Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dermal adipogenesis protects against neutrophilic skin inflammation during psoriasis pathogenesis

Abstract

The immune response of the skin to danger signals involves rapid recruitment of neutrophils, but their excessive accumulation leads to inflammatory skin diseases, such as psoriasis; however, the mechanisms governing their initiation and resolution are poorly understood. Here, we revealed a dynamic immunoregulatory role of dermal white adipose tissue (dWAT) in the progression and resolution of neutrophilic skin inflammation in an imiquimod-induced psoriasis mouse model. During inflammation onset, dWAT repopulates PDGFRA+ preadipocytes (pAds), which secrete CXCL1 and SAA3, attracting and activating CXCR2+ neutrophils. These neutrophils further activate pAds through the IL-1R-NFκB-C/EBPδ pathway, establishing a self-sustaining inflammatory loop. Paradoxically, prolonged IL-1β signaling triggers PPARγ-dependent adipogenesis, transitioning pAds into anti-inflammatory early adipocytes that resolve neutrophilic inflammation via lipid mediators. Inhibition of adipogenesis, via pharmacological or genetic inhibition of PPARγ, disrupts the formation of early adipocytes, prevents neutrophil regression, and exacerbates inflammation. Analysis of human psoriatic cells revealed a C/EBPδ+ dermal fibroblast (dFB) subpopulation enriched with preadipocytes, the IL-1 pathway, and inflammatory gene signatures. Furthermore, transcriptomic analyses revealed a negative correlation between the neutrophil-related inflammatory response and the dermal lipogenesis response in generalized pustular psoriasis. Together, our findings reveal the dual role of dWAT: PDGFRA+ pAds initiate inflammation via CXCL1/IL-1β crosstalk with neutrophils, whereas PPARγ-driven adipogenesis resolves this process through lipid mediators. This work establishes dWAT as a critical immunomodulatory hub and proposes adipogenic reprogramming of proinflammatory fibroblasts or topical delivery of early adipocyte lipids as innovative therapies for neutrophil-driven skin diseases, such as psoriasis and ulcers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peiseler M, Kubes P. More friend than foe: the emerging role of neutrophils in tissue repair. J Clin Invest. 2019;129:2629–39. https://doi.org/10.1172/JCI124616.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qu J, Jin J, Zhang M, Ng LG. Neutrophil diversity and plasticity: Implications for organ transplantation. Cell Mol Immunol. 2023;20:993–1001. https://doi.org/10.1038/s41423-023-01058-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oliveira-Costa KM, Menezes GB, Paula Neto HA. Neutrophil accumulation within tissues: a damage x healing dichotomy. Biomed Pharmacother. 2022;145:112422 https://doi.org/10.1016/j.biopha.2021.112422.

    Article  CAS  PubMed  Google Scholar 

  4. Marzano AV, Ortega-Loayza AG, Heath M, Morse D, Genovese G, Cugno M. Mechanisms of inflammation in neutrophil-mediated skin diseases. Front Immunol. 2019;10:1059 https://doi.org/10.3389/fimmu.2019.01059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL. Neutrophils in Psoriasis. Front Immunol. 2019;10:2376 https://doi.org/10.3389/fimmu.2019.02376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schon MP, Broekaert SM, Erpenbeck L. Sexy again: the renaissance of neutrophils in psoriasis. Exp Dermatol. 2017;26:305–11. https://doi.org/10.1111/exd.13067.

    Article  PubMed  Google Scholar 

  7. Mocsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 2013;210:1283–99. https://doi.org/10.1084/jem.20122220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinegin B, Vorobjeva N, Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev. 2015;14:633–40. https://doi.org/10.1016/j.autrev.2015.03.002.

    Article  CAS  PubMed  Google Scholar 

  9. Young KZ, Sarkar MK, Gudjonsson JE. Pathophysiology of generalized pustular psoriasis. Exp Dermatol. 2023;32:1194–203. https://doi.org/10.1111/exd.14768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samotij D, Szczech J, Reich A. Generalized Pustular Psoriasis: Divergence of Innate and Adaptive Immunity. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22169048

  11. Ikeda S, Takahashi H, Suga Y, Eto H, Etoh T, Okuma K, et al. Therapeutic depletion of myeloid lineage leukocytes in patients with generalized pustular psoriasis indicates a major role for neutrophils in the immunopathogenesis of psoriasis. J Am Acad Dermatol. 2013;68:609–17. https://doi.org/10.1016/j.jaad.2012.09.037.

    Article  CAS  PubMed  Google Scholar 

  12. Lambert S, Hambro CA, Johnston A, Stuart PE, Tsoi LC, Nair RP, Elder JT. Neutrophil extracellular traps induce human Th17 cells: effect of psoriasis-associated TRAF3IP2 genotype. J Invest Dermatol. 2019;139:1245–53. https://doi.org/10.1016/j.jid.2018.11.021.

    Article  CAS  PubMed  Google Scholar 

  13. Shao S, Fang H, Zhang J, Jiang M, Xue K, Ma J, et al. Neutrophil exosomes enhance the skin autoinflammation in generalized pustular psoriasis by activating keratinocytes. FASEB J. 2019;33:6813–28. https://doi.org/10.1096/fj.201802090RR.

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Zhu Z, Li Q, Lin Y, Dang E, Meng H, et al. Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9. J Invest Dermatol. 2021;141:787–99. https://doi.org/10.1016/j.jid.2020.07.028.

    Article  CAS  PubMed  Google Scholar 

  15. Sun L, Zhang X, Wu S, Liu Y, Guerrero-Juarez CF, Liu W, et al. Dynamic interplay between IL-1 and WNT pathways in regulating dermal adipocyte lineage cells during skin development and wound regeneration. Cell Rep. 2023;42:112647 https://doi.org/10.1016/j.celrep.2023.112647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, LJ, Guerrero-Juarez CF, Chen SX, Zhang X, Yin M, Li F, et al. Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. Sci Transl Med. 2021;13. https://doi.org/10.1126/scitranslmed.abb5280

  17. Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, et al. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Investig. 2019;129:5327–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang LJ, Chen SX, Guerrero-Juarez CF, Li F, Tong Y, Liang Y, et al. Age-related loss of innate immune antimicrobial function of dermal fat is mediated by transforming growth factor beta. Immunity. 2019;50:121–136 e125. https://doi.org/10.1016/j.immuni.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347:67–71. https://doi.org/10.1126/science.1260972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen SX, Zhang LJ, Gallo RL. Dermal white adipose tissue: a newly recognized layer of skin innate defense. J Invest Dermatol. 2019;139:1002–9. https://doi.org/10.1016/j.jid.2018.12.031.

    Article  CAS  PubMed  Google Scholar 

  21. Sanda GE, Belur AD, Teague HL, Mehta NN. Emerging associations between neutrophils, atherosclerosis, and psoriasis. Curr Atheroscler Rep. 2017;19:53 https://doi.org/10.1007/s11883-017-0692-8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Z, Chen J, Lin Y, Zhang C, Li W, Qiao H, et al. Aryl hydrocarbon receptor in cutaneous vascular endothelial cells restricts psoriasis development by negatively regulating neutrophil recruitment. J Invest Dermatol. 2020;140:1233–1243 e1239. https://doi.org/10.1016/j.jid.2019.11.022.

    Article  CAS  PubMed  Google Scholar 

  23. Gangwar RS, Gudjonsson JE, Ward NL. Mouse models of psoriasis: a comprehensive review. J Invest Dermatol. 2022;142:884–97. https://doi.org/10.1016/j.jid.2021.06.019.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann K, Sperling K, Olins AL, Olins DE. The granulocyte nucleus and lamin B receptor: avoiding the ovoid. Chromosoma. 2007;116:227–35. https://doi.org/10.1007/s00412-007-0094-8.

    Article  CAS  PubMed  Google Scholar 

  25. Rose S, Misharin A, Perlman H. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry. 2012;81:343–50. https://doi.org/10.1002/cyto.a.22012.

    Article  CAS  PubMed  Google Scholar 

  26. Lee PY, Wang JX, Parisini E, Dascher CC, Nigrovic PA. Ly6 family proteins in neutrophil biology. J Leukoc Biol. 2013;94:585–94. https://doi.org/10.1189/jlb.0113014.

    Article  CAS  PubMed  Google Scholar 

  27. Asp M, Giacomello S, Larsson L, Wu C, Fürth D, Qian X, et al. A Spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell. 2019;179:1647–1660.e1619. https://doi.org/10.1016/j.cell.2019.11.025.

    Article  CAS  PubMed  Google Scholar 

  28. Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130:3122S–3126S. https://doi.org/10.1093/jn/130.12.3122S.

    Article  CAS  PubMed  Google Scholar 

  29. Hallenborg P, Feddersen S, Francoz S, Murano I, Sundekilde U, Petersen RK, et al. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ. 2012;19:1381–9. https://doi.org/10.1038/cdd.2012.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4:263–73. https://doi.org/10.1016/j.cmet.2006.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sawant KV, Sepuru KM, Penaranda B, Lowry E, Garofalo RP, Rajarathnam K. Chemokine Cxcl1-Cxcl2 heterodimer is a potent neutrophil chemoattractant. J Leukoc Biol. 2023;114:666–71. https://doi.org/10.1093/jleuko/qiad097.

    Article  CAS  PubMed  Google Scholar 

  32. Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, Rajarathnam K. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci Rep. 2016;6:33123. https://doi.org/10.1038/srep33123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol Metab. 2014;25:293–302. https://doi.org/10.1016/j.tem.2014.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun W, Dong H, Balaz M, Slyper M, Drokhlyansky E, Colleluori G, et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature. 2020;587:98–102. https://doi.org/10.1038/s41586-020-2856-x.

    Article  CAS  PubMed  Google Scholar 

  35. Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, Horsley V. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146:761–71. https://doi.org/10.1016/j.cell.2011.07.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the hematopoietic microenvironment. Nature. 2009;460:259–63. https://doi.org/10.1038/nature08099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371:531–9. https://doi.org/10.1007/s00441-017-2785-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suleimanov, SK, Efremov YM, Klyucherev TO, Salimov EL, Ragimov AA, Timashev PS, Vlasova II. Radical-Generating Activity, Phagocytosis, and Mechanical Properties of Four Phenotypes of Human Macrophages. Int J Mol Sci. 2024;25. https://doi.org/10.3390/ijms25031860

  39. Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK, Striz I. M1/M2 macrophages and their overlaps - myth or reality?. Clin Sci. 2023;137:1067–93. https://doi.org/10.1042/CS20220531.

    Article  CAS  Google Scholar 

  40. Li YH, Zhang Y, Pan G, Xiang LX, Luo DC, Shao JZ. Occurrences and functions of Ly6C(hi) and Ly6C(lo) macrophages in health and disease. Front Immunol. 2022;13:901672 https://doi.org/10.3389/fimmu.2022.901672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang C, Duan J, Huang Y, Chen M. Enhanced skin delivery of therapeutic peptides using spicule-based topical delivery systems. Pharmaceutics. 2021:13. https://doi.org/10.3390/pharmaceutics13122119

  42. Zhang S, Ou H, Liu C, Zhang Y, Mitragotri S, Wang D, Chen M. Skin delivery of hydrophilic biomacromolecules using marine sponge spicules. Mol Pharm. 2017;14:3188–3200. https://doi.org/10.1021/acs.molpharmaceut.7b00468.

    Article  CAS  PubMed  Google Scholar 

  43. Reynolds, G, Vegh P, Fletcher J, Poyner E, Stephenson E, Goh I, et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 2021;371. https://doi.org/10.1126/science.aba6500

  44. Russell-Goldman E, Murphy GF. The pathobiology of skin aging: new insights into an old dilemma. Am J Pathol. 2020;190:1356–69. https://doi.org/10.1016/j.ajpath.2020.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?. Cell Death Differ. 2016;23:1128–39. https://doi.org/10.1038/cdd.2015.168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kesharwani D, Brown AC. Navigating the adipocyte precursor niche: cell‒cell interactions, regulatory mechanisms and implications for adipose tissue homeostasis. J Cell Signal. 2024;5:65–86. https://doi.org/10.33696/signaling.5.114.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jiang Y, Berry DC, Jo A, Tang W, Arpke RW, Kyba M, Graff JM. A PPARgamma transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nat Commun. 2017;8:15926. https://doi.org/10.1038/ncomms15926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berry DC, Stenesen D, Zeve D, Graff JM. The developmental origins of adipose tissue. Development. 2013;140:3939–49. https://doi.org/10.1242/dev.080549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnston A, Xing X, Wolterink L, Barnes DH, Yin Z, Reingold L, et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J Allergy Clin Immunol. 2017;140:109–20. https://doi.org/10.1016/j.jaci.2016.08.056.

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development. 2013;140:1517–27. https://doi.org/10.1242/dev.087593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cordier-Dirikoc S, Pedretti N, Garnier J, Clarhaut-Charreau S, Ryffel B, Morel F, et al. Dermal fibroblasts are the key sensors of aseptic skin inflammation through interleukin 1 release by lesioned keratinocytes. Front Immunol. 2022;13:984045 https://doi.org/10.3389/fimmu.2022.984045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boothby IC, Kinet MJ, Boda DP, Kwan EY, Clancy S, Cohen JN, et al. Early-life inflammation primes a T helper 2 cell-fibroblast niche in skin. Nature. 2021;599:667–72. https://doi.org/10.1038/s41586-021-04044-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zdanowska N, Kasprowicz-Furmanczyk M, Placek W, Owczarczyk-Saczonek A. The role of chemokines in psoriasis-an overview. Medicina. 2021;57. https://doi.org/10.3390/medicina57080754

  54. Zeng J, Chen X, Lei K, Wang D, Lin L, Wang Y, et al. Mannan-binding lectin promotes keratinocyte to produce CXCL1 and enhances neutrophil infiltration at the early stages of psoriasis. Exp Dermatol. 2019;28:1017–24. https://doi.org/10.1111/exd.13995.

    Article  CAS  PubMed  Google Scholar 

  55. Gillitzer R, Ritter U, Spandau U, Goebeler M, Brocker EB. Differential expression of GRO-alpha and IL-8 mRNA in psoriasis: a model for neutrophil migration and accumulation in vivo. J Invest Dermatol. 1996;107:778–82. https://doi.org/10.1111/1523-1747.ep12371803.

    Article  CAS  PubMed  Google Scholar 

  56. De Buck M, Gouwy M, Wang JM, Van Snick J, Proost P, Struyf S, Van Damme J. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Rev. 2016;30:55–69. https://doi.org/10.1016/j.cytogfr.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  57. Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem. 1999;265:501–23. https://doi.org/10.1046/j.1432-1327.1999.00657.x.

    Article  CAS  PubMed  Google Scholar 

  58. Meek RL, Benditt EP. Amyloid A gene family expression in different mouse tissues. J Exp Med. 1986;164:2006–17. https://doi.org/10.1084/jem.164.6.2006.

    Article  CAS  PubMed  Google Scholar 

  59. Bing Z, Huang JH, Liao WS. NFkappa B interacts with serum amyloid A3 enhancer factor to synergistically activate mouse serum amyloid A3 gene transcription. J Biol Chem. 2000;275:31616–23. https://doi.org/10.1074/jbc.M005378200.

    Article  CAS  PubMed  Google Scholar 

  60. Huang JH, Liao WS. Synergistic induction of mouse serum amyloid A3 promoter by the inflammatory mediators IL-1 and IL-6. J Interferon Cytokine Res. 1999;19:1403–11. https://doi.org/10.1089/107999099312867.

    Article  CAS  PubMed  Google Scholar 

  61. Shimizu H, Yamamoto K. NF-kappa B and C/EBP transcription factor families synergistically function in mouse serum amyloid A gene expression induced by inflammatory cytokines. Gene. 1994;149:305–10. https://doi.org/10.1016/0378-1119(94)90166-x.

    Article  CAS  PubMed  Google Scholar 

  62. Eklund KK, Niemi K, Kovanen PT. Immune functions of serum amyloid A. Crit Rev Immunol. 2012;32:335–48. https://doi.org/10.1615/critrevimmunol.v32.i4.40.

    Article  CAS  PubMed  Google Scholar 

  63. den Hartigh LJ, Wang S, Goodspeed L, Ding Y, Averill M, Subramanian S, et al. Deletion of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue inflammation and hyperlipidemia in female mice. PLoS One. 2014;9:e108564 https://doi.org/10.1371/journal.pone.0108564.

    Article  CAS  Google Scholar 

  64. Lin Y, Rajala MW, Berger JP, Moller DE, Barzilai N, Scherer PE. Hyperglycemia-induced production of acute phase reactants in adipose tissue. J Biol Chem. 2001;276:42077–83. https://doi.org/10.1074/jbc.M107101200.

    Article  CAS  PubMed  Google Scholar 

  65. Bai S, Zhang Z, Hou S, Liu X. Influence of different types of contact hypersensitivity on imiquimod-induced psoriasis-like inflammation in mice. Mol Med Rep. 2016;14:671–80. https://doi.org/10.3892/mmr.2016.5299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang X, Sun J, Hu J. IMQ Induced K14-VEGF mouse: a stable and long-term mouse model of psoriasis-like inflammation. PLoS One. 2015;10:e0145498 https://doi.org/10.1371/journal.pone.0145498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanamori Y, Murakami M, Sugiyama M, Hashimoto O, Matsui T, Funaba M. Interleukin-1beta (IL-1beta) transcriptionally activates hepcidin by inducing CCAAT enhancer-binding protein delta (C/EBPdelta) expression in hepatocytes. J Biol Chem. 2017;292:10275–87. https://doi.org/10.1074/jbc.M116.770974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Litvak V, Ramsey SA, Rust AG, Zak DE, Kennedy KA, Lampano AE, et al. Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol. 2009;10:437–43. https://doi.org/10.1038/ni.1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Svotelis A, Doyon G, Bernatchez G, Désilets A, Rivard N, Asselin C. IL-1β-dependent regulation of C/EBPδ transcriptional activity. Biochem Biophys Res Commun. 2005;328:461–70. https://doi.org/10.1016/j.bbrc.2005.01.002.

    Article  CAS  PubMed  Google Scholar 

  70. Hofwimmer K, de Paula Souza J, Subramanian N, Vujičić M, Rachid L, Méreau H, et al. IL-1beta promotes adipogenesis by directly targeting adipocyte precursors. Nat Commun. 2024;15:7957. https://doi.org/10.1038/s41467-024-51938-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Croasdell A, Duffney PF, Kim N, Lacy SH, Sime PJ, Phipps RP. PPARgamma and the innate immune system mediate the resolution of inflammation. PPAR Res. 2015;2015:549691 https://doi.org/10.1155/2015/549691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qadri M, Jay GD, Zhang LX, Schmidt TA, Totonchy J, Elsaid KA. Proteoglycan-4 is an essential regulator of synovial macrophage polarization and inflammatory macrophage joint infiltration. Arthritis Res Ther. 2021;23:241 https://doi.org/10.1186/s13075-021-02621-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Das N, Schmidt TA, Krawetz RJ, Dufour A. Proteoglycan 4: From Mere lubricant to regulator of tissue homeostasis and inflammation: does proteoglycan 4 have the ability to buffer the inflammatory response?. Bioessays. 2019;41:e1800166. https://doi.org/10.1002/bies.201800166.

    Article  CAS  PubMed  Google Scholar 

  74. Alquraini A, Garguilo S, D'Souza G, Zhang LX, Schmidt TA, Jay GD, Elsaid KA. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther. 2015;17:353 https://doi.org/10.1186/s13075-015-0877-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322:583–6. https://doi.org/10.1126/science.1156232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma F, Plazyo O, Billi AC, Tsoi LC, Xing X, Wasikowski R, et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat Commun. 2023;14:3455. https://doi.org/10.1038/s41467-023-39020-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang Loureiro Z, Joyce S, DeSouza T, Solivan-Rivera J, Desai A, Skritakis P, et al. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat Metab. 2023;5:1014–28. https://doi.org/10.1038/s42255-023-00813-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ehrlund A, Mejhert N, Lorente-Cebrián S, Aström G, Dahlman I, Laurencikiene J, Rydén M. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. J Clin Endocrinol Metab. 2013;98:E503–508. https://doi.org/10.1210/jc.2012-3416.

    Article  CAS  PubMed  Google Scholar 

  79. Hu E, Zhu Y, Fredrickson T, Barnes M, Kelsell D, Beeley L, Brooks D. Tissue restricted expression of two human Frzbs in preadipocytes and pancreas. Biochem Biophys Res Commun. 1998;247:287–93. https://doi.org/10.1006/bbrc.1998.8784.

    Article  CAS  PubMed  Google Scholar 

  80. Curcic S, Holzer M, Frei R, Pasterk L, Schicho R, Heinemann A, Marsche G. Neutrophil effector responses are suppressed by secretory phospholipase A2 modified HDL. Biochim Biophys Acta. 2015;1851:184–93. https://doi.org/10.1016/j.bbalip.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  81. Lin P, Welch EJ, Gao XP, Malik AB, Ye RD. Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. J Immunol. 2005;174:2981–9. https://doi.org/10.4049/jimmunol.174.5.2981.

    Article  CAS  PubMed  Google Scholar 

  82. Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, et al. Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem. 2008;283:5296–305. https://doi.org/10.1074/jbc.M706586200.

    Article  CAS  PubMed  Google Scholar 

  83. Frasch SC, Berry KZ, Fernandez-Boyanapalli R, Jin HS, Leslie C, Henson PM, et al. NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A. J Biol Chem. 2008;283:33736–49. https://doi.org/10.1074/jbc.M807047200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Castoldi A, Monteiro LB, van Teijlingen Bakker N, Sanin DE, Rana N, Corrado M, et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun. 2020;11:4107. https://doi.org/10.1038/s41467-020-17881-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res. 2014;55:2276–86. https://doi.org/10.1194/jlr.M050005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liao, Y, Sun L, Nie M, Li J, Huang X, Heng S, et al. Modulation of skin inflammatory responses by aluminum adjuvant. Pharmaceutics. 2023;15. https://doi.org/10.3390/pharmaceutics15020576

  87. Neu, SD, Strzepa A, Martin D, Sorci-Thomas MG, Pritchard KA J.r, Dittel BN. Myeloperoxidase Inhibition Ameliorates Plaque Psoriasis in Mice. Antioxidants. 2021;10. https://doi.org/10.3390/antiox10091338

  88. O’Brien CE, Bonanno L, Zhang H, Wyss-Coray T. Beclin 1 regulates neuronal transforming growth factor-beta signaling by mediating recycling of the type I receptor ALK5. Mol Neurodegener. 2015;10:69 https://doi.org/10.1186/s13024-015-0065-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Majzoub RN, Chan CL, Ewert KK, Silva BF, Liang KS, Safinya CR. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: a platform for investigating early endosomal events. Biochim Biophys Acta. 2015;1848:1308–18. https://doi.org/10.1016/j.bbamem.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L-JZ is supported by the National Key R&D Program of China (2023YFC2508102), the National Natural Science Foundation of China (82373879), the Fujian Provincial Natural Science Foundation of China (2024J011009), and the Xiamen University Double First Class Construction Project (Biology) (DFC2024004). R. W. is supported by the Yunnan University Medical Research Foundation (YDYXJJ2024-0022) and Yunnan Provincial Department of Education Scientific Research Fund Project (2025J0020). We thank Dr. Jiahuai Han from Xiamen University for providing the IL1r1-/- mice and Dr. Yuling Shi from Fudan University for providing the Pparg-floxed mice. We thank the flow cytometry and confocal microscopic core facility at Xiamen University for flow cytometry, sorting and imaging studies.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TX, WZ, RW, MC, and LZ; methodology, TX, WZ, RW, XZ, RX, CZ, WL, and LZ; investigation, TX, WZ, RW, XhangZ, RX, XH, SW, YanhangL, JL, YouxiL, YimanL, ZG, and WL; resources, MC, JL, and YS; data curation, TX, WZ, RW, and LZ; writing-original draft, TX, WZ, RW, and LZ; writing-review and editing, MC, JL, YS, and LZ; supervision, LZ.

Corresponding author

Correspondence to Ling-juan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, T., Zhang, W., Wu, R. et al. Dermal adipogenesis protects against neutrophilic skin inflammation during psoriasis pathogenesis. Cell Mol Immunol (2025). https://doi.org/10.1038/s41423-025-01296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-025-01296-5

Keywords

Search

Quick links