Abstract
Predictivity of optical coherence tomography (OCT) examination for the development of neovascular age-related macular degeneration (nAMD) was demonstrated to be superior compared to other methods, suggesting it as an elective method for screening purposes. Moreover, OCT and OCT angiography (OCTA) have enabled us to provide accurate prognostic information to nAMD patients. Along with well-known prognostic biomarkers, such as the presence of reticular pseudodrusen, the volume of the pigment epithelial detachment (PED), subretinal fluid (SRF), intraretinal fluid (IRF) and hyperreflective foci (HRF), emerging parameters show promising results and may allow a further refinement of prediction and customization of treatment and follow up strategies. This review of the literature discusses the main OCT and OCTA biomarkers reported in literature for nAMD, with a special focus on recent updates on the subject. Future perspectives of clinical applications include the development of artificial intelligence models considering all the described biomarkers to allow automatic and detailed characterization of each lesion based on imaging information.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 18 print issues and online access
269,00 € per year
only 14,94 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Korva-Gurung I, Kubin AM, Ohtonen P, Hautala N Incidence and prevalence of neovascular age-related macular degeneration: 15-year epidemiological study in a population-based cohort in Finland. Annals of Medicine [Internet]. 2023 Dec 12 [cited 2024 May 1]; Available from: https://www.tandfonline.com/doi/abs/10.1080/07853890.2023.2222545.
Sivaprasad S, Banister K, Azuro-Blanco A, Goulao B, Cook JA, Hogg R, et al. Diagnostic accuracy of monitoring tests of fellow eyes in patients with unilateral neovascular age-related macular degeneration: early detection of neovascular age-related macular degeneration study. Ophthalmology. 2021;128:1736–47.
Banister K, Cook JA, Scotland G, Azuara-Blanco A, Goulão B, Heimann H, et al. Non-invasive testing for early detection of neovascular macular degeneration in unaffected second eyes of older adults: EDNA diagnostic accuracy study. Health Technol Assess. 2022;26:1–142.
Maggio E, Polito A, Guerriero M, Prigione G, Parolini B, Pertile G. Vitreomacular adhesion and the risk of neovascular age-related macular degeneration. Ophthalmology. 2017;124:657–66.
Horozoglu Ceran T, Sonmez K, Kirtil G. The impact of vitreomacular traction on vitreous vascular endothelial growth factor and placental growth factor levels in neovascular age-related macular degeneration patients. Eye. 2024;11:1–6.
Ruggeri ML, Toto L, Zeppa L, Gironi M, Quarta A, Venturoni P, et al. Impact of vitreomacular interface on intravitreal Brolucizumab efficacy in age-related macular neovascularization. Eur J Ophthalmol. 2024;16:11206721241282429.
Mayr-Sponer U, Waldstein SM, Kundi M, Ritter M, Golbaz I, Heiling U, et al. Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology. 2013;120:2620–9.
Neudorfer M, Fuhrer AE, Zur D, Barak A. The role of posterior vitreous detachment on the efficacy of anti-vascular endothelial growth factor intravitreal injection for treatment of neovascular age-related macular degeneration. Indian J Ophthalmol. 2018;66:1802–7.
Svasti-Salee CR, Snead MP, Alexander P. Response to ’Effect of posterior vitreous detachment on treat-and-extend versus monthly ranibizumab for neovascular age-related macular degeneration. 2025 Feb 18 [cited 2025 Feb 18]; Available from: https://bjo.bmj.com/content/response-effect-posterior-vitreous-detachment-treat-and-extend-versus-monthly-ranibizumab.
Miyata M, Ooto S, Yamashiro K, Tamura H, Uji A, Miyake M, et al. Influence of vitreomacular interface score on treatment outcomes of anti-VEGF therapy for neovascular age-related macular degeneration. Int J Retin Vitreous. 2021;7:77.
Rush RB, Rush SW. Ranibizumab versus bevacizumab for neovascular age-related macular degeneration with an incomplete posterior vitreous detachment. Asia Pac J Ophthalmol. 2016;5:171–5.
Bakaliou A, Georgakopoulos C, Tsilimbaris M, Farmakakis N. Posterior vitreous detachment and its role in the evolution of dry to wet age related macular degeneration. Clin Ophthalmol. 2023;17:879–85.
Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with spectral ___domain optical coherence tomography in age-related macular degeneration. Ophthalmology. 2008;115:1883–1890.e1.
Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J Ophthalmol. 2021;2021:e6096017.
Pang CE, Messinger JD, Zanzottera EC, Freund KB, Curcio CA. The onion sign in neovascular age-related macular degeneration represents cholesterol crystals. Ophthalmology. 2015;122:2316–26.
Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, et al. Hyperreflective dots: a new spectral-___domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica. 2012;229:32–7.
Tiosano L, Byon I, Alagorie AR, Ji YS, Sadda SR. Choriocapillaris flow deficit associated with intraretinal hyperreflective foci in intermediate age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2020;258:2353–62.
Hu X, Waldstein SM, Klimscha S, Sadeghipour A, Bogunovic H, Gerendas BS, et al. Morphological and functional characteristics at the onset of exudative conversion in age-related macular degeneration. Retina. 2020;40:1070.
Sacconi R, Sarraf D, Garrity S, Freund KB, Yannuzzi LA, Gal-Or O, et al. Nascent type 3 neovascularization in age-related macular degeneration. Ophthalmol Retin. 2018;2:1097–106.
Waldstein SM, Vogl WD, Bogunovic H, Sadeghipour A, Riedl S, Schmidt-Erfurth U. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography. JAMA Ophthalmol. 2020;138:740–7.
Goh KL, Wintergerst MWM, Abbott CJ, Hadoux X, Jannaud M, Kumar H, et al. Hyperreflective foci not seen as hyperpigmentary abnormalities on color fundus photographs in age-related macular degeneration. Retina. 2024;44:214.
Oncel D, Corradetti G, He Y, Ashrafkhorasani M, Nittala MG, Stambolian D, et al. Assessment of intraretinal hyperreflective foci using multimodal imaging in eyes with age-related macular degeneration. Acta Ophthalmol. 2024;102:e126–32.
Herrera G, Cheng Y, Attiku Y, Hiya FE, Shen M, Liu J, et al. Comparison between spectral-___domain and swept-source OCT angiography scans for the measurement of hyperreflective foci in AMD. Ophthalmol Sci. 2024;21:100633.
Akagi-Kurashige Y, Tsujikawa A, Oishi A, Ooto S, Yamashiro K, Tamura H, et al. Relationship between retinal morphological findings and visual function in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2012;250:1129–36.
Segal O, Ferencz JR, Mimouni M, Nesher R, Cohen P, Nemet AY. Lamellar macular holes associated with end-stage exudative age-related macular degeneration. Isr Med Assoc J. 2015;17:750–4.
Moraes G, Fu DJ, Wilson M, Khalid H, Wagner SK, Korot E, et al. Quantitative analysis of OCT for neovascular age-related macular degeneration using deep learning. Ophthalmology. 2021;128:693–705.
nakanishi Y, Tsujikawa A, Tamura H, Miyata M, Hata M, Kogo T, et al. Association of hyperreflective foci and subretinal fibrosis in neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci. 2024;65:4388.
Wan Z, Wu Y, Shen T, Hu C, Lin R, Ren C, et al. Evaluation of inflammatory hyperreflective foci and plasma EPA as diagnostic and predictive markers for age-related macular degeneration. Front Neurosci. 2024 Oct 10 [cited 2024 Nov 7];18. Available from: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1401101/full.
Ebner C, Wernigg C, Schütze C, Weingessel B, Vécsei-Marlovits PV. Retinal pigment epithelial characteristics in eyes with neovascular age-related macular degeneration. Wien Klin Wochenschr. 2021;133:123–30.
Türksever C, Prünte C, Hatz K. Baseline optical coherence tomography findings as outcome predictors after switching from ranibizumab to aflibercept in neovascular age-related macular degeneration following a treat-and-extend regimen. Ophthalmologica. 2017;238:172–8.
Amarasekera S, Samanta A, Jhingan M, Arora S, Singh S, Tucci D, et al. Optical coherence tomography predictors of progression of non-exudative age-related macular degeneration to advanced atrophic and exudative disease. Graefes Arch Clin Exp Ophthalmol. 2022;260:737–46.
Bousquet E, Santina A, Corradetti G, Sacconi R, Ramtohul P, Bijon J, et al. From drusen to type 3 macular neovascularization. Retina. 2024;44:189.
Lee S, Kim KT, Kim DY, Chae JB, Seo EJ. Outer nuclear layer recovery as a predictor of visual prognosis in type 1 choroidal neovascularization of neovascular age-related macular degeneration. Sci Rep. 2023;13:5045.
Oishi A, Fang PP, Thiele S, Holz FG, Krohne TU. Longitudinal change of outer nuclear layer after retinal pigment epithelial tear secondary to age-related macular degeneration. Retina. 2018;38:1331.
Mitamura Y, Mitamura-Aizawa S, Katome T, Naito T, Hagiwara A, Kumagai K, et al. Photoreceptor impairment and restoration on optical coherence tomographic image. J Ophthalmol. 2013;2013:518170.
Schmidt-Erfurth U, Vogl WD, Jampol LM, Bogunović H. Application of automated quantification of fluid volumes to anti–VEGF therapy of neovascular age-related macular degeneration. Ophthalmology. 2020;127:1211–9.
Ashraf M, Souka A, Adelman RA. Age-related macular degeneration: using morphological predictors to modify current treatment protocols. Acta Ophthalmol. 2018;96:120–33.
Guymer RH, Markey CM, McAllister IL, Gillies MC, Hunyor AP, Arnold JJ, et al. Tolerating subretinal fluid in neovascular age-related macular degeneration treated with ranibizumab using a treat-and-extend regimen: FLUID study 24-month results. Ophthalmology. 2019;126:723–34.
Mares V, Reiter GS, Bogunovic H, Leingang O, Barthelmes D, Schmidt-Erfurth U. AI-based retinal fluid monitoring correlated with automated photoreceptor loss quantification in neovascular AMD in the fight retinal blindness! registry. Investig Ophthalmol Vis Sci. 2023;64:1285.
Schmidt-Erfurth U, Reiter GS, Riedl S, Seeböck P, Vogl WD, Blodi BA, et al. AI-based monitoring of retinal fluid in disease activity and under therapy. Prog Retinal Eye Res. 2022;86:100972.
Lek JJ, Caruso E, Baglin EK, Sharangan P, Hodgson LAB, Harper CA, et al. Interpretation of subretinal fluid using OCT in intermediate age-related macular degeneration. Ophthalmol Retin. 2018;2:792–802.
Zur D, Guymer R, Korobelnik JF, Wu L, Viola F, Eter N, et al. Impact of residual retinal fluid on treatment outcomes in neovascular age-related macular degeneration. Br J Ophthalmol [Internet]. 2024 Jul 19 [cited 2024 Nov 7]; Available from: https://bjo.bmj.com/content/early/2024/08/01/bjo-2024-325640.
Zweifel SA, Engelbert M, Laud K, Margolis R, Spaide RF, Freund KB. Outer retinal tubulation: a novel optical coherence tomography finding. Arch Ophthalmol. 2009;127:1596–602.
Schaal KB, Freund KB, Litts KM, Zhang Y, Messinger JD, Curcio CA. Outer retinal tubulation in advanced age-related macular degeneration: optical coherence tomographic findings correspond to histology. Retina. 2015;35:1339–50.
Metrangolo C, Donati S, Mazzola M, Fontanel L, Messina W, D’alterio G, et al. OCT biomarkers in neovascular age-related macular degeneration: a narrative review. J Ophthalmol. 2021;2021:9994098.
Lee JY, Folgar FA, Maguire MG, Ying GS, Toth CA, Martin DF, et al. Outer retinal tubulation in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology. 2014;121:2423–31.
Dirani A, Gianniou C, Marchionno L, Decugis D, Mantel I. Incidence of outer retinal tubulation in ranibizumab-treated age-related macular degeneration. Retina. 2015;35:1166–72.
Yordi S, Cakir Y, Cetin H, Talcott KE, Srivastava SK, Hu J, et al. Bacillary layer detachment in neovascular age-related macular degeneration from a phase III clinical trial. Ophthalmol Retin. 2024;8:754–64.
Feo A, Stradiotto E, Sacconi R, Menean M, Querques G, Romano MR Subretinal hyperreflective material in retinal and chorioretinal disorders: a comprehensive review. Survey of Ophthalmology [Internet]. 2023 Dec 29 [cited 2024 Apr 7]; Available from: https://www.sciencedirect.com/science/article/pii/S0039625723001698.
Pokroy R, Mimouni M, Barayev E, Segev F, Geffen N, Nemet AY, et al. Prognostic value of subretinal hyperreflective material in neovascular age-related macular degeneration treated with bevacizumab. Retina. 2018;38:1485–91.
Kawashima Y, Hata M, Oishi A, Ooto S, Yamashiro K, Tamura H, et al. Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration. Am J Ophthalmol. 2017;181:61–70.
Kumar JB, Stinnett S, Han JIL, Jaffe GJ. Correlation of subretinal hyperreflective material morphology and visual acuity in neovascular age-related macular degeneration. Retina. 2020;40:845–56.
Teo KYC, Zhao J, Ibrahim FI, Fenner B, Chakravarthy U, Cheung CMG. Features associated with vision in eyes with subfoveal fibrosis from neovascular age-related macular degeneration. Am J Ophthalmol. 2024;261:121–31.
Pu J, Zhuang X, Li M, Zhang X, Su Y, He G, et al. Analyzing formation and absorption of avascular subretinal hyperreflective material in nAMD from OCTA-based insights. Am J Ophthalmol. 2024;267:192–203.
Yu S, Bachmeier I, Hernandez-Sanchez J, Garcia Armendariz B, Ebneter A, Pauleikhoff D, et al. Hyperreflective material boundary remodeling in neovascular age-related macular degeneration: a post hoc analysis of the AVENUE trial. Ophthalmol Retin. 2023;7:990–8.
Bachmeier I, Yu S, Glittenberg C, Maunz A, Fauser S. Model for resolution of subretinal hyperreflective material (SHRM) in neovascular age-related macular degeneration (nAMD) using deep learning (DL) image segmentation. Investig Ophthalmol Vis Sci. 2024;65:PB009.
Sadda S, Sarraf D, Khanani AM, Tadayoni R, Chang AA, Saffar I, et al. Comparative assessment of subretinal hyper-reflective material in patients treated with brolucizumab versus aflibercept in HAWK and HARRIER. Br J Ophthalmol. 2024;108:852–8.
Dieaconescu DA, Dieaconescu IM, Williams MA, Hogg RE, Chakravarthy U. Drusen height and width are highly predictive markers for progression to neovascular AMD. Investig Ophthalmol Vis Sci. 2012;53:2910.
Folgar FA, Yuan EL, Sevilla MB, Chiu SJ, Farsiu S, Chew EY, et al. Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration. Ophthalmology. 2016;123:39–50.e1.
Schlanitz FG, Baumann B, Kundi M, Sacu S, Baratsits M, Scheschy U, et al. Drusen volume development over time and its relevance to the course of age-related macular degeneration. Br J Ophthalmol. 2017;101:198–203.
Hagag AM, Kaye R, Hoang V, Riedl S, Anders P, Stuart B, et al. Systematic review of prognostic factors associated with progression to late age-related macular degeneration: pinnacle study report 2. Surv Ophthalmol. 2024;69:165–72.
Zhou Q, Daniel E, Maguire MG, Grunwald JE, Martin ER, Martin DF, et al. Pseudodrusen and incidence of late age-related macular degeneration in fellow eyes in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2016;123:1530–40.
Kim KL, Joo K, Park SJ, Park KH, Woo SJ. Progression from intermediate to neovascular age-related macular degeneration according to drusen subtypes: Bundang AMD cohort study report 3. Acta Ophthalmol. 2022;100:e710–8.
Lee J, Choi S, Lee CS, Kim M, Kim SS, Koh HJ, et al. Neovascularization in fellow eye of unilateral neovascular age-related macular degeneration according to different drusen types. Am J Ophthalmol. 2019;208:103–10.
Sakurada Y, Parikh R, Gal-Or O, Balaratnasingam C, Leong BCS, Tanaka K, et al. CUTICULAR DRUSEN: risk of geographic atrophy and macular neovascularization. RETINA. 2020;40:257.
Ahmed D, Stattin M, Haas AM, Graf A, Krepler K, Ansari-Shahrezaei S. Drusen characteristics of type 2 macular neovascularization in age-related macular degeneration. BMC Ophthalmol. 2020;20:381.
Tan ACS, Pilgrim MG, Fearn S, Bertazzo S, Tsolaki E, Morrell AP, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med. 2018;10:eaat4544.
Vidal-Oliver L, Montolío-Marzo E, Gallego-Pinazo R, Dolz-Marco R. Optical coherence tomography biomarkers in early and intermediate age-related macular degeneration: a clinical guide. Clin Exp Ophthalmol. 2024;52:207–19.
Miere A, Sacconi R, Amoroso F, Capuano V, Jung C, Bandello F, et al. Sub-retinal pigment epithelium multilaminar hyperreflectivity at the onset of type 3 macular neovascularization. Retina. 2021;41:135.
Astroz P, Miere A, Amoroso F, Semoun O, Khorrami A, Srour M, et al. Subretinal transient hyporeflectivity in age-related macular degeneration: a spectral ___domain optical coherence tomography study. Retina. 2022;42:653–60.
Shi Y, Motulsky EH, Goldhardt R, Zohar Y, Thulliez M, Feuer W, et al. Predictive value of the OCT double-layer sign for identifying subclinical neovascularization in age-related macular degeneration. Ophthalmol Retin. 2019;3:211–9.
Wakatsuki Y, Hirabayashi K, Yu HJ, Marion KM, Corradetti G, Wykoff CC, et al. Optical coherence tomography biomarkers for conversion to exudative neovascular age-related macular degeneration. Am J Ophthalmol. 2023;247:137–44.
Narita C, Wu Z, Rosenfeld PJ, Yang J, Lyu C, Caruso E, et al. Structural OCT signs suggestive of subclinical nonexudative macular neovascularization in eyes with large Drusen. Ophthalmology. 2020;127:637–47.
Csincsik L, Muldrew KA, Bettiol A, Wright DM, Rosenfeld PJ, Waheed NK, et al. The Double Layer Sign Is Highly Predictive of Progression to Exudation in Age-Related Macular Degeneration. Ophthalmology Retina [Internet]. 2023 Oct 14 [cited 2024 Feb 4]; Available from: https://www.sciencedirect.com/science/article/pii/S2468653023004980.
Shu Y, Ye F, Liu H, Wei J, Sun X. Predictive value of pigment epithelial detachment markers for visual acuity outcomes in neovascular age-related macular degeneration. BMC Ophthalmol. 2023;23:83.
Khanani AM, Eichenbaum D, Schlottmann PG, Tuomi L, Sarraf D. Optimal management of pigment epithelial detachments in eyes with neovascular age-related macular degeneration. Retina. 2018;38:2103.
de Massougnes S, Dirani A, Mantel I. Good visual outcome at 1 year in neovascular age-related macular degeneration with pigment epithelium detachment: factors influencing the treatment response. RETINA. 2018;38:717.
Ho AC, Busbee BG, Regillo CD, Wieland MR, Van Everen SA, Li Z, et al. Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology. 2014;121:2181–92.
Selvam A, Singh SR, Arora S, Patel M, Kuchhal A, Shah S, et al. Pigment epithelial detachment composition indices (PEDCI) in neovascular age-related macular degeneration. Sci Rep. 2023;13:68.
Cho HJ, Kim KM, Kim HS, Lee DW, Kim CG, Kim JW. Response of pigment epithelial detachment to anti–vascular endothelial growth factor treatment in age-related macular degeneration. Am J Ophthalmol. 2016;166:112–9.
Cozzi M, Monteduro D, Parrulli S, Ristoldo F, Corvi F, Zicarelli F, et al. Prechoroidal cleft thickness correlates with disease activity in neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2022;260:781–9.
Kim JH, Chang YS, Kim JW, Kim CG, Lee DW. Prechoroidal cleft in type 3 neovascularization: incidence, timing, and its association with visual outcome. J Ophthalmol. 2018;2018:e2578349.
Kredi G, Iglicki M, Gomel N, Hilely A, Loewenstein A, Habot-Wilner Z, et al. Risk factors and clinical significance of prechoroidal cleft in eyes with neovascular age-related macular degeneration in Caucasian patients. Acta Ophthalmol. 2023;101:e338–45.
Cukras CA, Agrón E, Klein ML, Ferris FL III, Chew EY, Gensler G, et al. Drusenoid pigment epithelial detachment as an added risk factor for disease advancement in age-related macular degeneration. Investig Ophthalmol Vis Sci. 2010;51:96.
Shijo T, Sakurada Y, Tanaka K, Miki A, Sugiyama A, Onoe H, et al. Incidence and risk of advanced age-related macular degeneration in eyes with drusenoid pigment epithelial detachment. Sci Rep. 2022;12:4715.
Sacconi R, Fragiotta S, Sarraf D, Sadda SR, Freund KB, Parravano M, et al. Towards a better understanding of non-exudative choroidal and macular neovascularization. Prog Retinal Eye Res. 2022;13:101113.
Serra R, Coscas F, Boulet JF, Cabral D, Lupidi M, Coscas GJ, et al. Predictive activation biomarkers of treatment-naive asymptomatic choroidal neovascularization in age-related macular degeneration. RETINA. 2020;40:1224.
Yu JJ, Agrón E, Clemons TE, Domalpally A, van Asten F, Keenan TD, et al. Natural history of drusenoid pigment epithelial detachment associated with age-related macular degeneration: age-related eye disease study 2 report no. 17. Ophthalmology. 2019;126:261–73.
Wei X, Ting DSW, Ng WY, Khandelwal N, Agrawal R, Cheung CMG. Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina. 2017;37:1120.
Velaga SB, Nittala MG, Vupparaboina KK, Jana S, Chhablani J, Haines J, et al. Choroidal vascularity index and choroidal thickness in eyes with reticular pseudodrusen. Retina. 2020;40:612.
Agrawal R, Ding J, Sen P, Rousselot A, Chan A, Nivison-Smith L, et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index. Prog Retinal Eye Res. 2020;77:100829.
Abdolrahimzadeh S, Di Pippo M, Sordi E, Cusato M, Lotery AJ. Subretinal drusenoid deposits as a biomarker of age-related macular degeneration progression via reduction of the choroidal vascularity index. Eye. 2023;37:1365–70.
Pellegrini M, Bernabei F, Mercanti A, Sebastiani S, Peiretti E, Iovino C, et al. Short-term choroidal vascular changes after aflibercept therapy for neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2021;259:911–8.
Boscia G, Pozharitskiy N, Grassi MO, Borrelli E, D’Addario M, Alessio G, et al. Choroidal remodeling following different anti-VEGF therapies in neovascular AMD. Sci Rep. 2024;14:1941.
Shen M, Zhou H, Lu J, Li J, Jiang X, Trivizki O, et al. Choroidal changes after anti-VEGF therapy in AMD eyes with different types of macular neovascularization using swept-source OCT angiography. Investig Ophthalmol Vis Sci. 2023;64:16.
Kumar JB, Wai KM, Ehlers JP, Singh RP, Rachitskaya AV. Subfoveal choroidal thickness as a prognostic factor in exudative age-related macular degeneration. Br J Ophthalmol. 2019;103:918–21.
Fernández-Avellaneda P, Freund KB, Wang RK, He Q, Zhang Q, Fragiotta S, et al. Multimodal imaging features and clinical relevance of subretinal lipid globules. Am J Ophthalmol. 2021;222:112–25.
Padnick-Silver L, Weinberg AB, Lafranco FP, Macsai MS. Pilot study for the detection of early exudative age-related macular degeneration with optical coherence tomography. Retina. 2012;32:1045–56.
Karacorlu M, Sayman Muslubas I, Arf S, Hocaoglu M, Ersoz MG. Membrane patterns in eyes with choroidal neovascularization on optical coherence tomography angiography. Eye. 2019;33:1280–9.
Miere A, Butori P, Cohen SY, Semoun O, Capuano V, Jung C, et al. VASCULAR remodeling of choroidal neovascularization after anti-vascular endothelial growth factor therapy visualized on optical coherence tomography angiography. Retina. 2019;39:548–57.
Kuehlewein L, Bansal M, Lenis TL, Iafe NA, Sadda SR, Bonini Filho MA, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160:739–748.e2.
Crincoli E, Catania F, Sacconi R, Ribarich N, Ferrara S, Parravano M, et al. Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD. Retina. 2024;14.
Spaide RF. Optical coherence tomography angiography signs of vascular Abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol. 2015;160:6–16.
Barbazetto I, Saroj N, Shapiro H, Wong P, Freund KB. Dosing regimen and the frequency of macular hemorrhages in neovascular age-related macular degeneration treated with ranibizumab. Retina. 2010;30:1376–85.
Nissen AHK, Kiilgaard HC, van Dijk EHC, Hajari JN, Huemer J, Iovino C, et al. Exudative progression of treatment-naïve nonexudative macular neovascularization in age-related macular degeneration: a systematic review with meta-analyses. Am J Ophthalmol. 2024;257:46–56.
Cho HJ, Kim M, Kim J, Yoon I, Park S, Kim CG Factors associated with the development of exudation in treatment-naive eyes with nonexudative macular neovascularization. Graefes Arch Clin Exp Ophthalmol. 2024 Feb 13 [cited 2024 May 1]; Available from: https://doi.org/10.1007/s00417-024-06384-2.
Pauleikhoff D, Gunnemann ML, Ziegler M, Heimes-Bussmann B, Bormann E, Bachmeier I, et al. Morphological changes of macular neovascularization during long-term anti-VEGF-therapy in neovascular age-related macular degeneration. Plos One. 2023;18:e0288861.
Schranz M, Gerendas BS, Reiter GS, Bogunovic H, Deak G, Schmidt-Erfurth U. Correlation between retinal fluid volumes and macular neovascularization parameters in neovascular AMD. Investig Ophthalmol Vis Sci. 2023;64:4425.
Lee H, Kim S, Kim MA, Chung H, Kim HC. Morphology of en face Haller vessel and macular neovascularization at baseline and 3 months as predictive factors in age-related macular degeneration. Sci Rep. 2022;12:10821.
Shen M, Zhang Q, Yang J, Zhou H, Chu Z, Zhou X, et al. Swept-Source OCT angiographic characteristics of treatment-naïve nonexudative macular neovascularization in AMD prior to exudation. Investig Ophthalmol Vis Sci. 2021;62:14.
Serra R, Coscas F, Pinna A, Cabral D, Coscas G, Souied EH. Quantitative optical coherence tomography angiography features of inactive macular neovascularization in age-related macular degeneration. Retina. 2021;41:93.
Crincoli E, Catania F, Labbate G, Sacconi R, Ferrara S, Parravano M, et al. Microvascular changes in treatment naïve non-exudative macular neovascularization complicated by exudation. Retina. 2022;12; https://doi.org/10.1097/IAE.0000000000004194.
Faatz H, Rothaus K, Ziegler M, Book M, Spital G, Lange C, et al. The architecture of macular neovascularizations predicts treatment responses to anti-VEGF therapy in neovascular AMD. Diagnostics. 2022;12:2807.
Faatz H, Farecki ML, Rothaus K, Gutfleisch M, Pauleikhoff D, Lommatzsch A. Changes in the OCT angiographic appearance of type 1 and type 2 CNV in exudative AMD during anti-VEGF treatment. BMJ Open Ophthalmol. 2019;4:e000369.
Leth-Møller Christensen K, Kristjansen DB, Vergmann AS, Torp TL, Peto T, Grauslund J. Retinal vascular structure independently predicts the initial treatment response in neovascular age-related macular degeneration. Acta Ophthalmol. 2024;102:116–21.
Funding
The research for this paper for the IRCCS-Fondazione Bietti was financially supported by the Italian Ministry of Health and Fondazione Roma, Italy.
Author information
Authors and Affiliations
Contributions
EC and MCP performed literature research, wrote the draft and provided revisions; EC, GQ, LFD, MSP and RS contributed to literature research, revised the manuscript and collected the Figures; GQ and MCP supervised the work.
Corresponding author
Ethics declarations
Competing interests
MP reports personal fees from Abbvie, Novartis, Bayer, Roche, Zeiss, outside the submitted work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Crincoli, E., Parravano, M.C., Sacconi, R. et al. Updates on novel and traditional OCT and OCTA biomarkers in nAMD. Eye 39, 1662–1672 (2025). https://doi.org/10.1038/s41433-025-03801-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41433-025-03801-6