Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The causal relationships between iron status and sarcopenia in Europeans: a bidirectional two-sample Mendelian randomization study

Abstract

Background

Previous studies have indicated potential associations between metals, lifestyle factors, and sarcopenia. However, the specific causal relationships between iron status, lifestyle factors, and sarcopenia remain unclear. Therefore, we conducted a bidirectional two-sample Mendelian Randomization (MR) approach to investigate these relationships.

Methods

The exposure variables included iron status, living alone, coffee intake, alcohol taken with meals, and moderate physical activity, while the outcome variable was sarcopenia, assessed by grip strength in both hands and usual walking pace. We employed the Weighted Median (WM), the Inverse Variance-Weighted (IVW), and other MR methods to explore these problems for analysis. Simultaneously, we conducted a bidirectional MR analysis to assess whether sarcopenia has a reverse causal relationship with internal iron status.

Results

In our present research, we found serum iron (P = 0.033), ferritin (P = 0.001), transferrin saturation (P = 0.029) and coffee intake (P = 0.002) revealed a negative trend for sarcopenia, living alone (P = 0.022) and alcohol taken with meal (P = 0.006) showed a opposite trend for sarcopenia. Whereas sarcopenia showed negative trend for ferritin (P = 0.041) and transferrin saturation (P = 0.043), showed the opposite trend for transferrin (P = 0.021).

Conclusion

Our study suggested that higher serum iron levels might reduce the risk of sarcopenia. Moreover, living alone and alcohol consumption might increase the sarcopenia risk, while coffee intake and moderate physical activity could reduce the sarcopenia risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Forest plot for Bidirectional MR analysis of the causal effect of serum iron status on sarcopenia.
Fig. 3: Forest plot for Bidirectional MR analysis of the causal effect of sarcopenia on serum iron status.
Fig. 4: Forest plot for Two-Sample MR analysis of the causal effect of lifestyles on sarcopenia.

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The websites for these datasets have been provided in the article. Further inquiries can be directed to the corresponding author.

References

  1. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393:2636–46. https://doi.org/10.1016/S0140-6736(19)31138-9.

    Article  PubMed  Google Scholar 

  2. Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP. et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13:86–99. https://doi.org/10.1002/jcsm.12783.

    Article  PubMed  Google Scholar 

  3. Gao K, Cao LF, Ma WZ, Gao YJ, Luo MS, Zhu J. et al. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: Findings from the China health and retirement longitudinal study. EClinicalMedicine. 2022;44:101264. https://doi.org/10.1016/j.eclinm.2021.101264.

    Article  PubMed  PubMed Central  Google Scholar 

  4. He N, Zhang Y, Zhang L, Zhang S, Ye H. Relationship between sarcopenia and cardiovascular diseases in the elderly: an overview. Front Cardiovasc Med. 2021;8:743710. https://doi.org/10.3389/fcvm.2021.743710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sousa AS, Guerra RS, Fonseca I, Pichel F, Ferreira S, Amaral TF. Financial impact of sarcopenia on hospitalization costs. Eur J Clin Nutr. 2016;70:1046–51. https://doi.org/10.1038/ejcn.2016.73.

    Article  PubMed  CAS  Google Scholar 

  6. Bruyère O, Beaudart C, Ethgen O, Reginster JY, Locquet M. The health economics burden of sarcopenia: a systematic review. Maturitas 2019;119:61–69. https://doi.org/10.1016/j.maturitas.2018.11.003.

    Article  PubMed  Google Scholar 

  7. Petermann-Rocha F, Ho FK, Welsh P, Mackay D, Brown R, Gill J. et al. Physical capability markers used to define sarcopenia and their association with cardiovascular and respiratory outcomes and all-cause mortality: a prospective study from UK Biobank. Maturitas. 2020;138:69–75. https://doi.org/10.1016/j.maturitas.2020.04.017.

    Article  PubMed  Google Scholar 

  8. Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S. et al. Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle. 2021;12:538–54. https://doi.org/10.1002/jcsm.12709.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee SM, Edmonston B. Living Alone Among Older Adults in Canada and the U.S. Healthc (Basel). 2019;7:68. https://doi.org/10.3390/healthcare7020068.

    Article  Google Scholar 

  10. Yang J, Huang J, Yang X, Li S, Wu X, Ma X. The association of living alone and social isolation with sarcopenia: a systematic review and meta-analysis. Ageing Res Rev. 2023;91:102043. https://doi.org/10.1016/j.arr.2023.102043.

    Article  PubMed  Google Scholar 

  11. Sha T, Li W, He H, Wu J, Wang Y, Li H. Causal relationship of genetically predicted serum micronutrients levels with sarcopenia: a mendelian randomization study. Front Nutr. 2022;9:913155. https://doi.org/10.3389/fnut.2022.913155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhong J, Xie W, Wang X, Dong X, Mo Y, Liu D. et al. The prevalence of sarcopenia among hunan province community-dwelling adults aged 60 years and older and its relationship with lifestyle: diagnostic criteria from the asian working group for sarcopenia 2019 update. Med (Kaunas). 2022;58:1562. https://doi.org/10.3390/medicina58111562.

    Article  Google Scholar 

  13. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017;168:344–61. https://doi.org/10.1016/j.cell.2016.12.034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McClung JP. Iron, zinc, and physical performance. Biol Trace Elem Res. 2019;188:135–9. https://doi.org/10.1007/s12011-018-1479-7.

    Article  PubMed  CAS  Google Scholar 

  15. Hong SH, Bae YJ. Association between alcohol consumption and the risk of sarcopenia: a systematic review and meta-analysis. Nutrients. 2022;14:3266 https://doi.org/10.3390/nu14163266.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Liu C, Hu M. Association between triglyceride-glucose index and sarcopenia in China: a nationally representative cohort study. Exp Gerontol. 2024;190:112419. https://doi.org/10.1016/j.exger.2024.112419.

    Article  PubMed  CAS  Google Scholar 

  17. Yang J, Liu C, Zhao S, Wang L, Wu G, Zhao Z. et al. The association between the triglyceride-glucose index and sarcopenia: data from the NHANES 2011–2018. Lipids Health Dis. 2024;23:219. https://doi.org/10.1186/s12944-024-02201-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A. Coffee: biochemistry and potential impact on health. Food Funct. 2014;5:1695–717. https://doi.org/10.1039/c4fo00042k.

    Article  PubMed  CAS  Google Scholar 

  19. Guo Y, Niu K, Okazaki T, Wu H, Yoshikawa T, Ohrui T. et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp Gerontol. 2014;50:1–8. https://doi.org/10.1016/j.exger.2013.11.005.

    Article  PubMed  CAS  Google Scholar 

  20. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F. et al. European Working Group on Sarcopenia in Older P. Sarcopenia: european consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing. 2010;39:412–23. https://doi.org/10.1093/ageing/afq034.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H. et al. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: a randomized controlled trial. J Cachexia Sarcopenia Muscle. 2022;13:894–908. https://doi.org/10.1002/jcsm.12941.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the strobe-mr statement. JAMA. 2021;326:1614–21. https://doi.org/10.1001/jama.2021.18236.

    Article  PubMed  Google Scholar 

  23. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, BruyŠre O, Cederholm T. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. https://doi.org/10.1093/ageing/afy169.

    Article  PubMed  Google Scholar 

  24. Semenova EA, Pranckevičienė E, Bondareva EA, Gabdrakhmanova LJ. Ahmetov II. identification and characterization of genomic predictors of sarcopenia and sarcopenic obesity using uk biobank data. Nutrients. 2023;15:758. https://doi.org/10.3390/nu15030758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017;1861:1893–1900. https://doi.org/10.1016/j.bbagen.2017.05.019.

    Article  PubMed  CAS  Google Scholar 

  26. Reardon TF, Allen DG. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol. 2009;94:720–30. https://doi.org/10.1113/expphysiol.2008.046045.

    Article  PubMed  CAS  Google Scholar 

  27. Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y. et al. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol. 2016;35:66–76. https://doi.org/10.1016/j.jtemb.2016.01.011.

    Article  PubMed  CAS  Google Scholar 

  28. Vinke JSJ, Gorter AR, Eisenga MF, Dam WA, van der Meer P, van den Born J. et al. Iron deficiency is related to lower muscle mass in community-dwelling individuals and impairs myoblast proliferation. J Cachexia Sarcopenia Muscle. 2023;14:1865–79. https://doi.org/10.1002/jcsm.13277.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail. 2016;18:762–73. https://doi.org/10.1002/ejhf.467.

    Article  PubMed  Google Scholar 

  30. Mackler B, Grace R, Finch CA. Iron deficiency in the rat: effects on oxidative metabolism in distinct types of skeletal muscle. Pediatr Res. 1984;18:499–500. https://doi.org/10.1203/00006450-198406000-00001.

    Article  PubMed  CAS  Google Scholar 

  31. Henderson SA, Dallman PR, Brooks GA. Glucose turnover and oxidation are increased in the iron-deficient anemic rat. Am J Physiol. 1986;250:E414–E421. https://doi.org/10.1152/ajpendo.1986.250.4.E414.

    Article  PubMed  CAS  Google Scholar 

  32. Thompson CH, Green YS, Ledingham JG, Radda GK, Rajagopalan B. The effect of iron deficiency on skeletal muscle metabolism of the rat. Acta Physiol Scand. 1993;147:85–90. https://doi.org/10.1111/j.1748-1716.1993.tb09475.x.

    Article  PubMed  CAS  Google Scholar 

  33. Baker LA, Cahalin LP, Gerst K, Burr JA. Productive activities and subjective well-being among older adults: the influence of number of activities and time commitment. Soc Indic Res. 2005;73:431–58. https://doi.org/10.1007/s11205-005-0805-6.

    Article  Google Scholar 

  34. Kim DA, Benjamin EJ, Fowler JH, Christakis NA. Social connectedness is associated with fibrinogen level in a human social network. Proc Biol Sci. 2016;283:20160958. https://doi.org/10.1098/rspb.2016.0958.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koh-Bell A, Chan J, Mann AK, Kapp DS. Social isolation, inflammation and cancer mortality from the national health and nutrition examination survey - a study of 3360 women. BMC Public Health. 2021;21:1289. https://doi.org/10.1186/s12889-021-11352-0.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia. Front Physiol. 2017;8:1045. https://doi.org/10.3389/fphys.2017.01045.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G. et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security. 2015;7:303–21. https://doi.org/10.1007/s12571-015-0446-9.

    Article  Google Scholar 

  38. Costa MS, Botton PH, Mioranzza S, Souza DO, Porciúncula LO. Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice. Neuroscience. 2008;153:1071–8. https://doi.org/10.1016/j.neuroscience.2008.03.038.

    Article  PubMed  CAS  Google Scholar 

  39. Horrigan LA, Kelly JP, Connor TJ. Immunomodulatory effects of caffeine: friend or foe?

  40. Hong-Brown LQ, Brown CR, Kazi AA, Huber DS, Pruznak AM, Lang CH. Alcohol and PRAS40 knockdown decrease mTOR activity and protein synthesis via AMPK signaling and changes in mTORC1 interaction. J Cell Biochem. 2010;109:1172–84.

  41. Hong-Brown LQ, Frost RA, Lang CH. Alcohol impairs protein synthesis and degradation in cultured skeletal muscle cells. Alcohol Clin Exp Res. 2001;25:1373–82.

    Article  PubMed  CAS  Google Scholar 

  42. Daily JW, Park S. Sarcopenia is a cause and consequence of metabolic dysregulation in aging humans: effects of gut dysbiosis, glucose dysregulation, diet and lifestyle. Cells. 2022;11:338. https://doi.org/10.3390/cells11030338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hetherington MM, Cameron F, Wallis DJ, Pirie LM. Stimulation of appetite by alcohol. Physiol Behav. 2001;74:283–9.

    Article  PubMed  CAS  Google Scholar 

  44. Kovář J, Zemánková K. Moderate alcohol consumption and triglyceridemia.

  45. Li CW, Yu KA-O, Shyh-Chang N, Jiang Z, Liu T, Ma S. et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle. 2022;13:781–94.

  46. Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Stärkel P. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA. 2014;111:E4485–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhao JA-O, Huang Y, Yu X. A narrative review of gut-muscle axis and sarcopenia: the potential role of gut microbiota. Int J Gen Med. 2021;14:1263–73.

  48. Dent E, Morley JE, Cruz-Jentoft AJ, Arai H, Kritchevsky SB, Guralnik J. et al. International clinical practice guidelines for sarcopenia (icfsr): screening, diagnosis and management. J Nutr Health Aging. 2018;22:1148–61.

    Article  PubMed  CAS  Google Scholar 

  49. Negm AM, Lee J, Hamidian R, Jones CA, Khadaroo RG. Management of sarcopenia: a network meta-analysis of randomized controlled trials. J Am Med Dir Assoc. 2022;23:707–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Everyone who contributed significantly to the work has been listed.

Funding

Shandong First Medical University Science and Education Integration talents academic promotion plan funds (922/001003088002), Beijing Municipal Talent Work Leading Group - Young Beijing Scholars Talent Program (Youth Beijing Scholar 2020, No.25), Beijing Hospital Management Center Summit Talent Program (DFL20220401). The article was supported by the visiting research fund for teachers of ordinary undergraduate universities in Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

QZH and YJL conceived the study, QZH and YJL obtained the funding, ZHQ wrote the first draft, QZH and CYH critically revised the manuscript. QZH, CYH and ZHQ made substantial contributions to the design of the protocol. YCZ, XSX, HRZ, JJL, JL and YYZ prepared the figure and table. All authors critically reviewed the draft and approved the final version for publication.

Corresponding authors

Correspondence to Yajun Liu or Qingzhi Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Hou, C., Xue, X. et al. The causal relationships between iron status and sarcopenia in Europeans: a bidirectional two-sample Mendelian randomization study. Eur J Clin Nutr 79, 207–213 (2025). https://doi.org/10.1038/s41430-024-01531-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-024-01531-8

This article is cited by

Search

Quick links