Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics behind CD8+ T cell activation and exhaustion

Abstract

CD8+ T cells play a critical role in specific immunity. In recent years, cell therapy has been emerging rapidly. The specific cytotoxic capabilities of these cells enable them to precisely identify and kill cells presenting specific antigens. This has demonstrated promise in the treatment of autoimmune diseases and cancers, with wide-ranging applications and value. However, in some diseases, such as tumors and chronic infections, T cells may adopt an exhausted phenotype, resulting in a loss of cytotoxicity and limiting their further application. Epigenetics plays a significant role in the differentiation and regulation of gene expression in cells. There is extensive evidence indicating that epigenetic remodeling plays an important role in T cell exhaustion. Therefore, further understanding its role in CD8+ T cell function can provide insights into the programmatic regulation of CD8+ T cells from a genetic perspective and overcome these diseases. We attempted to describe the relationship between the activation, function, and exhaustion mechanisms of CD8+ T cells, as well as epigenetics. This understanding makes it possible for us to address the aforementioned issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CD8+T cell development.
Fig. 2: How CD8+T cells activated.
Fig. 3: Epigenetic regulation of gene expression.
Fig. 4: TFs and chromatin insulators.
Fig. 5: Crucial transcription factors of CD8+ T cell exhaustion.
Fig. 6: Emerging technologies for studying the epigenome.

Similar content being viewed by others

References

  1. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33:1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rudloff MW, Zumbo P, Favret NR, Roetman JJ, Detrés Román CR, Erwin MM, et al. Hallmarks of CD8+ T cell dysfunction are established within hours of tumor antigen encounter before cell division. Nat Immunol. 2023;24:1527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol. 2022;15:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beltra J-C, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, et al. Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity. 2020;52:825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belk JA, Daniel B, Satpathy AT. Epigenetic regulation of T cell exhaustion. Nat Immunol. 2022;23:848–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. In: Yokoyama WM, editor. Annu Rev Immunol. 2019;37:457–95. Annual Review of Immunology. 372019

    Article  CAS  PubMed  Google Scholar 

  8. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu Y, Zhou Y, Zhang M, Ge W, Li Y, Yang L, et al. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia. Clin Cancer Res. 2021;27:2764–72.

    Article  CAS  PubMed  Google Scholar 

  10. Ledford H. CAR-T Therapy Forces Autoimmune Diseases into Remission. Nature. 2023;624:483–4.

    Article  CAS  PubMed  Google Scholar 

  11. Arnold C. Autoimmune disease is the next frontier for CAR T cell therapy. Nat Med. 2024;30:6–9.

    Article  CAS  PubMed  Google Scholar 

  12. Horste EL, Fansler MM, Cai T, Chen X, Mitschka S, Zhen G, et al. Subcytoplasmic ___location of translation controls protein output. Mol cell. 2023;83:4509–23.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10:53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Papp F, Hajdu P, Tajti G. et al. Periodic Membrane Potential and Ca2+ Oscillations in T Cells Forming an Immune Synapse. Int J Mol Sci. 2020;21:1568.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Green DR, Droin N, Pinkoski M. Activation-induced cell death in T cells. Immunological Rev. 2003;193:70–81.

    Article  CAS  Google Scholar 

  16. Denton AE, Wesselingh R, Gras S, Guillonneau C, Olson MR, Mintern JD, et al. Affinity thresholds for naive CD8+ CTL activation by peptides and engineered influenza A viruses. J Immunol. 2011;187:5733–44.

    Article  CAS  PubMed  Google Scholar 

  17. Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J. et al. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest. 2021;131:e148568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kasmani MY, Zander R, Chung HK. et al. Clonal lineage tracing reveals mechanisms skewing CD8+ T cell fate decisions in chronic infection. J Exp Med. 2023;220:e20220679.

    Article  PubMed  Google Scholar 

  19. Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, et al. Developmental Relationships of Four Exhausted CD8(+) T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity. 2020;52:825–41.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining ‘T cell exhaustion. Nat Rev Immunol. 2019;19:665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ, Basom RS, et al. Tumor-Specific T Cell Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during Tumorigenesis. Immunity. 2016;45:389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siddiqui I, Schaeuble K, Chennupati V, Marraco SAF, Calderon-Copete S, Ferreira DP, et al. Intratumoral Tcf1 + PD-1 + CD8 + T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity. 2019;50:195.

    Article  CAS  PubMed  Google Scholar 

  23. Ozga AJ, Chow MT, Lopes ME, Servis RL, Di Pilato M, Dehio P, et al. CXCL10 chemokine regulates heterogeneity of the CD8 + T cell response and viral set point during chronic infection. Immunity. 2022;55:82.

    Article  CAS  PubMed  Google Scholar 

  24. Pritykin Y, van der Veeken J, Pine AR, Zhong Y, Sahin M, Mazutis L, et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Mol Cell. 2021;81:2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKinney EF, Lee JC, Jayne DRW, Lyons PA, Smith KGC. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523:612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, et al. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell. 2019;176:775.

    Article  CAS  PubMed  Google Scholar 

  27. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20:326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shan Q, Zeng Z, Xing S, Li F, Hartwig SM, Gullicksrud JA, et al. The transcription factor Runx3 guards cytotoxic CD8 + effector T cells against deviation towards follicular helper T cell lineage. Nat Immunol. 2017;18:931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, et al. CXCR5 + follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187.

    Article  CAS  PubMed  Google Scholar 

  30. Weng NP, Akbar AN, Goronzy J. CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009;30:306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seyda M, Elkhal A, Quante M, Falk CS, Tullius SG. T Cells Going Innate. Trends Immunol. 2016;37:546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Liu Q, Xiang AP. CD8+CD28- T cells: not only age-related cells but a subset of regulatory T cells. Cell Mol Immunol. 2018;15:734–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larbi A, Pawelec G, Wong SC, Goldeck D, Tai JJ, Fulop T. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev. 2011;10:370–8.

    Article  CAS  PubMed  Google Scholar 

  34. Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of CD8+CD28− Immunosenescent T Cells in Cancer Immunology. Int J Mol Sci. 2019;20:2810.

  35. Dai D, Pei Y, Zhu B, Wang D, Pei S, Huang H, et al. Chemoradiotherapy-induced ACKR2+ tumor cells drive CD8+ T cell senescence and cervical cancer recurrence. Cell Rep Med. 2024;5:101550.

  36. Guan Y, Zhang C, Lyu G, Huang X, Zhang X, Zhuang T, et al. Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res. 2020;48:10909–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pomp W, Meeussen JVW, Lenstra TL. Transcription factor exchange enables prolonged transcriptional bursts. Mol Cell. 2024;84:1036–1048.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.

    Article  CAS  PubMed  Google Scholar 

  39. Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and Function of Mammalian DNA Methyltransferases. Chembiochem. 2011;12:206–22.

    Article  CAS  PubMed  Google Scholar 

  40. Ghanty U, Wang T, Kohli RM. Nucleobase Modifiers Identify TET Enzymes as Bifunctional DNA Dioxygenases Capable of Direct N-Demethylation. Angew Chem-Int Ed. 2020;59:11312–5.

    Article  CAS  Google Scholar 

  41. DNMT3A DNA-Binding Residues Provide Specificity for CpG DNA Methylation. Cancer discovery. 2018;8:OF14-OF.

  42. Zhang Z-M, Lu R, Wang P, Yu Y, Chen D, Gao L, et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 2018;554:387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nunez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kschonsak M, Haering CH. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms. Bioessays. 2015;37:755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eustermann S, Patel AB, Hopfner K-P, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol. 2023;25:309–32.

  47. Song J, Gooding AR, Hemphill WO, Kasinath V, Cech TR. Structural basis for inactivation of PRC2 by G-quadruplex RNA. Science. 2023;381:1331–7.

  48. Skvortsova K, Iovino N, Bogdanovic O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19:774–90.

    Article  CAS  PubMed  Google Scholar 

  49. Roundtree IA, Luo G-Z, Zhang Z, Wang X, Zhou T, Cui Y, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife. 2017;6:e31311.

  50. Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022;23:325–41.

    Article  CAS  PubMed  Google Scholar 

  51. Jain N, Zhao Z, Koche RP, Antelope C, Gozlan Y, Montalbano A, et al. Disruption of SUV39H1-Mediated H3K9 Methylation Sustains CAR T-cell Function. Cancer Discov. 2024;14:142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu ZY, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8 + T cells. J Clin Investig. 2005;115:1616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pantaleo G, Harari A. Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat Rev Immunol. 2006;6:417–23.

    Article  CAS  PubMed  Google Scholar 

  54. Baessler A, Vignali DAA. T Cell Exhaustion. Annu Rev Immunol. 2024;42:179–206.

    Article  CAS  PubMed  Google Scholar 

  55. Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, et al. Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation. Nat Immunol. 2017;18:573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, et al. Human T-bet Governs Innate and Innate-like Adaptive IFN-gamma Immunity against Mycobacteria. Cell. 2020;183:1826–47 e31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao X, Shan Q, Xue H-H. TCF1 in T cell immunity: a broadened frontier. Nat Rev Immunol. 2021;22:147–57.

    Article  PubMed  Google Scholar 

  58. Gattinoni L, Zhong X-S, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8 + memory stem cells. Nat Med. 2009;15:808–U129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun Q, Cai D, Liu D, Zhao X, Li R, Xu W, et al. BCL6 promotes a stem-like CD8(+) T cell program in cancer via antagonizing BLIMP1. Sci Immunol. 2023;8:eadh1306.

    Article  CAS  PubMed  Google Scholar 

  60. Jung IY, Narayan V, McDonald S, Rech AJ, Bartoszek R, Hong G, et al. BLIMP1 and NR4A3 transcription factors reciprocally regulate antitumor CAR T cell stemness and exhaustion. Sci Transl Med. 2022;14:eabn7336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Q, Zhang L, You W, Xu J, Dai J, Hua D, et al. PRDM1/BLIMP1 induces cancer immune evasion by modulating the USP22-SPI1-PD-L1 axis in hepatocellular carcinoma cells. Nat Commun. 2022;13:7677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stairiker CJ, Thomas GD, Salek-Ardakani S. EZH2 as a Regulator of CD8+ T Cell Fate and Function. Front Immunol. 2020;11:593203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abadie K, Clark EC, Valanparambil RM, Ukogu O, Yang W, Daza RM, et al. Reversible, tunable epigenetic silencing of TCF1 generates flexibility in the T cell memory decision. Immunity. 2024;57:271–86.e13.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Qiu F, Xu Y, Hou X, Zhang Z, Huang L, et al. Stem cell-like memory T cells: The generation and application. J Leukoc Biol. 2021;110:1209–23.

    Article  CAS  PubMed  Google Scholar 

  65. Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8(+) T cell exhaustion. Proc Natl Acad Sci USA. 2019;116:12410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferreira DP, Silva JG, Wyss T, Marraco SAF, Scarpellino L, Charmoy M, et al. Central memory CD8 + T cells derive from stem-like Tcf7 hi effector cells in the absence of cytotoxic differentiation. Immunity. 2020;53:985.

    Article  Google Scholar 

  67. Oestreich KJ, Yoon H, Ahmed R, Boss JM. NFATc1 regulates PD-1 expression upon T cell activation. J Immunol. 2008;181:4832–9.

    Article  CAS  PubMed  Google Scholar 

  68. Doan AE, Mueller KP, Chen AY, Rouin GT, Chen Y, Daniel B, et al. FOXO1 is a master regulator of memory programming in CAR T cells. Nature. 2024;629:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McCutcheon SR, Swartz AM, Brown MC, Barrera A, McRoberts Amador C, Siklenka K, et al. Transcriptional and epigenetic regulators of human CD8(+) T cell function identified through orthogonal CRISPR screens. Nat Genet. 2023;55:2211–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, et al. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell. 2020;183:1826–47.e31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hertweck A, Evans CM, Eskandarpour M, Lau JC, Oleinika K, Jackson I, et al. T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex. Cell Rep. 2016;15:2756–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li Y, Han M, Wei H, Huang W, Chen Z, Zhang T, et al. Id2 epigenetically controls CD8(+) T-cell exhaustion by disrupting the assembly of the Tcf3-LSD1 complex. Cell Mol Immunol. 2024;21:292–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell. 2013;153:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-Enhancers in the Control of Cell Identity and Disease. Cell. 2013;155:934–47.

    Article  CAS  PubMed  Google Scholar 

  75. Danilo M, Chennupati V, Silva JG, Siegert S, Held W. Suppression of Tcf1 by Inflammatory Cytokines Facilitates Effector CD8 T Cell Differentiation. Cell Rep. 2018;22:2107–17.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou X, Yu S, Zhao D-M, Harty JT, Badovinac VP, Xue H-H. Differentiation and Persistence of Memory CD8 + T Cells Depend on T Cell Factor 1. Immunity. 2010;33:229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miller CH, Klawon DEJ, Zeng S, Lee V, Socci ND, Savage PA. Eomes identifies thymic precursors of self-specific memory-phenotype CD8 + T cells. Nat Immunol. 2020;21:567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Llao-Cid L, Roessner PM, Chapaprieta V, Oeztuerk S, Roider T, Bordas M, et al. EOMES is essential for antitumor activity of CD8+T cells in chronic lymphocytic leukemia. Leukemia. 2021;35:3152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beltra J-C, Abdel-Hakeem MS, Manne S, Zhang Z, Huang H, Kurachi M, et al. Stat5 opposes the transcription factor Tox and rewires exhausted CD8+ Tcells toward durable effector-like states during chronic antigen exposure. Immunity. 2023;56:2699–718.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature. 2017;552:404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Herek TA, Bouska A, Lone W, Sharma S, Amador C, Heavican TB, et al. DNMT3A mutations define a unique biological and prognostic subgroup associated with cytotoxic T cells in PTCL-NOS. Blood. 2022;140:1278–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prinzing B, Zebley CC, Petersen CT, Fan Y, Anido AA, Yi Z, et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med. 2021;13:eabh0272.

  83. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dixon G, Pan H, Yang D, Rosen BP, Jashari T, Verma N, et al. QSER1 protects DNA methylation valleys from de novo methylation. Science. 2021;372:eabd0875.

  85. Bamezai S, Demir D, Pulikkottil AJ, Ciccarone F, Fischbein E, Sinha A, et al. TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia. 2021;35:389–403.

    Article  CAS  PubMed  Google Scholar 

  86. Whiteside SK, Grant FM, Alvisi G, Clarke J, Tang L, Imianowski CJ, et al. Acquisition of suppressive function by conventional T cells limits antitumor immunity upon Treg depletion. Sci Immunol. 2023;8:eabo5558.– eabo

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cui W, Liu Y, Weinstein JS, Craft J, Kaech SM. An Interleukin-21-Interleukin-10-STAT3 Pathway Is Critical for Functional Maturation of Memory CD8 + T Cells. Immunity. 2011;35:792–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun Q, Zhao X, Li R, Liu D, Pan B, Xie B, et al. STAT3 regulates CD8 + T cell differentiation and functions in cancer and acute infection. J Exp Med. 2023;220:e20220686.

  89. Klysz DD, Fowler C, Malipatlolla M, Stuani L, Freitas KA, Chen Y, et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell. 2024;42:266–82 e8.

    Article  CAS  PubMed  Google Scholar 

  90. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69:1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16:599–611.

    Article  CAS  PubMed  Google Scholar 

  92. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015;162:1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.

    Article  CAS  PubMed  Google Scholar 

  94. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Sig Transduct Targeted Ther. 2021;6:128.

  96. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023;25:404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xiao L, Ma X, Ye L, Su P, Xiong W, Bi E, et al. IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. Journal of Clinical Investigation. 2022;132:e153247.

  100. Vignali PDA, DePeaux K, Watson MJJ, Ye C, Ford BR, Lontos K, et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat Immunol. 2023;24:267.

    Article  CAS  PubMed  Google Scholar 

  101. Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo CF, et al. IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunol Res. 2019;7:759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang F, Cheng F, Zheng F. Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clin Immunol. 2022;241:109078.

    Article  CAS  PubMed  Google Scholar 

  104. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153:1239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol. 2020;20:55–70.

    Article  CAS  PubMed  Google Scholar 

  106. Franco F, Jaccard A, Romero P, Yu Y-R, Ho P-C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2:1001–12.

    Article  CAS  PubMed  Google Scholar 

  107. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12:749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, et al. Cholesterol Induces CD8(+) T Cell Exhaustion in the Tumor Microenvironment. Cell Metab. 2019;30:143–56.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cao Y, Trillo-Tinoco J, Sierra RA, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nature Communications. 2019;10:1280.

  111. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, et al. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8(+) T Cell Exhaustion. Immunity. 2016;45:358–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ogando J, Sáez ME, Santos J, Nuevo-Tapioles C, Gut M, Esteve-Codina A, et al. PD-1 signaling affects cristae morphology and leads to mitochondrial dysfunction in human CD8(+) T lymphocytes. J Immunother Cancer. 2019;7:151.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D, Long X, et al. Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 2021;20:144.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, et al. Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther. 2022;30:1054–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mahat DB, Tippens ND, Martin-Rufino JD, Waterton SK, Fu J, Blatt SE, et al. Single-cell nascent RNA sequencing unveils coordinated global transcription. Nature. 2024;631:216–23.

  116. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goverde CA, Wolf B, Khakzad H, Rosset S, Correia BE. De novo protein design by inversion of the AlphaFold structure prediction network. Protein Sci. 2023;32:e4653.

  118. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

  119. Wang J, Lisanza S, Juergens D, Tischer D, Watson JL, Castro KM, et al. Scaffolding protein functional sites using deep learning. Science. 2022;377:387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fudge JB. Diffusion model expands RoseTTAFold’s power. Nat Biotechnol. 2023;41:1072.

    PubMed  Google Scholar 

  121. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.

    Article  CAS  PubMed  Google Scholar 

  122. Gao S, Liang X, Wang H, Bao B, Zhang K, Zhu Y, et al. Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol. 2021;361:104273.

    Article  CAS  PubMed  Google Scholar 

  123. Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13:151.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Han P, Chang CP. Long non-coding RNA and chromatin remodeling. RNA Biol. 2015;12:1094–8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chen D, Lei EP. Function and regulation of chromatin insulators in dynamic genome organization. Curr Opin Cell Biol. 2019;58:61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wei GH, Liu DP, Liang CC. Chromatin ___domain boundaries: insulators and beyond. Cell Res. 2005;15:292–300.

    Article  CAS  PubMed  Google Scholar 

  127. Phillips-Cremins Jennifer E, Corces Victor G. Chromatin Insulators: Linking Genome Organization to Cellular Function. Mol Cell. 2013;50:461–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hao Zu, as the first author, proposed the research topic and conducted the literature search, analysis, illustration creation, and writing of the manuscript. Xiaoqin Chen, as the corresponding author, provided guidance throughout the writing process, integrated feedback, and reviewed and revised the final manuscript, as well as offering support with formatting revisions.

Corresponding author

Correspondence to Xiaoqin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, H., Chen, X. Epigenetics behind CD8+ T cell activation and exhaustion. Genes Immun 25, 525–540 (2024). https://doi.org/10.1038/s41435-024-00307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-024-00307-1

Search

Quick links