Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Updates on novel and traditional OCT and OCTA biomarkers in nAMD

Abstract

Predictivity of optical coherence tomography (OCT) examination for the development of neovascular age-related macular degeneration (nAMD) was demonstrated to be superior compared to other methods, suggesting it as an elective method for screening purposes. Moreover, OCT and OCT angiography (OCTA) have enabled us to provide accurate prognostic information to nAMD patients. Along with well-known prognostic biomarkers, such as the presence of reticular pseudodrusen, the volume of the pigment epithelial detachment (PED), subretinal fluid (SRF), intraretinal fluid (IRF) and hyperreflective foci (HRF), emerging parameters show promising results and may allow a further refinement of prediction and customization of treatment and follow up strategies. This review of the literature discusses the main OCT and OCTA biomarkers reported in literature for nAMD, with a special focus on recent updates on the subject. Future perspectives of clinical applications include the development of artificial intelligence models considering all the described biomarkers to allow automatic and detailed characterization of each lesion based on imaging information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Korva-Gurung I, Kubin AM, Ohtonen P, Hautala N Incidence and prevalence of neovascular age-related macular degeneration: 15-year epidemiological study in a population-based cohort in Finland. Annals of Medicine [Internet]. 2023 Dec 12 [cited 2024 May 1]; Available from: https://www.tandfonline.com/doi/abs/10.1080/07853890.2023.2222545.

  2. Sivaprasad S, Banister K, Azuro-Blanco A, Goulao B, Cook JA, Hogg R, et al. Diagnostic accuracy of monitoring tests of fellow eyes in patients with unilateral neovascular age-related macular degeneration: early detection of neovascular age-related macular degeneration study. Ophthalmology. 2021;128:1736–47.

    Article  PubMed  Google Scholar 

  3. Banister K, Cook JA, Scotland G, Azuara-Blanco A, Goulão B, Heimann H, et al. Non-invasive testing for early detection of neovascular macular degeneration in unaffected second eyes of older adults: EDNA diagnostic accuracy study. Health Technol Assess. 2022;26:1–142.

    Article  PubMed  Google Scholar 

  4. Maggio E, Polito A, Guerriero M, Prigione G, Parolini B, Pertile G. Vitreomacular adhesion and the risk of neovascular age-related macular degeneration. Ophthalmology. 2017;124:657–66.

    Article  PubMed  Google Scholar 

  5. Horozoglu Ceran T, Sonmez K, Kirtil G. The impact of vitreomacular traction on vitreous vascular endothelial growth factor and placental growth factor levels in neovascular age-related macular degeneration patients. Eye. 2024;11:1–6.

  6. Ruggeri ML, Toto L, Zeppa L, Gironi M, Quarta A, Venturoni P, et al. Impact of vitreomacular interface on intravitreal Brolucizumab efficacy in age-related macular neovascularization. Eur J Ophthalmol. 2024;16:11206721241282429.

  7. Mayr-Sponer U, Waldstein SM, Kundi M, Ritter M, Golbaz I, Heiling U, et al. Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology. 2013;120:2620–9.

    Article  PubMed  Google Scholar 

  8. Neudorfer M, Fuhrer AE, Zur D, Barak A. The role of posterior vitreous detachment on the efficacy of anti-vascular endothelial growth factor intravitreal injection for treatment of neovascular age-related macular degeneration. Indian J Ophthalmol. 2018;66:1802–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Svasti-Salee CR, Snead MP, Alexander P. Response to ’Effect of posterior vitreous detachment on treat-and-extend versus monthly ranibizumab for neovascular age-related macular degeneration. 2025 Feb 18 [cited 2025 Feb 18]; Available from: https://bjo.bmj.com/content/response-effect-posterior-vitreous-detachment-treat-and-extend-versus-monthly-ranibizumab.

  10. Miyata M, Ooto S, Yamashiro K, Tamura H, Uji A, Miyake M, et al. Influence of vitreomacular interface score on treatment outcomes of anti-VEGF therapy for neovascular age-related macular degeneration. Int J Retin Vitreous. 2021;7:77.

    Article  Google Scholar 

  11. Rush RB, Rush SW. Ranibizumab versus bevacizumab for neovascular age-related macular degeneration with an incomplete posterior vitreous detachment. Asia Pac J Ophthalmol. 2016;5:171–5.

    Article  CAS  Google Scholar 

  12. Bakaliou A, Georgakopoulos C, Tsilimbaris M, Farmakakis N. Posterior vitreous detachment and its role in the evolution of dry to wet age related macular degeneration. Clin Ophthalmol. 2023;17:879–85.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with spectral ___domain optical coherence tomography in age-related macular degeneration. Ophthalmology. 2008;115:1883–1890.e1.

    Article  PubMed  Google Scholar 

  14. Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J Ophthalmol. 2021;2021:e6096017.

    Article  Google Scholar 

  15. Pang CE, Messinger JD, Zanzottera EC, Freund KB, Curcio CA. The onion sign in neovascular age-related macular degeneration represents cholesterol crystals. Ophthalmology. 2015;122:2316–26.

    Article  PubMed  Google Scholar 

  16. Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, et al. Hyperreflective dots: a new spectral-___domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica. 2012;229:32–7.

    Article  PubMed  Google Scholar 

  17. Tiosano L, Byon I, Alagorie AR, Ji YS, Sadda SR. Choriocapillaris flow deficit associated with intraretinal hyperreflective foci in intermediate age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2020;258:2353–62.

    Article  PubMed  Google Scholar 

  18. Hu X, Waldstein SM, Klimscha S, Sadeghipour A, Bogunovic H, Gerendas BS, et al. Morphological and functional characteristics at the onset of exudative conversion in age-related macular degeneration. Retina. 2020;40:1070.

    Article  CAS  PubMed  Google Scholar 

  19. Sacconi R, Sarraf D, Garrity S, Freund KB, Yannuzzi LA, Gal-Or O, et al. Nascent type 3 neovascularization in age-related macular degeneration. Ophthalmol Retin. 2018;2:1097–106.

    Article  Google Scholar 

  20. Waldstein SM, Vogl WD, Bogunovic H, Sadeghipour A, Riedl S, Schmidt-Erfurth U. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography. JAMA Ophthalmol. 2020;138:740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goh KL, Wintergerst MWM, Abbott CJ, Hadoux X, Jannaud M, Kumar H, et al. Hyperreflective foci not seen as hyperpigmentary abnormalities on color fundus photographs in age-related macular degeneration. Retina. 2024;44:214.

    Article  CAS  PubMed  Google Scholar 

  22. Oncel D, Corradetti G, He Y, Ashrafkhorasani M, Nittala MG, Stambolian D, et al. Assessment of intraretinal hyperreflective foci using multimodal imaging in eyes with age-related macular degeneration. Acta Ophthalmol. 2024;102:e126–32.

    Article  PubMed  Google Scholar 

  23. Herrera G, Cheng Y, Attiku Y, Hiya FE, Shen M, Liu J, et al. Comparison between spectral-___domain and swept-source OCT angiography scans for the measurement of hyperreflective foci in AMD. Ophthalmol Sci. 2024;21:100633.

  24. Akagi-Kurashige Y, Tsujikawa A, Oishi A, Ooto S, Yamashiro K, Tamura H, et al. Relationship between retinal morphological findings and visual function in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2012;250:1129–36.

    Article  PubMed  Google Scholar 

  25. Segal O, Ferencz JR, Mimouni M, Nesher R, Cohen P, Nemet AY. Lamellar macular holes associated with end-stage exudative age-related macular degeneration. Isr Med Assoc J. 2015;17:750–4.

    PubMed  Google Scholar 

  26. Moraes G, Fu DJ, Wilson M, Khalid H, Wagner SK, Korot E, et al. Quantitative analysis of OCT for neovascular age-related macular degeneration using deep learning. Ophthalmology. 2021;128:693–705.

    Article  PubMed  Google Scholar 

  27. nakanishi Y, Tsujikawa A, Tamura H, Miyata M, Hata M, Kogo T, et al. Association of hyperreflective foci and subretinal fibrosis in neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci. 2024;65:4388.

    Google Scholar 

  28. Wan Z, Wu Y, Shen T, Hu C, Lin R, Ren C, et al. Evaluation of inflammatory hyperreflective foci and plasma EPA as diagnostic and predictive markers for age-related macular degeneration. Front Neurosci. 2024 Oct 10 [cited 2024 Nov 7];18. Available from: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1401101/full.

  29. Ebner C, Wernigg C, Schütze C, Weingessel B, Vécsei-Marlovits PV. Retinal pigment epithelial characteristics in eyes with neovascular age-related macular degeneration. Wien Klin Wochenschr. 2021;133:123–30.

    Article  CAS  PubMed  Google Scholar 

  30. Türksever C, Prünte C, Hatz K. Baseline optical coherence tomography findings as outcome predictors after switching from ranibizumab to aflibercept in neovascular age-related macular degeneration following a treat-and-extend regimen. Ophthalmologica. 2017;238:172–8.

    Article  PubMed  Google Scholar 

  31. Amarasekera S, Samanta A, Jhingan M, Arora S, Singh S, Tucci D, et al. Optical coherence tomography predictors of progression of non-exudative age-related macular degeneration to advanced atrophic and exudative disease. Graefes Arch Clin Exp Ophthalmol. 2022;260:737–46.

    Article  PubMed  Google Scholar 

  32. Bousquet E, Santina A, Corradetti G, Sacconi R, Ramtohul P, Bijon J, et al. From drusen to type 3 macular neovascularization. Retina. 2024;44:189.

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Kim KT, Kim DY, Chae JB, Seo EJ. Outer nuclear layer recovery as a predictor of visual prognosis in type 1 choroidal neovascularization of neovascular age-related macular degeneration. Sci Rep. 2023;13:5045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oishi A, Fang PP, Thiele S, Holz FG, Krohne TU. Longitudinal change of outer nuclear layer after retinal pigment epithelial tear secondary to age-related macular degeneration. Retina. 2018;38:1331.

    Article  PubMed  Google Scholar 

  35. Mitamura Y, Mitamura-Aizawa S, Katome T, Naito T, Hagiwara A, Kumagai K, et al. Photoreceptor impairment and restoration on optical coherence tomographic image. J Ophthalmol. 2013;2013:518170.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schmidt-Erfurth U, Vogl WD, Jampol LM, Bogunović H. Application of automated quantification of fluid volumes to anti–VEGF therapy of neovascular age-related macular degeneration. Ophthalmology. 2020;127:1211–9.

    Article  PubMed  Google Scholar 

  37. Ashraf M, Souka A, Adelman RA. Age-related macular degeneration: using morphological predictors to modify current treatment protocols. Acta Ophthalmol. 2018;96:120–33.

    Article  CAS  PubMed  Google Scholar 

  38. Guymer RH, Markey CM, McAllister IL, Gillies MC, Hunyor AP, Arnold JJ, et al. Tolerating subretinal fluid in neovascular age-related macular degeneration treated with ranibizumab using a treat-and-extend regimen: FLUID study 24-month results. Ophthalmology. 2019;126:723–34.

    Article  PubMed  Google Scholar 

  39. Mares V, Reiter GS, Bogunovic H, Leingang O, Barthelmes D, Schmidt-Erfurth U. AI-based retinal fluid monitoring correlated with automated photoreceptor loss quantification in neovascular AMD in the fight retinal blindness! registry. Investig Ophthalmol Vis Sci. 2023;64:1285.

    Google Scholar 

  40. Schmidt-Erfurth U, Reiter GS, Riedl S, Seeböck P, Vogl WD, Blodi BA, et al. AI-based monitoring of retinal fluid in disease activity and under therapy. Prog Retinal Eye Res. 2022;86:100972.

    Article  Google Scholar 

  41. Lek JJ, Caruso E, Baglin EK, Sharangan P, Hodgson LAB, Harper CA, et al. Interpretation of subretinal fluid using OCT in intermediate age-related macular degeneration. Ophthalmol Retin. 2018;2:792–802.

    Article  Google Scholar 

  42. Zur D, Guymer R, Korobelnik JF, Wu L, Viola F, Eter N, et al. Impact of residual retinal fluid on treatment outcomes in neovascular age-related macular degeneration. Br J Ophthalmol [Internet]. 2024 Jul 19 [cited 2024 Nov 7]; Available from: https://bjo.bmj.com/content/early/2024/08/01/bjo-2024-325640.

  43. Zweifel SA, Engelbert M, Laud K, Margolis R, Spaide RF, Freund KB. Outer retinal tubulation: a novel optical coherence tomography finding. Arch Ophthalmol. 2009;127:1596–602.

    Article  PubMed  Google Scholar 

  44. Schaal KB, Freund KB, Litts KM, Zhang Y, Messinger JD, Curcio CA. Outer retinal tubulation in advanced age-related macular degeneration: optical coherence tomographic findings correspond to histology. Retina. 2015;35:1339–50.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Metrangolo C, Donati S, Mazzola M, Fontanel L, Messina W, D’alterio G, et al. OCT biomarkers in neovascular age-related macular degeneration: a narrative review. J Ophthalmol. 2021;2021:9994098.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee JY, Folgar FA, Maguire MG, Ying GS, Toth CA, Martin DF, et al. Outer retinal tubulation in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology. 2014;121:2423–31.

    Article  PubMed  Google Scholar 

  47. Dirani A, Gianniou C, Marchionno L, Decugis D, Mantel I. Incidence of outer retinal tubulation in ranibizumab-treated age-related macular degeneration. Retina. 2015;35:1166–72.

    Article  CAS  PubMed  Google Scholar 

  48. Yordi S, Cakir Y, Cetin H, Talcott KE, Srivastava SK, Hu J, et al. Bacillary layer detachment in neovascular age-related macular degeneration from a phase III clinical trial. Ophthalmol Retin. 2024;8:754–64.

    Article  Google Scholar 

  49. Feo A, Stradiotto E, Sacconi R, Menean M, Querques G, Romano MR Subretinal hyperreflective material in retinal and chorioretinal disorders: a comprehensive review. Survey of Ophthalmology [Internet]. 2023 Dec 29 [cited 2024 Apr 7]; Available from: https://www.sciencedirect.com/science/article/pii/S0039625723001698.

  50. Pokroy R, Mimouni M, Barayev E, Segev F, Geffen N, Nemet AY, et al. Prognostic value of subretinal hyperreflective material in neovascular age-related macular degeneration treated with bevacizumab. Retina. 2018;38:1485–91.

    Article  CAS  PubMed  Google Scholar 

  51. Kawashima Y, Hata M, Oishi A, Ooto S, Yamashiro K, Tamura H, et al. Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration. Am J Ophthalmol. 2017;181:61–70.

    Article  PubMed  Google Scholar 

  52. Kumar JB, Stinnett S, Han JIL, Jaffe GJ. Correlation of subretinal hyperreflective material morphology and visual acuity in neovascular age-related macular degeneration. Retina. 2020;40:845–56.

    Article  CAS  PubMed  Google Scholar 

  53. Teo KYC, Zhao J, Ibrahim FI, Fenner B, Chakravarthy U, Cheung CMG. Features associated with vision in eyes with subfoveal fibrosis from neovascular age-related macular degeneration. Am J Ophthalmol. 2024;261:121–31.

    Article  PubMed  Google Scholar 

  54. Pu J, Zhuang X, Li M, Zhang X, Su Y, He G, et al. Analyzing formation and absorption of avascular subretinal hyperreflective material in nAMD from OCTA-based insights. Am J Ophthalmol. 2024;267:192–203.

    Article  PubMed  Google Scholar 

  55. Yu S, Bachmeier I, Hernandez-Sanchez J, Garcia Armendariz B, Ebneter A, Pauleikhoff D, et al. Hyperreflective material boundary remodeling in neovascular age-related macular degeneration: a post hoc analysis of the AVENUE trial. Ophthalmol Retin. 2023;7:990–8.

    Article  Google Scholar 

  56. Bachmeier I, Yu S, Glittenberg C, Maunz A, Fauser S. Model for resolution of subretinal hyperreflective material (SHRM) in neovascular age-related macular degeneration (nAMD) using deep learning (DL) image segmentation. Investig Ophthalmol Vis Sci. 2024;65:PB009.

    Google Scholar 

  57. Sadda S, Sarraf D, Khanani AM, Tadayoni R, Chang AA, Saffar I, et al. Comparative assessment of subretinal hyper-reflective material in patients treated with brolucizumab versus aflibercept in HAWK and HARRIER. Br J Ophthalmol. 2024;108:852–8.

    Article  PubMed  Google Scholar 

  58. Dieaconescu DA, Dieaconescu IM, Williams MA, Hogg RE, Chakravarthy U. Drusen height and width are highly predictive markers for progression to neovascular AMD. Investig Ophthalmol Vis Sci. 2012;53:2910.

    Google Scholar 

  59. Folgar FA, Yuan EL, Sevilla MB, Chiu SJ, Farsiu S, Chew EY, et al. Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration. Ophthalmology. 2016;123:39–50.e1.

    Article  PubMed  Google Scholar 

  60. Schlanitz FG, Baumann B, Kundi M, Sacu S, Baratsits M, Scheschy U, et al. Drusen volume development over time and its relevance to the course of age-related macular degeneration. Br J Ophthalmol. 2017;101:198–203.

    Article  PubMed  Google Scholar 

  61. Hagag AM, Kaye R, Hoang V, Riedl S, Anders P, Stuart B, et al. Systematic review of prognostic factors associated with progression to late age-related macular degeneration: pinnacle study report 2. Surv Ophthalmol. 2024;69:165–72.

    Article  PubMed  Google Scholar 

  62. Zhou Q, Daniel E, Maguire MG, Grunwald JE, Martin ER, Martin DF, et al. Pseudodrusen and incidence of late age-related macular degeneration in fellow eyes in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2016;123:1530–40.

    Article  PubMed  Google Scholar 

  63. Kim KL, Joo K, Park SJ, Park KH, Woo SJ. Progression from intermediate to neovascular age-related macular degeneration according to drusen subtypes: Bundang AMD cohort study report 3. Acta Ophthalmol. 2022;100:e710–8.

    Article  PubMed  Google Scholar 

  64. Lee J, Choi S, Lee CS, Kim M, Kim SS, Koh HJ, et al. Neovascularization in fellow eye of unilateral neovascular age-related macular degeneration according to different drusen types. Am J Ophthalmol. 2019;208:103–10.

    Article  PubMed  Google Scholar 

  65. Sakurada Y, Parikh R, Gal-Or O, Balaratnasingam C, Leong BCS, Tanaka K, et al. CUTICULAR DRUSEN: risk of geographic atrophy and macular neovascularization. RETINA. 2020;40:257.

    Article  PubMed  Google Scholar 

  66. Ahmed D, Stattin M, Haas AM, Graf A, Krepler K, Ansari-Shahrezaei S. Drusen characteristics of type 2 macular neovascularization in age-related macular degeneration. BMC Ophthalmol. 2020;20:381.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tan ACS, Pilgrim MG, Fearn S, Bertazzo S, Tsolaki E, Morrell AP, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med. 2018;10:eaat4544.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vidal-Oliver L, Montolío-Marzo E, Gallego-Pinazo R, Dolz-Marco R. Optical coherence tomography biomarkers in early and intermediate age-related macular degeneration: a clinical guide. Clin Exp Ophthalmol. 2024;52:207–19.

    Article  PubMed  Google Scholar 

  69. Miere A, Sacconi R, Amoroso F, Capuano V, Jung C, Bandello F, et al. Sub-retinal pigment epithelium multilaminar hyperreflectivity at the onset of type 3 macular neovascularization. Retina. 2021;41:135.

    Article  CAS  PubMed  Google Scholar 

  70. Astroz P, Miere A, Amoroso F, Semoun O, Khorrami A, Srour M, et al. Subretinal transient hyporeflectivity in age-related macular degeneration: a spectral ___domain optical coherence tomography study. Retina. 2022;42:653–60.

    Article  CAS  PubMed  Google Scholar 

  71. Shi Y, Motulsky EH, Goldhardt R, Zohar Y, Thulliez M, Feuer W, et al. Predictive value of the OCT double-layer sign for identifying subclinical neovascularization in age-related macular degeneration. Ophthalmol Retin. 2019;3:211–9.

    Article  Google Scholar 

  72. Wakatsuki Y, Hirabayashi K, Yu HJ, Marion KM, Corradetti G, Wykoff CC, et al. Optical coherence tomography biomarkers for conversion to exudative neovascular age-related macular degeneration. Am J Ophthalmol. 2023;247:137–44.

    Article  CAS  PubMed  Google Scholar 

  73. Narita C, Wu Z, Rosenfeld PJ, Yang J, Lyu C, Caruso E, et al. Structural OCT signs suggestive of subclinical nonexudative macular neovascularization in eyes with large Drusen. Ophthalmology. 2020;127:637–47.

    Article  PubMed  Google Scholar 

  74. Csincsik L, Muldrew KA, Bettiol A, Wright DM, Rosenfeld PJ, Waheed NK, et al. The Double Layer Sign Is Highly Predictive of Progression to Exudation in Age-Related Macular Degeneration. Ophthalmology Retina [Internet]. 2023 Oct 14 [cited 2024 Feb 4]; Available from: https://www.sciencedirect.com/science/article/pii/S2468653023004980.

  75. Shu Y, Ye F, Liu H, Wei J, Sun X. Predictive value of pigment epithelial detachment markers for visual acuity outcomes in neovascular age-related macular degeneration. BMC Ophthalmol. 2023;23:83.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Khanani AM, Eichenbaum D, Schlottmann PG, Tuomi L, Sarraf D. Optimal management of pigment epithelial detachments in eyes with neovascular age-related macular degeneration. Retina. 2018;38:2103.

    Article  PubMed  PubMed Central  Google Scholar 

  77. de Massougnes S, Dirani A, Mantel I. Good visual outcome at 1 year in neovascular age-related macular degeneration with pigment epithelium detachment: factors influencing the treatment response. RETINA. 2018;38:717.

    Article  PubMed  Google Scholar 

  78. Ho AC, Busbee BG, Regillo CD, Wieland MR, Van Everen SA, Li Z, et al. Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology. 2014;121:2181–92.

    Article  PubMed  Google Scholar 

  79. Selvam A, Singh SR, Arora S, Patel M, Kuchhal A, Shah S, et al. Pigment epithelial detachment composition indices (PEDCI) in neovascular age-related macular degeneration. Sci Rep. 2023;13:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cho HJ, Kim KM, Kim HS, Lee DW, Kim CG, Kim JW. Response of pigment epithelial detachment to anti–vascular endothelial growth factor treatment in age-related macular degeneration. Am J Ophthalmol. 2016;166:112–9.

    Article  CAS  PubMed  Google Scholar 

  81. Cozzi M, Monteduro D, Parrulli S, Ristoldo F, Corvi F, Zicarelli F, et al. Prechoroidal cleft thickness correlates with disease activity in neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2022;260:781–9.

    Article  PubMed  Google Scholar 

  82. Kim JH, Chang YS, Kim JW, Kim CG, Lee DW. Prechoroidal cleft in type 3 neovascularization: incidence, timing, and its association with visual outcome. J Ophthalmol. 2018;2018:e2578349.

    Article  Google Scholar 

  83. Kredi G, Iglicki M, Gomel N, Hilely A, Loewenstein A, Habot-Wilner Z, et al. Risk factors and clinical significance of prechoroidal cleft in eyes with neovascular age-related macular degeneration in Caucasian patients. Acta Ophthalmol. 2023;101:e338–45.

    Article  PubMed  Google Scholar 

  84. Cukras CA, Agrón E, Klein ML, Ferris FL III, Chew EY, Gensler G, et al. Drusenoid pigment epithelial detachment as an added risk factor for disease advancement in age-related macular degeneration. Investig Ophthalmol Vis Sci. 2010;51:96.

    Google Scholar 

  85. Shijo T, Sakurada Y, Tanaka K, Miki A, Sugiyama A, Onoe H, et al. Incidence and risk of advanced age-related macular degeneration in eyes with drusenoid pigment epithelial detachment. Sci Rep. 2022;12:4715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sacconi R, Fragiotta S, Sarraf D, Sadda SR, Freund KB, Parravano M, et al. Towards a better understanding of non-exudative choroidal and macular neovascularization. Prog Retinal Eye Res. 2022;13:101113.

  87. Serra R, Coscas F, Boulet JF, Cabral D, Lupidi M, Coscas GJ, et al. Predictive activation biomarkers of treatment-naive asymptomatic choroidal neovascularization in age-related macular degeneration. RETINA. 2020;40:1224.

    Article  CAS  PubMed  Google Scholar 

  88. Yu JJ, Agrón E, Clemons TE, Domalpally A, van Asten F, Keenan TD, et al. Natural history of drusenoid pigment epithelial detachment associated with age-related macular degeneration: age-related eye disease study 2 report no. 17. Ophthalmology. 2019;126:261–73.

    Article  PubMed  Google Scholar 

  89. Wei X, Ting DSW, Ng WY, Khandelwal N, Agrawal R, Cheung CMG. Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina. 2017;37:1120.

    Article  PubMed  Google Scholar 

  90. Velaga SB, Nittala MG, Vupparaboina KK, Jana S, Chhablani J, Haines J, et al. Choroidal vascularity index and choroidal thickness in eyes with reticular pseudodrusen. Retina. 2020;40:612.

    Article  PubMed  Google Scholar 

  91. Agrawal R, Ding J, Sen P, Rousselot A, Chan A, Nivison-Smith L, et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index. Prog Retinal Eye Res. 2020;77:100829.

    Article  CAS  Google Scholar 

  92. Abdolrahimzadeh S, Di Pippo M, Sordi E, Cusato M, Lotery AJ. Subretinal drusenoid deposits as a biomarker of age-related macular degeneration progression via reduction of the choroidal vascularity index. Eye. 2023;37:1365–70.

    Article  PubMed  Google Scholar 

  93. Pellegrini M, Bernabei F, Mercanti A, Sebastiani S, Peiretti E, Iovino C, et al. Short-term choroidal vascular changes after aflibercept therapy for neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2021;259:911–8.

    Article  CAS  PubMed  Google Scholar 

  94. Boscia G, Pozharitskiy N, Grassi MO, Borrelli E, D’Addario M, Alessio G, et al. Choroidal remodeling following different anti-VEGF therapies in neovascular AMD. Sci Rep. 2024;14:1941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shen M, Zhou H, Lu J, Li J, Jiang X, Trivizki O, et al. Choroidal changes after anti-VEGF therapy in AMD eyes with different types of macular neovascularization using swept-source OCT angiography. Investig Ophthalmol Vis Sci. 2023;64:16.

    Article  Google Scholar 

  96. Kumar JB, Wai KM, Ehlers JP, Singh RP, Rachitskaya AV. Subfoveal choroidal thickness as a prognostic factor in exudative age-related macular degeneration. Br J Ophthalmol. 2019;103:918–21.

    Article  PubMed  Google Scholar 

  97. Fernández-Avellaneda P, Freund KB, Wang RK, He Q, Zhang Q, Fragiotta S, et al. Multimodal imaging features and clinical relevance of subretinal lipid globules. Am J Ophthalmol. 2021;222:112–25.

    Article  PubMed  Google Scholar 

  98. Padnick-Silver L, Weinberg AB, Lafranco FP, Macsai MS. Pilot study for the detection of early exudative age-related macular degeneration with optical coherence tomography. Retina. 2012;32:1045–56.

    Article  PubMed  Google Scholar 

  99. Karacorlu M, Sayman Muslubas I, Arf S, Hocaoglu M, Ersoz MG. Membrane patterns in eyes with choroidal neovascularization on optical coherence tomography angiography. Eye. 2019;33:1280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Miere A, Butori P, Cohen SY, Semoun O, Capuano V, Jung C, et al. VASCULAR remodeling of choroidal neovascularization after anti-vascular endothelial growth factor therapy visualized on optical coherence tomography angiography. Retina. 2019;39:548–57.

    Article  CAS  PubMed  Google Scholar 

  101. Kuehlewein L, Bansal M, Lenis TL, Iafe NA, Sadda SR, Bonini Filho MA, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160:739–748.e2.

    Article  PubMed  Google Scholar 

  102. Crincoli E, Catania F, Sacconi R, Ribarich N, Ferrara S, Parravano M, et al. Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD. Retina. 2024;14.

  103. Spaide RF. Optical coherence tomography angiography signs of vascular Abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol. 2015;160:6–16.

    Article  PubMed  Google Scholar 

  104. Barbazetto I, Saroj N, Shapiro H, Wong P, Freund KB. Dosing regimen and the frequency of macular hemorrhages in neovascular age-related macular degeneration treated with ranibizumab. Retina. 2010;30:1376–85.

    Article  PubMed  Google Scholar 

  105. Nissen AHK, Kiilgaard HC, van Dijk EHC, Hajari JN, Huemer J, Iovino C, et al. Exudative progression of treatment-naïve nonexudative macular neovascularization in age-related macular degeneration: a systematic review with meta-analyses. Am J Ophthalmol. 2024;257:46–56.

    Article  PubMed  Google Scholar 

  106. Cho HJ, Kim M, Kim J, Yoon I, Park S, Kim CG Factors associated with the development of exudation in treatment-naive eyes with nonexudative macular neovascularization. Graefes Arch Clin Exp Ophthalmol. 2024 Feb 13 [cited 2024 May 1]; Available from: https://doi.org/10.1007/s00417-024-06384-2.

  107. Pauleikhoff D, Gunnemann ML, Ziegler M, Heimes-Bussmann B, Bormann E, Bachmeier I, et al. Morphological changes of macular neovascularization during long-term anti-VEGF-therapy in neovascular age-related macular degeneration. Plos One. 2023;18:e0288861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schranz M, Gerendas BS, Reiter GS, Bogunovic H, Deak G, Schmidt-Erfurth U. Correlation between retinal fluid volumes and macular neovascularization parameters in neovascular AMD. Investig Ophthalmol Vis Sci. 2023;64:4425.

    Google Scholar 

  109. Lee H, Kim S, Kim MA, Chung H, Kim HC. Morphology of en face Haller vessel and macular neovascularization at baseline and 3 months as predictive factors in age-related macular degeneration. Sci Rep. 2022;12:10821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shen M, Zhang Q, Yang J, Zhou H, Chu Z, Zhou X, et al. Swept-Source OCT angiographic characteristics of treatment-naïve nonexudative macular neovascularization in AMD prior to exudation. Investig Ophthalmol Vis Sci. 2021;62:14.

    Article  Google Scholar 

  111. Serra R, Coscas F, Pinna A, Cabral D, Coscas G, Souied EH. Quantitative optical coherence tomography angiography features of inactive macular neovascularization in age-related macular degeneration. Retina. 2021;41:93.

    Article  CAS  PubMed  Google Scholar 

  112. Crincoli E, Catania F, Labbate G, Sacconi R, Ferrara S, Parravano M, et al. Microvascular changes in treatment naïve non-exudative macular neovascularization complicated by exudation. Retina. 2022;12; https://doi.org/10.1097/IAE.0000000000004194.

  113. Faatz H, Rothaus K, Ziegler M, Book M, Spital G, Lange C, et al. The architecture of macular neovascularizations predicts treatment responses to anti-VEGF therapy in neovascular AMD. Diagnostics. 2022;12:2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Faatz H, Farecki ML, Rothaus K, Gutfleisch M, Pauleikhoff D, Lommatzsch A. Changes in the OCT angiographic appearance of type 1 and type 2 CNV in exudative AMD during anti-VEGF treatment. BMJ Open Ophthalmol. 2019;4:e000369.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Leth-Møller Christensen K, Kristjansen DB, Vergmann AS, Torp TL, Peto T, Grauslund J. Retinal vascular structure independently predicts the initial treatment response in neovascular age-related macular degeneration. Acta Ophthalmol. 2024;102:116–21.

    Article  PubMed  Google Scholar 

Download references

Funding

The research for this paper for the IRCCS-Fondazione Bietti was financially supported by the Italian Ministry of Health and Fondazione Roma, Italy.

Author information

Authors and Affiliations

Authors

Contributions

EC and MCP performed literature research, wrote the draft and provided revisions; EC, GQ, LFD, MSP and RS contributed to literature research, revised the manuscript and collected the Figures; GQ and MCP supervised the work.

Corresponding author

Correspondence to Giuseppe Querques.

Ethics declarations

Competing interests

MP reports personal fees from Abbvie, Novartis, Bayer, Roche, Zeiss, outside the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crincoli, E., Parravano, M.C., Sacconi, R. et al. Updates on novel and traditional OCT and OCTA biomarkers in nAMD. Eye 39, 1662–1672 (2025). https://doi.org/10.1038/s41433-025-03801-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-025-03801-6

Search

Quick links