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The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable
genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate
dehydrogenase gene (IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a
large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells.
IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway
previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease
entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia.
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INTRODUCTION

Dystonias are rare movement disorders characterised by sustained or
intermittent muscle contractions causing abnormal, often repetitive,
movements and/or postures. Dystonia can manifest as an isolated
symptom or combined with e.g. parkinsonism or myoclonus [1]. While
many pathogenic pathways are associated with dystonia, dopamine
signalling is a commonly altered one [reviewed in [2]]. The first
dopamine-related gene identified for dystonia was GCHI, encoding
the rate-limiting enzyme in the pathway that converts guanosine
triphosphate (GTP) to tetrahydrobiopterin (BH4) [3], which is an
essential cofactor for dopamine biosynthesis (Fig. 2A). Heterozygous
GCH]1 variants decrease dopamine synthesis in nigrostriatal neurons,
leading to childhood-onset, progressive, dopa-responsive dystonia [4].
Variants in HPRTI, another purine metabolic enzyme, result in
generalised dystonia with neuro-behavioural manifestations [5].
HPRT1 pathophysiology involves a guanine metabolic defect and
dopamine deficiency in the midbrain, without neurodegeneration [6],
underscoring the importance of dopamine metabolism for posture
and movement control.

Next-generation sequencing has uncovered numerous novel
dystonia genes, furthering mechanistic knowledge. However, a large
portion of dystonia patients still lack a genetic diagnosis. Here, we
report inosine monophosphate dehydrogenase 2 (IMPDH2) as a novel
gene for autosomal dominantly inherited dystonia.

RESULTS

Clinical description of the patients

A family of Finnish descent presented an autosomal dominantly
inherited disease (Fig. 1A) characterised by dystonia and tremor.

The disease-onset was between 9 and 20 years of age. Table 1
summarises the clinical presentations.

Case report

Patient II-6 is a 46-year-old woman. As a teenager she experienced
episodic hand and head tremor attacks with flushing, considered
as panic attacks. Constant handwriting problems and muscle
cramps progressively worsened from age 20. Orthopaedic and
rheumatological examination (wide-spread joint-associated pain
without rheumatological disease signs) led to fibromyalgia
diagnosis. The patient adapted her employment because of
fatigue and muscle symptoms.

At 30 years of age, she was examined due to dizziness and
visual problems (struggle to focus and headache). Brain CT-scan
and ophthalmological examinations were normal. The sympto-
matology worsened progressively from age 35, with sleeping
problems, heart palpitations, limb numbness, overactive bladder,
and progressive tensiogenic headache. By the age of 35, the
patient had undergone three lumbar discectomies, and at age 36,
she underwent a cervical discectomy. Depression was diagnosed.

At the age of 42, she was examined due to swallowing
problems, and a neurological evaluation indicated cervical
dystonia. Segmental dystonia in the back region as well as focal
upper limb dystonia were suspected. She had essential hand
tremor and tremor in the head and upper back. Walking, speaking,
balance, and eye movements were normal. Sensory testing
showed distal lower leg allodynia and signs of hyperalgesia. Cold
hypaesthesia was evident in both legs (distal from the right ankle
and left knee) and cold hyperaesthesia on the right shin. Brain MRI
and DAT scans were normal, and spinal MRI showed cervical and
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Fig. 1 Heterozygous truncating variant in IMPDH2 segregates in the family. A Pedigree of the family. Red symbols: patients. Asterisk:
individuals genetically studied for IMPDH2 variant. B Schematic presentation of exome data analysis and variant filtering. Variants found in 15
or less patients in our in-house database (532 patients) with an impact rating of high or moderate effect were selected for further analysis.
Criteria 1-5 decribed in the Methods. C IMPDH2 sequence at the deletion site (arrowhead). D Graphical representation of the deletion
consequences for the protein. Red rectangle: deletion site; Arrow: early termination codon; CBS, cystathione-beta-synthase domains.
E IMPDH2 protein sequence conservations at tyrosine-32, multiple sequence alignment. Arrow, location of the early stop codon.

Table 1. Clinical presentations.

Patient 11-1 -4 11-6 -2 -3 11-8

Sex Male Female Female Male Female Male

Age of onset 20 20 18 12 12 9

Cervical dystonia + + + + (mild) — -+ (mild)
Focal upper limb dystonia + + + + + -

Tremor (head) Horizontal Horizontal Vertical Horizontal Horizontal Horizontal
Tremor (hands) Postural, action Postural, action postural, action Postural, action Postural, action Postural

Scoliosis Moderate Mild - Mild - -

lumbar degeneration without any nerve contact or medullopathy.
Bone scintigraphy was normal. Electromyoneurography was
normal, but histological analysis of a skin sample from the lower
leg diagnosed clear small fibre neuropathy with no observed
subcutaneous nerve fibres.

Whole-exome sequencing identifies a heterozygous /IMPDH2
variant

We sequenced the exomes of three patients (II-1, II-6 and lII-3). The
identified shared variants were assessed based on rarity, predicted
severity, conservation and gene function (Fig. 1B), yielding a single
candidate gene, IMPDH2. A heterozygous four-base deletion led to an
early termination in the first exon of IMPDH2 (NM_000884.2:
c93_96del p.(Tyr32MetfsTer19), NC_000003.12:g. 49066688_4906
6691del) (Fig. 1D). No homozygotes for the variant allele and two
heterozygous carriers of Finnish descent, potential undiagnosed or
presymptomatic subjects, were found in the gnomAD database
(http://gnomad.broadinstitute.org/) making the variant extremely rare.
Multiple sequence alignment showed a high conservation of IMPDH2
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from human to yeast (Fig. 1E). Sanger sequencing of samples from six
affected family members and two nonaffected family members
confirmed the complete co-segregation of the dominant variant in
the dystonic subjects (Fig. 1A, Q).

Mutant IMPDH?2 transcript is degraded leading to an IMPDH2
deficiency

IMPDH2 is the first and rate-limiting enzyme in de novo GMP
biosynthesis, oxidising inosine monophosphate into xanthosine
monophosphate [7] (Fig. 2A).

Cultured fibroblasts showed a reduced IMPDH2 transcript
amount in patients, with ~70% of residual mRNA (Fig. 2B), from
which ~10% is mutant mRNA (Fig. 2G). The finding indicates
almost complete degradation of the mutant transcript, consistent
with nonsense-mediated mRNA decay due to the early stop codon.

To study a physiologically relevant cell type, we generated induced
pluripotent stem cells (iPSCs) and induced them to a neural lineage.
The total protein amount of IMPDH2 and its highly homologous
isoform IMPDH1 were detected together, as specific antibodies against
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IMPDH2 are unavailable to our knowledge [8]. The isoforms likely can
heterotetramerize, but show different expression patterns, IMPDH2
being the major form in the central nervous system (CNS).

Total IMPDH protein was decreased down to 70% in the patient
fibroblasts, iPSCs and neurospheres compared to controls (Fig. 2H, I).
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The reduction was more severe than expected, as IMPDH2 mRNA
was reduced by 30% and IMPDH1 mRNA expression was control-like
(Fig. 2C). The expression of the enzymes participating in alternative
or IMPDH2-related pathways were unchanged (Fig. 2D-F). The
IMPDH?2 variant leads to depletion of the total protein pool of
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Fig. 2

IMPDH2 deletion transcript leads to IMPDH deficiency. Red: patients. Black: controls. Healthy family member: black triangle.

A IMPDH2: rate-limiting enzyme and first reaction in de novo biosynthesis of guanine nucleotides. Enzymes previously associated with
dystonia in red. BH tetrahydrobiopterin, DDC aromatic amino acid decarboxylase, GCH1 GTP cyclohydrolase I, GMPR guanosine
monophosphate reductase, GMPS guanosine monophosphate synthetase, HPRT1 hypoxanthine phosphoribosyltransferase 1, PTPS
pyruvoyl-tetrahydropterin synthase, SPR sepiapterin reductase, TH tyrosine hydroxylase. B-F Relative (rel) mRNA expression of IMPDH2,
IMPDH1, HPRT1, GMPR1 and GMPR2. G Quantification of IMPDH?2 transcript with deletion in patients and controls. H, I IMPDH2 protein amount
in fibroblasts, induced pluripotent stem cells (iPSC) and differentiated neurospheres. J Volcano plot: serum metabolic profile changes between
patients and healthy controls. In red: significantly changed metabolites (Fold-change > 1.5 and p value < 0.01). K Deoxycytidine (dC)
concentration in serum. Statistical significance: pairwise two-tailed t test (*p < 0.05, **p < 0.01, ***p < 0.001).

IMPDH, suggesting that IMPDH2 amount and its metabolic
consequences regulate protein stability of both IMPDH2 and
IMPDH1. These findings suggest that IMPDH2 depletion causes
reduction of both IMPDH isoforms post-transcriptionally.

Patients present normal serum metabolomic profile and
nucleotide balance

The serum metabolomic analysis of five patients, one unaffected
family member and five age and gender-matched controls was
performed by a semi-quantitative targeted panel of 102 metabo-
lites. Three significantly changed metabolites were found (Fig. 2J),
out of which two were most enriched in the family members
independent of the disease status (Fig. S1). Deoxycytidine, a
nucleotide precursor, was reduced in the patients (Fig. 2K),
suggesting nucleotide metabolic disbalance. In fibroblasts, our
quantitative deoxynucleoside triphosphate (dNTP) pool concen-
tration analysis showed normal dNTP pools in dividing and
quiescent fibroblasts (Figs. S2, and S3).

DISCUSSION

Here we report IMPDH2 as a novel disease gene for dominantly
inherited juvenile-onset dystonia-tremor disorder. The causative
role of IMPDH2 was supported by (1) the complete segregation
and penetrance of the manifestation in a large pedigree; (2) high
conservation of the protein and mutation site in species; (3)
remarkably decreased gene product and (4) pathomechanistic
similarity to previously reported dopamine-linked dystonia path-
ways. Furthermore, a recent large study focusing on neurodeve-
lopmental disorders with dystonia raised attention to IMPDH2 as a
candidate gene [9], but direct evidence has been lacking.

IMPDH2 and IMPDH1 are tissue-specific enzyme isoforms, rate-
limiting in the de novo guanine biosynthesis pathway. IMPDH1
variants underlie autosomal dominant retinopathy [10, 11], but
IMPDH2 had not yet been assigned to a disease. We found a
heterozygous truncating variant of IMPDH2 to decrease protein
levels of both IMPDHs, more severely than predicted by mRNA
levels. The finding suggests that low IMPDH2 amount or involved
metabolites signal for high guanine, downregulating IMPDH1 as
well as preventing compensatory GTP-synthetic pathways. We
propose that in post-mitotic cells of the CNS, with considerably
lower nucleotide pools than in cultured fibroblasts [12] and high
IMPDH2 expression, the enzyme defect becomes rate-limiting,
challenging guanine and dopamine synthesis and resulting in
dystonia and tremor.

Clinically, IMPDH2-linked dystonia mimicks other dominantly
inherited dystonias such as those caused by variants in GCH1, also
an enzyme in the GTP-BH4 pathway. The IMPDH?2 reaction is flanked
by HPRT1 products—also a dystonia-linked protein—upstream from
GCH1. The conversion of GTP into the dopamine biosynthetic cofactor
BH4 is often affected in genetic dystonias (Fig. 2A) and also linked to
pain sensitivity [13]. One of our patients showed sensory defects in
the legs, whether this is linked to BH4 remains to be shown. A
heterozygous variant in GMPR (GMP reductase), the enzyme
catalysing the reverse reaction of IMPDH2, causes autosomal
dominant progressive external ophthalmoplegia with muscle mito-
chondrial respiratory chain defect [14]. Our findings highlight the cell-
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type-specific importance of metabolic pathways and their direction-
ality and point towards a shared pathophysiological mechanism
behind IMPDH2 deficiency and other inherited dystonias.

In conclusion, IMPDH2 is a novel dystonia gene linked to the
dopamine synthesis pathway, implying that the symptoms may be
L-DOPA responsive. Improved genetic knowledge is highly
valuable for diagnosis and therapy choices for this complex and
heterogeneous disease group.

Materials and methods are described in the supplementary
information.
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