Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homozygous COQ9 mutation: a new cause of potentially treatable hereditary spastic paraplegia

Abstract

Primary Coenzyme Q10 (CoQ10) deficiencies are a group of clinically heterogenous mitochondrial disorders that result from defects in CoQ10 biosynthesis. Their diagnosis is complicated by the absence of pathognomonic signs and poor genotype-phenotype correlations. Pathogenic variants in the COQ9 gene are a rare cause of CoQ10 deficiency: few cases have been reported, and the clinical presentation was described as a very severe multisystemic disorder with neonatal onset, ultimately leading to premature death. Through exome sequencing, we identified a novel homozygous splicing variant c.73 G > A in the COQ9 gene (NG_027696.1, NM_020312.4) in two adult siblings who presented with pure spastic paraplegia with onset in childhood. mRNA analysis from different tissues of one of the siblings revealed that this variant alters COQ9 splicing, resulting in undetectable levels of COQ9 and COQ7 proteins and reduced concentrations of CoQ10 in muscle and fibroblasts. Additionally, the accumulation of 6-demethoxycoenzyme Q10, the substrate of COQ7, was observed in both plasma and fibroblasts. Furthermore, fibroblast proliferation rate was reduced when enhancing the mitochondrial metabolism by replacing glucose with galactose in the culture medium, and was rescued by the addition of exogenous CoQ10, suggesting a therapeutic avenue for these patients. Altogether, we report here the first example of hereditary spastic paraplegia related to a mutation of the COQ9 gene that expands the spectrum of clinical manifestations and opens new therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: COQ9 c.73 G > A variation affects COQ9 splicing and decreases COQ9 and COQ7 protein level in the patients’ tissues.
Fig. 3: Representative HPLC-MS/MS chromatograms for the detection of CoQ10 and 6-DMQ.
Fig. 4: CoQ10 deficiency lowers cell proliferation but can be rescued by exogenous CoQ10.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Turunen M, Olsson J, Dallner G. Metabolism and function of Coenzyme Q. Biochim Biophys Acta. 2004;1660:171–199. https://doi.org/10.1016/j.bbamem.2003.11.012.

    Article  CAS  PubMed  Google Scholar 

  2. Guerra RM, Pagliarini DJ. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci. 2023;48:463–476. https://doi.org/10.1016/j.tibs.2022.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mantle D, Millichap L, Castro-Marrero J, Hargreaves IP. Primary coenzyme Q10 deficiency: an update. Antioxidants. 2023;12:1652.

  4. Salviati L, Trevisson E, Agosto C, Doimo M, Navas P (2017). Primary coenzyme Q10 deficiency. In GeneReviews® 2017.

  5. Paprocka J, Nowak M, Chuchra P, Śmigiel R. COQ8A-Ataxia as a manifestation of primary Coenzyme Q deficiency. Metabolites. 2022;12:955 https://doi.org/10.3390/metabo12100955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drovandi S, Lipska-Ziętkiewicz BS, Ozaltin F, Emma F, Gulhan B, Boyer O, et al. Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency-associated glomerulopathy. Kidney Int. 2022;102:592–603. https://doi.org/10.1016/j.kint.2022.02.040.

    Article  CAS  PubMed  Google Scholar 

  7. Jacquier A, Theuriet J, Fontaine F, Mosbach V, Lacoste N, Ribault S, et al. Homozygous COQ7 mutation: a new cause of potentially treatable distal hereditary motor neuropathy. Brain. 2023;146:3470–3483. https://doi.org/10.1093/brain/awac453.

    Article  PubMed  Google Scholar 

  8. Wang Y, Hekimi S. The efficacy of coenzyme Q10 treatment in alleviating the symptoms of primary coenzyme Q10 deficiency: A systematic review. J Cell Mol Med. 2022;26:4635–4644. https://doi.org/10.1111/jcmm.17488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manicki M, Aydin H, Abriata LA, Overmyer KA, Guerra RM, Coon JJ, et al. Structure and functionality of a multimeric human COQ7:COQ9 complex. Mol Cell. 2022;82:4307–4323. https://doi.org/10.1016/j.molcel.2022.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, López LC, et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary Coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet. 2009;84:558–566. https://doi.org/10.1016/j.ajhg.2009.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Danhauser K, Herebian D, Haack TB, Rodenburg RJ, Strom TM, Meitinger T, et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet. 2016;24:450–454. https://doi.org/10.1038/ejhg.2015.133.

    Article  CAS  PubMed  Google Scholar 

  12. Smith AC, Ito Y, Ahmed A, Schwartzentruber JA, Beaulieu CL, Aberg E, et al. A family segregating lethal neonatal Coenzyme Q10 deficiency caused by mutations in COQ9. J Inherit Metab Dis. 2018;41:719–729. https://doi.org/10.1007/s10545-017-0122-7.

    Article  CAS  PubMed  Google Scholar 

  13. Olgac A, Oztoprak U, Kasapkara CS, Kılıç M, Yüksel D, Derinkuyu EB, et al. A rare case of primary Coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33:165–170. https://doi.org/10.1515/jpem-2019-0245.

    Article  CAS  PubMed  Google Scholar 

  14. Dimassi S, Simonet T, Labalme A, Boutry-Kryza N, Campan-Fournier A, Lamy R, et al. Comparison of two next-generation sequencing kits for diagnosis of epileptic disorders with a user-friendly tool for displaying gene coverage, DeCovA. Appl Transl Genom. 2015;17:19–25. https://doi.org/10.1016/j.atg.2015.10.001.

    Article  Google Scholar 

  15. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9. https://doi.org/10.1038/nprot.2015.123.

    Article  CAS  PubMed  Google Scholar 

  16. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–249. https://doi.org/10.1038/nmeth0410-248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–362. https://doi.org/10.1038/nmeth.2890.

    Article  CAS  PubMed  Google Scholar 

  18. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–315. https://doi.org/10.1038/ng.2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: An ensemble method for predicting the pathogenicity of rare Missense variants. Am J Hum Genet. 2016;99:877–885. https://doi.org/10.1016/j.ajhg.2016.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tordai H, Torres O, Csepi M, Padányi R, Lukács GL, Hegedűs T. Analysis of AlphaMissense data in different protein groups and structural context. Sci Data. 2024;11:495. https://doi.org/10.1038/s41597-024-03327-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39:W347–52. https://doi.org/10.1093/nar/gkr485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schluth-Bolard C, Diguet F, Chatron N, Rollat-Farnier PA, Bardel C, Afenjar A, et al. Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders. J Med Genet. 2019;56:526–535. https://doi.org/10.1136/jmedgenet-2018-105778.

    Article  CAS  PubMed  Google Scholar 

  23. Medja F, Allouche S, Frachon P, Jardel C, Malgat M, Mousson de Camaret B, et al. Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion. 2009;9:331–339. https://doi.org/10.1016/j.mito.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  24. Fontaine F, Legallois D, Créveuil C, Chtourou M, Coulbault L, Milliez P, et al. Is plasma concentration of coenzyme Q10 a predictive marker for left ventricular remodelling after revascularization for ST-segment elevation myocardial infarction?. Ann Clin Biochem. 2021;58:327–334. https://doi.org/10.1177/00045632211001100.

    Article  CAS  PubMed  Google Scholar 

  25. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85. https://doi.org/10.1016/0003-2697(85)90442-7.

    Article  CAS  PubMed  Google Scholar 

  26. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–985. https://doi.org/10.1093/nar/gkt1113.

    Article  CAS  PubMed  Google Scholar 

  27. Fokkema IF, Kroon M, López Hernández JA, Asscheman D, Lugtenburg I, Hoogenboom J, et al. The LOVD3 platform: efficient genome-wide sharing of genetic variants. Eur J Hum Genet. 2021;29:1796–1803. https://doi.org/10.1038/s41431-021-00959-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. https://doi.org/10.1038/s41586-020-2308-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–1980. https://doi.org/10.1093/bioinformatics/bty897.

    Article  CAS  PubMed  Google Scholar 

  30. Baux D, Van Goethem C, Ardouin O, Guignard T, Bergougnoux A, Koenig M, et al. MobiDetails: online DNA variants interpretation. Eur J Hum Genet. 2021;29:356–360.

    Article  CAS  PubMed  Google Scholar 

  31. Leman R, Parfait B, Vidaud D, Girodon E, Pacot L, Le Gac G, et al. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing. Hum Mutat. 2022;43:2308–2323. https://doi.org/10.1002/humu.24491.

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A one-stop database of functional predictions and annotations for human nonsynonymous and Splice-Site SNVs. Hum Mutat. 2016;37:235–41. https://doi.org/10.1002/humu.22932.

    Article  CAS  PubMed  Google Scholar 

  33. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–548.e24. https://doi.org/10.1016/j.cell.2018.12.015.

    Article  CAS  PubMed  Google Scholar 

  34. Yubero D, Allen G, Artuch R, Montero R. The value of Coenzyme Q10 determination in mitochondrial patients. J Clin Med. 2017;6:37–47. https://doi.org/10.3390/jcm6040037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herebian D, Seibt A, Smits SHJ, Bünning G, Freyer C, Prokisch H, et al. Detection of 6-demethoxyubiquinone in CoQ10 deficiency disorders: insights into enzyme interactions and identification of potential therapeutics. Mol Genet Metab. 2017;121:216–223. https://doi.org/10.1016/j.ymgme.2017.05.012.

    Article  CAS  PubMed  Google Scholar 

  36. Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: a literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–180. https://doi.org/10.1016/j.freeradbiomed.2021.02.046.

    Article  CAS  PubMed  Google Scholar 

  37. Luna-Sánchez M, Díaz-Casado E, Barca E, Tejada MA, Montilla-García A, Cobos EJ, et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med. 2015;7:670–687. https://doi.org/10.15252/emmm.201404632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wongkittichote P, Duque Lasio ML, Magistrati M, Pathak S, Sample B, Rocha Carvalho D, et al. Phenotypic, molecular, and functional characterization of COQ7-related primary CoQ10 deficiency: hypomorphic variants and two distinct disease entities. Mol Genet Metab. 2023;139:107630. https://doi.org/10.1016/j.ymgme.2023.107630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Smith C, Parboosingh JS, Khan A, Innes M, Hekimi S. Pathogenicity of two COQ7 mutations and responses to 2,4-dihydroxybenzoate bypass treatment. J Cell Mol Med. 2017;21:2329–2343. https://doi.org/10.1111/jcmm.13154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Freyer C, Stranneheim H, Naess K, Mourier A, Felser A, Maffezzini C, et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J Med Genet. 2015;52:779–783. https://doi.org/10.1136/jmedgenet-2015-102986.

    Article  CAS  PubMed  Google Scholar 

  41. López-Martín JM, Salviati L, Trevisson E, Montini G, DiMauro S, Quinzii C, et al. Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet. 2007;16:1091–1097. https://doi.org/10.1093/hmg/ddm058.

    Article  CAS  PubMed  Google Scholar 

  42. Quinzii CM, Luna-Sanchez M, Ziosi M, Hidalgo-Gutierrez A, Kleiner G, Lopez LC. The role of sulfide oxidation impairment in the pathogenesis of primary CoQ deficiency. Front Physiol. 2017;8:525 https://doi.org/10.3389/fphys.2017.00525.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rodríguez-Hernández A, Cordero MD, Salviati L, Artuch R, Pineda M, Briones P, et al. Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy. 2009;5:19–32. https://doi.org/10.4161/auto.5.1.7174.

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Writing – original draft, F.F.; writing – review & editing, S.A., G.L., F.F., A.J., J.T.; conceptualization, G.L., S.A., F.F., A.J., J.T.; formal analysis, S.A., A.J.; methodology, G.L., S.A., F.F., A.J., J.T.; investigation – in vitro and variant analysis, F.F., A.L., J.T., A.J., N.L., N.S.; investigation – clinical, C.L.; visualization, F.F., A.J.; supervision, S.A., G.L.

Corresponding author

Correspondence to Stéphane Allouche.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All procedures performed in this study involving human participants were carried out in accordance with the ethical standards of the University Hospital of Caen, and the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from both patients included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontaine, F., Labalme, A., Laurencin, C. et al. Homozygous COQ9 mutation: a new cause of potentially treatable hereditary spastic paraplegia. Eur J Hum Genet (2025). https://doi.org/10.1038/s41431-025-01895-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-025-01895-w

Search

Quick links