drugs/fda-issues-alert-about-efficacy-and-potential-
safety-concerns-atezolizumab-combination-paclitaxel#:~:text=On
%20September%208%2C%202020%2C%20the,or%20metastatic%
20triple%20negative%20breast). Multiple randomized, phase III
clinical trials reported a progression-free survival (PFS) and/or an
OS survival advantage for patients with TNBC receiving SOC
chemotherapy plus pembrolizumab vs chemotherapy alone. For
example, the KEYNOTE-355 trial documented both a PFS and an
OS advantage in the PD-L1+ patient population (PFS: 9.7 months
vs 5.6 months; OS: 23.0 months vs 16.1 months) [71], a beneficial
effect that was less pronounced in the intention-to-treat popula-
tion [71] and largely confirmed by the CheckMate 648 [72] and
KEYNOTE-859 [73] trials. Similarly, the PD-1 blocker nivolumab
combined with FOLFOX (folinic acid, 5-fluorouracil, and oxalipla-
tin) or XELOX (capecitabine and oxaliplatin) has been shown to
provide superior PFS and OS advantages to previously untreated
patients with HER2+ advanced gastric cancer, gastroesophageal
junction cancer and esophageal adenocarcinoma enrolled in the
CheckMate 649 trial, especially in subjects with a PD-L1 combined
positive score ≥ 5, obtaining regulatory approval as first-line
therapy for these oncological indications [74].
Alongside concurrent treatment schedules, therapeutic regi-

mens combining an ICD inducer upfront followed by an ICI have
also been shown to provide superior clinical benefits in various
oncological settings. Thus, the phase II TONIC trial aimed to
determine the best ICD inducer to condition the TME of patients
with TNBC to maximize the clinical response to nivolumab [75].
Specifically, these patients were randomly allocated to receive
hypofractionated RT in 3 fractions of 8 Gy each, cyclopho-
sphamide (50 mg orally daily for 2 weeks), cisplatin (40 mg/m2

weekly for 2 weeks), or doxorubicin (15 mg weekly for 2 weeks),
followed by SOC nivolumab administration. Across treatment
arms, the overall response rate (ORR) was 20%, and even though
cyclophosphamide and cisplatin followed by nivolumab were
associated with a lower ORR than nivolumab monotherapy was,
low-dose doxorubicin appeared to effectively sensitize TNBC to
immune checkpoint inhibition (ORR: 35%), comparing well to
nivolumab monotherapy (ORR: 17%) [75]. Similarly, the phase III
PACIFIC trial documented a significant PFS (16.8 months vs
5.6 months) and OS (3-year OS: 57% vs 43.5%) advantage in
patients with unresectable stage III NSCLC who did not progress
on definitive, platinum-based, chemoradiation therapy subse-
quently receiving durvalumab (a PD-L1 blocker) vs placebo
[76, 77]. While whether such an effect depends on a positive
therapeutic interaction between chemoradiation and durvalumab
rather than on the activity of the latter remains to be determined,
these findings led to the approval of durvalumab as an SOC for
patients with unresectable stage III NSCLC following chemora-
diotherapy, marking a significant advancement in the treatment of
this challenging patient population.
Recent clinical findings also support the use of neoadjuvant

chemotherapy-immunotherapy combinations, especially durvalu-
mab-based regimens, in patients with TNBC [78, 79]. Patients
enrolled in the phase II GeparNuevo trial, which were randomly

allocated to receive a single durvalumab injection prior to or along
with chemotherapy with nab-paclitaxel, epirubicin, or cyclopho-
sphamide followed by surgery, did not achieve a pathological
complete response more frequently than patients receiving
neoadjuvant chemotherapy only (53% vs 44%, not significant)
[80]. However, compared with patients treated with neoadjuvant
chemotherapy alone, individuals in the study arm that included
durvalumab had significant benefits in terms of 3-year invasive
disease-free survival (85.6% vs 77.2%), 3-year distant disease-free
survival (91.7% vs 78.4%) and 3-year OS (95.2% vs 83.5%) [78, 80].
Interestingly, tumor-infiltrating lymphocytes were increased by
treatment in both study arms [80], suggesting that while blocking
PD-1 may activate a clinically relevant TNBC-targeting immune
response in this patient population, ICD induction by chemother-
apy may be required to enable abundant tumor infiltration by
immune effector cells. Similarly, the open-label phase III Check-
Mate 816 trial, which compared neoadjuvant chemotherapy
(either carboplatin plus paclitaxel, gemcitabine plus cisplatin, or
pemetrexed plus cisplatin) combined with nivolumab to neoadju-
vant chemotherapy only in patients with NSCLC, documented
statistically significant benefits for ICI-containing regimens in
terms of median event-free survival (31.6 months vs 20.8 months)
and pathological complete response rates (24.0% vs 2.2%) [81].
Similar results have been obtained in the Phase III KEYNOTE-671
[82] and NADIMII [83] trials. Moreover, impressive results have also
been achieved with neoadjuvant ICI-based immunotherapy
alone in patients with melanoma [84–86], locally advanced HNSCC
[87], and locally advanced CRC [88, 89], potentially suggesting
that, at least in some patient populations, neoadjuvant ICIs may
not require ICD induction to enable major clinical responses, a
possibility that remains to be investigated in the TNBC setting.
In summary, combinatorial regimens involving one or more ICD

inducer(s) and ICI-based immunotherapy appear to be superior to
ICD inducers alone in a variety of clinical scenarios, but whether
this truly reflects a positive therapeutic interaction rather than a
pronounced efficacy of (at least some) ICIs employed as
monotherapy generally remains to be formally investigated in
patients.

UNSUCCESSFUL INTERACTION BETWEEN ICD INDUCERS AND
IMMUNOTHERAPY WITH ICIS
Not all preclinical and clinical studies completed thus far have
documented a successful interaction between ICD induction by
conventional chemotherapeutics, RT or targeted anticancer agents
and ICI-based immunotherapy, calling for an improved under-
standing of the underlying (immuno)biological reasons for the
design of optimized combinatorial regimens for clinical use.

Preclinical evidence
Even in preclinical tumor models, ICD inducers and ICIs do not
necessarily exhibit cooperative effects, at least in some cases
owing to inappropriate dosing or administration schedules that
promote the intratumoral or systemic accumulation of
immunosuppressive cells.
In contrast to E0771 mammary carcinomas [46], MC38 CRCs

established in immunocompetent C57BL/6 mice do not exhibit
superior responses to the simultaneous administration of pacli-
taxel (20 mg/kg) and docetaxel (10 mg/kg) in combination with a
PD-1 blocker, a lack of therapeutic interaction that appears to be
accompanied by scarce recruitment of tumor-infiltrating lympho-
cytes to the tumor bed [90]. The concurrent administration
of oxaliplatin (~10mg/kg) plus a PD-L1 blocker to mice bearing
subcutaneous CT26 CRCs also failed to significantly affect
tumor growth and did not improve the intratumoral or systemic
ratio between CD8+ T cells and immunosuppressive
CD4+CD25+FOXP3+ regulatory T (TREG) cells [28, 91], indicating
that additional immunostimulatory molecules, such as TLR7
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agonists, may be required to enable this therapeutic interaction
[26]. Moreover, the efficacy of both carboplatin (100 mg/kg) and
paclitaxel (10 mg/kg) against mouse ID8 ovarian cancers estab-
lished intraperitoneally has been shown to remain unaltered by
the concomitant administration of an ICI targeting hepatitis A
virus cellular receptor 2 (HAVCR2, also known as TIM-3) [92]. At
least hypothetically, the inability of taxanes and oxaliplatin to
cooperate with ICIs in immunocompetent mice bearing CRCs or
ovarian cancers may reflect tumor-intrinsic features that prevent
the optimal induction of ICD in vivo. This possibility, however,
remains to be formally investigated.
Interestingly, in the latter experimental setting, employing a

sequential (rather than concurrent) delivery schedule resulted in
inferior efficacy coupled with the intraperitoneal accumulation of
TREG cells [92]. Similarly, while delivering cyclophosphamide
(100mg/kg) upfront reportedly synergizes with a CTLA4 blocker
in CT26-bearing mice, inverting the order of administration
appears to compromise therapeutic interactions along with an
increase in CD8+ T-cell apoptosis [45, 93]. Notably, the same
combinatorial regimen does not exhibit any efficacy in mice
bearing subcutaneous RENCA renal cell carcinomas, which is at
least correlated with the accumulation of myeloid-derived
suppressor cells (MDSCs) and the consequent release of immu-
nosuppressive cytokines [45, 94].
At least in some preclinical tumor models, including subcuta-

neous MC38 CRCs and H22 hepatocellular carcinomas growing in
immunocompetent hosts, cisplatin also appears unable to unlock
full-blown therapeutic responses to PD-1 blockers, irrespective of
relative administration schedule [27, 32], which may reflect the
limited ability of cisplatin to elicit ICD in some settings [37].
Comparable results have been obtained with in vivo syngeneic
mesothelioma models treated with vinorelbine or 5-fluorouracil
and dual PD-1/CTLA4 blockade, with AB1 (but not AE17)
mesothelioma revealing some degree of antagonism [40].
Similarly, paclitaxel delivered intraperitoneally at the MTD
(50mg/kg) reportedly fails to cooperate with a PD-L1 blocker in
immunocompetent C57BL/6 mice bearing EO771 TNBCs [95].
While paclitaxel has been shown to unlock the therapeutic efficacy
of a PD-1 blocker in the same model [46], whether this apparent
discrepancy reflects intrinsic immunobiological differences
between PD-L1 and PD-1 signaling remains to be fully elucidated.
Collectively, these preclinical studies highlight the complexity of

optimizing combinatorial regimens involving one or more ICD
inducer(s) and ICIs, as an inappropriate dose or administration
schedule can not only prevent these agents from cooperating but
also (at least in some settings) can generate therapeutic
antagonism, often in the context of local or systemic
immunosuppression.

Clinical evidence
Despite considerable expectations, numerous randomized phase II
or III clinical trials have failed to demonstrate an advantage from
combining ICIs with SOC ICD-inducing therapeutic regimens
(Table 2).
The IMpower131 and IMpower132 trials explored the addition

of atezolizumab to SOC chemotherapeutic regimens with ICD-
inducing activity in patients with NSCLC, highlighting potential
benefits but also inconsistent improvements in disease outcome
[96–98]. IMpower131 enrolled patients with advanced squamous
NSCLC and compared the efficacy of atezolizumab vs placebo
combined with carboplatin and either paclitaxel or nab-paclitaxel.
While PFS was significantly improved in the atezolizumab arm,
particularly in patients with PD-L1+ lesions, there was no
significant extension in OS [96]. Virtually identical findings
emerged from IMpower132, which randomly allocated patients
with advanced nonsquamous NSCLC to atezolizumab vs placebo
plus platinum-based chemotherapy (carboplatin or cisplatin plus
pemetrexed) [97]. Moreover, the addition of the CTLA4 blocker

ipilimumab to paclitaxel- and carboplatin-based chemother-
apy failed to improve disease outcomes in two randomized,
phase III clinical trials enrolling patients with squamous NSCLC
(NCT01285609, NCT02279732) while significantly increasing the
incidence of adverse events [99]. The large-scale CA184-156 trial
tested the combination of etoposide and platinum-based
chemotherapy optionally in combination with ipilimumab (fol-
lowed by ipilimumab maintenance) in patients with extensive
small lung cell carcinoma (SCLC), with outcomes that did not differ
across study arms [100]. Similar findings were documented by the
CheckMate 451 and CheckMate 331 studies, two randomized,
phase III trials that enrolled patients with SCLC receiving first-line
platinum-based chemotherapy (not earlier than 3 weeks later)
with nivolumab, ipilimumab or placebo (CheckMate 451) [101], or
with SCLC relapsing after platinum-based chemotherapy treated
with nivolumab, topotecan, or amrubicin (CheckMate 331) [102].
Indeed, despite the lack of a placebo arm in the latter study, ICI-
based immunotherapy delivered after ICD-inducing chemother-
apy failed to enable clinical advantages, potentially owing to the
delay between the two approaches.
Considerable challenges have also been documented in

gastroesophageal and colorectal settings. For example, while the
phase III KEYNOTE-062 trial, which investigated the combination
of pembrolizumab plus chemotherapy (cisplatin plus 5-fluorouracil
or capecitabine) in previously untreated patients with PD-L1+

advanced gastric or gastroesophageal junction adenocarcinoma,
demonstrated a higher ORR in patients allocated to the
combination treatment arm, it failed to result in improved PFS,
OS, or response duration (but increased the rate and severity of
side effects) [103, 104]. Moreover, the randomized phase II/III
CheckMate 9×8 trial, which explored the addition of nivolumab to
SOC FOLFOX plus bevacizumab-based chemotherapy in pre-
viously untreated patients with unresectable CRC, demonstrated a
trend toward an improved 1-year PFS rate, ORR and response
duration for the combinatorial regimen over SOC chemotherapy
only but failed to meet its primary endpoint of PFS extension
[105, 106]. Nivolumab not only failed to ameliorate disease
outcomes in patients with newly diagnosed glioblastoma with a
methylated or undetermined MGMT promoter subjected to
surgery plus adjuvant RT plus temozolomide-based chemotherapy
in the context of a randomized phase III CheckMate 548 clinical
trial [107] but also failed to outperform temozolomide as a partner
for adjuvant RT in patients with newly diagnosed glioblastoma
with an unmethylated MGMT promoter in the context of the
randomized phase III CheckMate 498 study [108]. Finally, the
phase III KEYNOTE-921 trial demonstrated that the therapeutic
activity of docetaxel in patients with metastatic castration-
resistant prostate cancer (CRPC) cannot be ameliorated by the
coadministration of pembrolizumab or ipilimumab [109], as did
the randomized CA184-043 study, which randomly allocated men
with metastatic CRPC who failed docetaxel-based chemotherapy
and received bone-targeting RT to ipilimumab or placebo [110].
Trials investigating ICD-chemotherapeutics and ICIs in patients

with urothelial carcinoma have faced similar obstacles. Neither
pembrolizumab nor atezolizumab were able to improve OS
extension afforded by carboplatin- or cisplatin-based SOC
chemotherapy (in one study, optionally combined with gemcita-
bine) in patients with urothelial carcinoma enrolled in the
randomized, phase III KEYNOTE-361 [111] and IMvigor130 [112]
clinical studies, despite at least some PFS benefit associated with
the administration of atezolizumab plus gemcitabine and
platinum-based (especially cisplatin-based) chemotherapy [112].
Similarly, two randomized clinical trials investigating avelumab as
a therapeutic partner for SOC chemoradiation in patients with
locally advanced HNSCC (JAVELIN 100 and GORTEC-REACH) failed
to document an OR benefit for the combinatorial regimens over
SOC chemoradiation alone [113, 114]. Moreover, IMpassion131, a
randomized phase III clinical study testing paclitaxel with
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atezolizumab or placebo in patients with TNBC, failed to
demonstrate any improvement in PFS or OS for the combinatorial
regimen over SOC chemotherapy, although these patients also
received dexamethasone, which is a powerful immunosuppres-
sant often required to limit adverse events (be they elicited by
natural disease progression or treatment) in patients [115, 116],
before at least the first two infusions of paclitaxel [70]. Similarly,
neoadjuvant carboplatin plus nab-paclitaxel and atezolizumab,
followed by an adjuvant anthracycline regimen, was not more
efficient than the same regimen without atezolizumab and did not
ameliorate pathological complete response among TNBC patients
enrolled in the NeoTRIP Michelangelo randomized trial [117].
Finally, patients with high-risk, early HER2+ breast cancer receiving
neoadjuvant atezolizumab in combination with dose-dense
doxorubicin plus cyclophosphamide, followed by paclitaxel,
trastuzumab, and pertuzumab enrolled in the Phase III IMpas-
sion050 trial failed to experience pathological complete responses
at increased rates compared with similarly treated women who
received placebo instead of atezolizumab, neither in the intention-
to-treat population nor among subjects with PD-L1+ tumors,
ultimately leading to study discontinuation because of an
unfavorable risk‒benefit ratio [118]. Similar dismal findings have
been obtained by the randomized phase III IMagyn050 trial, which
compared the efficacy of neoadjuvant atezolizumab vs placebo
plus paclitaxel, carboplatin, and bevacizumab, followed by

adjuvant bevacizumab, in patients with stage III/IV ovarian
carcinoma [119].
Collectively, these observations suggest that ICD-inducing

chemotherapeutic and radiotherapeutic regimens do not always
cooperate with ICIs in the clinic, highlighting a critical need to
understand the obstacles that currently limit the translation of
existing preclinical data toward the development of combinatorial
regimens with superior efficacy in patients, at least partially
through changes in dose and administration schedule.

CONCLUDING REMARKS
In summary, an expanding preclinical literature suggests that
various ICD-inducing cancer therapeutics can positively interact
with ICIs across a panel of malignancies (Fig. 2). That said, such a
positive interaction may not necessarily emerge from ICD
induction but may rather reflect ICD-unrelated immunostimula-
tory effects that may support ICI sensitivity, as in vivo ICD
induction remains challenging to assess [11, 120]. Moreover,
despite such abundant preclinical findings, ICIs ameliorated the
clinical efficacy of ICD-inducing anticancer agents deliv-
ered according to SOC dose and administration schedules in only
a few clinical scenarios.
Several factors may explain (at least in part) such a

discrepancy between preclinical and clinical settings (Fig. 3).

Fig. 2 Potential synergy between ICD inducers and ICIs. Owing to their ability to recruit immune effector cells, including dendritic cells (DCs)
and cytotoxic T lymphocytes (CTLs), immunogenic cell death (ICD)-inducing regimens (at least in some settings) can convert immunologically
cold tumors into inflamed lesions. In this context, immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed
cell death 1 (PDCD1, best known as PD-1) or CD274 (best known as PD-L1), which normally operate by (re)activating CTLs, may exhibit
superior efficacy, providing a solid rationale for developing combinatorial clinical strategies potentially associated with improved clinical
outcomes; CALR calreticulin, IFN interferon
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First, while in preclinical settings, ICD-inducing therapeutics can
be easily delivered according to nonconventional doses,
including metronomic schedules that have been consistently
associated with increased immunogenicity [121–124], clinical
trials combining ICD inducers and ICIs generally rely on SOC
approaches, which have often been developed according to the
MTD principle and hence may be associated with nonnegligible
lympho- and myelosuppression [125–129]. In this context, it
would be fundamental to test ICIs plus ICD inducers adminis-
tered according to metronomic schedules or at doses lower than
the MTD in clinical settings that may be compatible with such an
approach, for example, in patients experiencing severe adverse
events when ICD-inducing agents are delivered as per SOC.
Second, most preclinical studies testing ICD inducers plus ICIs
harness mouse cancer cell lines to establish subcutaneous
tumors in syngeneic immunocompetent hosts, which (1) largely
fail to recapitulate the intra- and interpatient heterogeneity of
human tumors [130], and (2) offer to dying cancer cells a
privileged and most often nonphysiological immunological
contexture to elicit anticancer immunity [131, 132]. The use of
mouse tumor models that develop orthotopically in the context
of failing immunosurveillance, such as carcinogen-elicited or
genetically driven neoplasms, may circumvent (at least in part)
these limitations [133–135].

Third, most often, clinical trial design fails to build on preclinical
data comparing different administration schedules for combining
ICD inducers with ICIs (e.g., concurrent vs. sequential with ICIs first-
in vs. sequential with ICD induction first-in) to achieve superior
efficacy, which tends to exhibit at least some context dependency
[21, 136]. A systematic preclinical assessment of administration
schedules in immunocompetent tumor models is expected to
assist in the identification of optimal regimens to combine ICD
inducers with ICIs for translation to clinical testing, potentially
reducing the number of trials ultimately reporting a lack of
interaction between these treatment modalities. Fourth, ICD
induction by chemotherapy, RT or targeted anticancer agents as
formally assessable only in syngeneic mouse tumor models [137]
may not necessarily result in similar efficacy in fully human
systems (and notably cancer patients), potentially calling for the
development of combinatorial ICD-inducing strategies. As a
standalone example, cisplatin is a poor ICD inducer but may be
converted into a powerful inducer by combining it with an
endoplasmic reticulum stressor [37]. Fifth, while ICD induction
in vitro is fairly straightforward, human tumors evolve as they
establish numerous, not necessarily overlapping, mechanisms that
limit the induction of ICD and its perception as immunogenic by
the host [138–140]. Identifying these mechanisms, which may vary
not only across tumor types but also across different malignant

Fig. 3 Advantages and limitations of current mouse models for the study of ICD. Most mouse models currently employed to investigate
immunogenic cell death (ICD) induction are amenable to testing multiple (including noncanonical) dose regimens and administration
schedules, offer rapid turnaround times and are compatible with the formal assessment of tumor-targeting immune responses. However,
these models do not necessarily recapitulate human oncogenesis in terms of disease site or inter- and intratumor heterogeneity. Moreover,
whether the murine system can properly model ICD induction in human cancer cells as well as whether systemic factors may influence
immune fitness in patients with cancer remains to be formally established
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lesions in the same patient or even across different areas of the
same tumor, on an individual basis may offer actionable
mechanistic insights to develop superior combinations of ICD
inducers and ICIs. Sixth, a number of variables affecting patient
immune fitness may prevent ICD inducers from actually eliciting
an ICI-active immune response, including (1) polymorphisms in
genes encoding critical immune receptors [141], (2) alterations in
the gut or intratumoral microbiome [142], (3) dietary habits [143],
(4) comorbidities [144], and (5) medications and over-the-counter
drugs [115, 145, 146]. Upon precise identification, many of these
barriers may offer a means to (1) select patients at increased
likelihood to benefit from therapeutic regimens involving ICD-
inducing agents and ICIs and/or (2) improve the efficacy of such
combinatorial strategies.
Finally, cancer cells exhibit extraordinary heterogeneity, not

only across tumor types or in different patients with the same
neoplasms but also across different tumors in the same patient
and even within individual lesions [130]. This implies that
specific therapeutics may elicit ICD in some but not all cancer
cells, at least in part reflecting the high interconnectivity that
characterizes cell death signaling modules, which ultimately
impacts immunogenicity [147–149]. While spatially resolved
omics technologies may offer an improved characterization of
the heterogeneity of malignant lesions with respect to
transcriptional, proteomic and metabolomic features [150],
whether any of these parameters or combinations thereof may
accurately predict the propensity of an individual tumor to
respond to ICD inducers alone or combined with ICIs has yet to
be demonstrated. Similarly, while a number of circulating factors
are being scrutinized for their prognostic and predictive value in
different oncological indications [151], whether these biomar-
kers can be used to efficiently identify patients with cancer at an
increased likelihood of benefiting from ICD-inducing therapeu-
tics in combination with ICIs remains unclear. As an added layer
of complexity, a surge in the circulating levels of ICD-associated
biomarkers such as high mobility group box 1 (HMGB1), which
has been correlated with improved disease outcome in patients
with breast carcinoma or HNSCC receiving ICD-inducing agents
[152, 153], may de facto originate from ICD-unrelated processes,
hence potentially being poorly predictive of a positive interac-
tion with ICIs.
As such, outstanding challenges for the field include (but are

not limited to): (1) the identification of new chemical entities or
physical agents with superior ICD-inducing capacity that can be
moved forward to clinical translation; (2) the characterization of
novel, clinically relevant dosing schedules to increase the ICD-
inducing potential of anticancer therapeutics commonly used in
the clinic at (or close to) the MTD; (3) the deconvolution of novel
cellular pathways leading to bona fide ICD; (4) the identification of
preclinical tumor models that recapitulate the cancer‒immunity
interaction as closely as possible to their human counterparts; (5)
the use of such models toward an unbiased assessment of optimal
combinatorial regimens with respect to the administration
schedule; (6) the development of strategies that circumvent the
natural tendency of human tumors to evade immunosurveillance;
and (7) the identification of host of cancer-related factors that limit
the perception of cell death as immunogenic and at the same
time may be amenable to therapeutic targeting or aid patient
stratification.
In conclusion, while additional preclinical and clinical work is

needed to unlock the full therapeutic potential of ICD-inducing
therapeutics as partners for ICIs, we surmise that addressing
these obstacles, or at least taking them under attentive
consideration as potential predictors of response during clinical
trial design, may lead to the development of novel, safe and
efficient combinatorial regimens for patients with a wide variety
of malignancies.
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