Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A systematic review on leptin’s role in defining cancer: special emphasis on immunomodulation, inflammation, and therapeutic interventions

This article has been updated

Abstract

Leptin, an adipokine related to obesity, is mainly known for its role in regulating energy homeostasis and appetite by working via the leptin receptor. Recently, different groups have demonstrated that apart from adipocytes, specific cell types associated with cancer and tumor microenvironments express leptin and leptin receptors. This tumor microenvironment-associated leptin-leptin receptor signaling contributes to the different hallmarks of cancer, ranging from inflammatory changes to metastasis. Eventually, it has also been reported that high serum level of leptin, a characteristic of obese people, is linked to enhanced tumor growth. On the other hand, leptin can influence both innate as well as adaptive immunity related to cancer. Overall, leptin’s role in modulating cancer is controversial. So, in this review, we summarized the role of leptin in shaping different forms of cancer that are influenced by leptin-leptin receptor signaling with special emphasis on immunomodulation and inflammatory events and also discussed the possible therapeutic interventions to date. As this review work, with the collection of different updated knowledge, has summarized the role of leptin on cancer, it would be useful material to have on hand for both beginners as well as pioneers of these and related fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impaired activity of NK cells due to higher circulating leptins in obese individuals.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 26 May 2025

    The typo in the article title has been been corrected: "A systemic review" to "A systematic review.

References

  1. Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, et al. Cell cycle dysregulation in cancer. Pharm Rev. 2025;77:100030.

    Article  PubMed  Google Scholar 

  2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global Cancer Statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

  3. Tahergorabi Z, Khazaei M, Moodi M, Chamani E. From obesity to cancer: a review on proposed mechanisms. Cell Biochem Funct. 2016;34:533–45.

    Article  CAS  PubMed  Google Scholar 

  4. Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev. 2017;38:80–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Vilariño-García T, Polonio-González M, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, et al. Role of leptin in obesity, cardiovascular disease, and type 2 diabetes. Int J Mol Sci. 2024;25:2338.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Shamsuzzaman ASM, Winnicki M, Wolk R, Svatikova A, Phillips BG, Davison DE, et al. Independent association between plasma leptin and C-reactive protein in healthy humans. Circulation 2004;109:2181–5.

    Article  CAS  PubMed  Google Scholar 

  7. Ray A. Adipokine leptin in obesity-related pathology of breast cancer. J Biosci. 2012;37:289–94.

    Article  PubMed  Google Scholar 

  8. Li F, Zhao S, Guo T, Li J, Gu C. The nutritional cytokine leptin promotes NSCLC by activating the PI3K/AKT and MAPK/ERK pathways in NSCLC cells in a paracrine manner. Biomed Res Int. 2019;2019:1–8.

    Google Scholar 

  9. Lago F, Dieguez C, Gómez-Reino J, Gualillo O. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev. 2007;18:313–25.

    Article  CAS  PubMed  Google Scholar 

  10. Samad N. Role of leptin in cancer: a systematic review. Biomed J Sci Tech Res. 2019;18.

  11. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 2018;173:879–93.e13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 2018;174:1293–308.e36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Charchour R, Dufour-Rainfray D, Morineau G, Vatier C, Fellahi S, Vigouroux C, et al. Mutltifaceted biological roles of leptin. Ann Biol Clin. 2020;78:231–42.

    CAS  Google Scholar 

  14. García-Castaño A, Madariaga L, Pérez de Nanclares G, Ariceta G, Gaztambide S, Castaño L, et al. Novel mutations associated with inherited human calcium-sensing receptor disorders: a clinical genetic study. Eur J Endocrinol. 2019;180:59–70.

    Article  PubMed  Google Scholar 

  15. Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507–24.

    Article  CAS  PubMed  Google Scholar 

  16. Wu DM, Wang S, Wen X, Han XR, Wang YJ, Shen M, et al. Impact of serum omentin-1 levels on functional prognosis in nondiabetic patients with ischemic stroke. Am J Transl Res. 2019;11:1854–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Pham DV, Park PH. Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res. 2020;43:997–1016.

    Article  CAS  PubMed  Google Scholar 

  18. Xiong Y. Hematopoietic stem cell-derived adipocytes and fibroblasts in the tumor microenvironment. World J Stem Cells. 2015;7:253.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol. 2019;42:243–60.

    Article  CAS  Google Scholar 

  20. Kato S, Abarzua-Catalan L, Trigo C, Delpiano A, Sanhueza C, García K, et al. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women. Oncotarget 2015;6:21100–19.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Giordano C, Chemi F, Panza S, Barone I, Bonofiglio D, Lanzino M, et al. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget 2016;7:1262–75.

    Article  PubMed  Google Scholar 

  22. Kiernan K, MacIver NJ. The role of the adipokine leptin in immune cell function in health and disease. Front Immunol. 2021;11.

  23. Fu Y, Guo X, Sun L, Cui T, Wang J, Liu Y, et al. Exploring the interplay of diet, obesity, immune function, and cancer. Cancer Discov. 2024;14:2047–50.

    Article  CAS  PubMed  Google Scholar 

  24. Elaraby E, Malek AI, Abdullah HW, Elemam NM, Saber-Ayad M, Talaat IM. Natural killer cell dysfunction in obese patients with breast cancer: a review of a triad and its implications. J Immunol Res. 2021;2021:1–10.

    Article  Google Scholar 

  25. García-Miranda A, Solano-Alcalá KA, Montes-Alvarado JB, Rosas-Cruz A, Reyes-Leyva J, Navarro-Tito N, et al. Autophagy mediates leptin-induced migration and erk activation in breast cancer cells. Front Cell Dev Biol. 2021;9.

  26. Vick LV, Rosario S, Riess JW, Canter RJ, Mukherjee S, Monjazeb AM, et al. Potential roles of sex-linked differences in obesity and cancer immunotherapy: revisiting the obesity paradox. npj Metab Health Dis. 2024;2:5.

    Article  PubMed  Google Scholar 

  27. Hasanbasri SHI, Amir Sabri NAN, Mokhtar KI, Ezzat Mustafa B, Mohd Ibrahim MS, Subramaniam PK. Single nucleotide polymorphism of leptin and leptin receptor genes in oral cancer—a systematic review. IIUM J Orofac Health Sci. 2024;5:164–72.

    Article  Google Scholar 

  28. Alfaqih MA, Elsalem L, Nusier M, Mhedat K, Khader Y, Ababneh E. Serum leptin receptor and the rs1137101 variant of the LEPR gene are associated with bladder cancer. Biomolecules 2023;13:1498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tabassum T, Khan S. Obesity-induced leptin-signaling pathways to gynecologic cancers. Obesity. Cham: Springer International Publishing 2024. p 53–63.

    Chapter  Google Scholar 

  30. Neamah AS, Wadan AHS, Lafta FM, Elakwa DES. The potential role of targeting the leptin receptor as a treatment for breast cancer in the context of hyperleptinemia: a literature review. Naunyn Schmiedebergs Arch Pharmacol. 2024;398:3451–66.

  31. Hu X, li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6:402.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. Mol Biomed.2023;4:40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumor development and correlates with poor prognosis. Gut 2020;69:1269–82.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab. 2021;18:39.

    Article  CAS  Google Scholar 

  35. Gorrab A, Pagano A, Ayed K, Chebil M, Derouiche A, Kovacic H, et al. Leptin promotes prostate cancer proliferation and migration by stimulating STAT3 pathway. Nutr Cancer. 2021;73:1217–27.

    Article  CAS  PubMed  Google Scholar 

  36. Bhatti M, Travas A, Ayansola O, Ambalavanan A, Kim JJ, Pyne D, et al. Leptin-enhanced JAK-STAT signaling in acute myeloid leukemia-derived mesenchymal stromal cells and its implications for disease progression. Blood 2024;144:5664.

    Article  Google Scholar 

  37. Kumar J, Fang H, McCulloch DR, Crowley T, Ward AC. Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes. Oncotarget 2017;8:93530–40.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ptak A, Gregoraszczuk EL. Bisphenol A induces leptin receptor expression, creating more binding sites for leptin, and activates the JAK/Stat, MAPK/ERK and PI3K/Akt signalling pathways in human ovarian cancer cell. Toxicol Lett. 2012;210:332–7.

    Article  CAS  PubMed  Google Scholar 

  39. Shen L, Zhang C, Cui K, Liang X, Zhu G, Hong L. Leptin secreted by adipocytes promotes EMT transition and endometrial cancer progression via the JAK2/STAT3 signalling pathway. Adipocyte. 2024;13.

  40. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharm Ther. 2015;147:22–31.

    Article  CAS  Google Scholar 

  41. Chandra Jena B, Sarkar S, Rout L, Mandal M. The transformation of cancer-associated fibroblasts: current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Lett. 2021;520:222–32.

    Article  CAS  PubMed  Google Scholar 

  42. Melzer C, von der Ohe J, Otterbein H, Ungefroren H, Hass R. Changes in uPA, PAI-1, and TGF-β production during breast cancer cell interaction with human mesenchymal stroma/stem-like cells (MSC). Int J Mol Sci. 2019;20:2630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A. Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res. 2017;370:29–39.

    Article  CAS  PubMed  Google Scholar 

  44. Kotiyal S, Bhattacharya S. Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun. 2014;453:112–6.

    Article  CAS  PubMed  Google Scholar 

  45. Yan D, Avtanski D, Saxena NK, Sharma D. Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J Biol Chem. 2012;287:8598–612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Mishra AK, Parish CR, Wong ML, Licinio J, Blackburn AC. Leptin signals via TGFB1 to promote metastatic potential and stemness in breast cancer. PLoS One. 2017;12:e0178454.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of leptin and adiponectin in carcinogenesis. Cancers. 2023;15:4250.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13:165.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Reyes M, Flores T, Betancur D, Peña-Oyarzún D, Torres VA. Wnt/β-catenin signaling in oral carcinogenesis. Int J Mol Sci. 2020;21:4682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Das B, Das M, Kalita A, Baro MR. The role of Wnt pathway in obesity induced inflammation and diabetes: a review. J Diabetes Metab Disord. 2021;20:1871–82.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, et al. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7:298.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One. 2015;10:e0131225.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Nagaraj AB, Joseph P, Kovalenko O, Singh S, Armstrong A, Redline R, et al. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget 2015;6:23720–34.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Liang X, Wang S, Wang X, Zhang L, Zhao H, Zhang L. Leptin promotes the growth of breast cancer by upregulating the Wnt/β-catenin pathway. Exp Ther Med. 2018;16:767–71.

  55. Fan WL, Yeh YM, Liu TT, Lin WM, Yang TY, Lee CW, et al. Leptin is associated with poor clinical outcomes and promotes clear cell renal cell carcinoma progression. Biomolecules 2021;11:431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Masckauchán TNH, Shawber CJ, Funahashi Y, Li CM, Kitajewski J. Wnt/β-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 2005;8:43–51.

    Article  PubMed  Google Scholar 

  57. Lagarde CB, Thapa K, Cullen NM, Hawes ML, Salim K, Benz MC, et al. Obesity and leptin in breast cancer angiogenesis. Front Endocrinol. 2024;15.

  58. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF‐κB signaling in inflammation and cancer. MedComm. 2021;2:618–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2:823–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yoshida R. Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer. 2021;28:1167–80.

    Article  PubMed  Google Scholar 

  61. Devanaboyina M, Kaur J, Whiteley E, Lin L, Einloth K, Morand S, et al. NF-κB Signaling in tumor pathways focusing on breast and ovarian cancer. Oncol Rev. 2022;16.

  62. Li K, Wei L, Huang Y, Wu Y, Su M, Pang X, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 2016;48:2479–87.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou X, Li H, Chai Y, Liu Z. Leptin inhibits the apoptosis of endometrial carcinoma cells through activation of the nuclear factor kB-inducing kinase/IkB kinase pathway. Int J Gynecol Cancer. 2015;25:770–8.

    Article  PubMed  Google Scholar 

  64. Gonzalez-Perez RR, Xu Y, Guo S, Watters A, Zhou W, Leibovich SJ. Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFκB/HIF-1α activation. Cell Signal. 2010;22:1350–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ. Clin Transl Oncol. 2022;25:601–10.

    Article  PubMed  Google Scholar 

  66. Ayed K, Nabi L, Akrout R, Mrizak H, Gorrab A, Bacha D, et al. Obesity and cancer: focus on leptin. Mol Biol Rep. 2023;50:6177–89.

    Article  CAS  PubMed  Google Scholar 

  67. Tang W, Kang M, Liu C, Qiu H. Leptin rs7799039 (G2548A) polymorphism is associated with cancer risk: a meta-analysis involving 25,799 subjects. Onco Targets Ther. 2019;ume 12:2879–90.

    Article  Google Scholar 

  68. Lin TC, Hsiao M. Leptin and Cancer: updated functional roles in carcinogenesis, therapeutic niches, and developments. Int J Mol Sci. 2021;22:2870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yan W, Ma X, Gao X, Zhang S. Association between leptin (-2548G/A) genes polymorphism and breast cancer susceptibility. Medicine 2016;95:e2566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Atoum M, Hamaid Alparrey AA. Association of leptin receptor Q223R gene polymorphism and breast cancer patients: a case control study. Asian Pac J Cancer Prev. 2022;23:177–82.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Li L, Meng X, Liu L, Xiang Y, Wang F, Yu L, et al. Single-nucleotide polymorphisms in LEP and LEPR associated with breast cancer risk: results from a multicenter case–control study in Chinese females. Front Oncol. 2022;12.

  72. Du M, Wang Y, Vallis J, Shariati M, Parfrey PS, Mclaughlin JR, et al. Associations between polymorphisms in leptin and leptin receptor genes and colorectal cancer survival. Cancer Biol Med. 2023;1–14.

  73. Socol CT, Chira A, Martinez-Sanchez MA, Nuñez-Sanchez MA, Maerescu CM, Mierlita D, et al. Leptin signaling in obesity and colorectal cancer. Int J Mol Sci. 2022;23:4713.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Bieńkiewicz J, Romanowicz H, Wilczyński M, Jabłoński G, Stepowicz A, Obłękowska A, et al. Association of single nucleotide polymorphism LEP-R c.668A>G (p.Gln223Arg, rs1137101) of leptin receptor gene with endometrial cancer. BMC Cancer. 2021;21:925.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Frąk M, Grenda A, Krawczyk P, Kuźnar-Kamińska B, Pazdrowski P, Kędra K, et al. The influence of nutritional status, lipid profile, leptin concentration and polymorphism of genes encoding leptin and neuropeptide Y on the effectiveness of immunotherapy in advanced NSCLC patients. BMC Cancer. 2024;24:937.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6:263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Munn LL. Cancer and inflammation. WIREs Systems Biology and Medicine. 2017;9.

  78. Fantini MC, Guadagni I. From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: pathogenesis and impact of current therapies. Digest Liver Dis. 2021;53:558–65.

    Article  Google Scholar 

  79. Luo Y, Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. Immun Inflamm Dis. 2021;9:59–73.

    Article  CAS  PubMed  Google Scholar 

  80. Bou Malhab LJ, Abdel-Rahman WM. Obesity and inflammation: colorectal cancer engines. Curr Mol Pharm. 2022;15:620–46.

    Article  Google Scholar 

  81. Shafiul Hossen MD, Abdul Barek M, Safiqul Islam M. Obesity and inflammation lead to insulin resistance and cancer—a systematic review. In: Obesity. Cham: Springer International Publishing, 2024. p. 39–51.

  82. van de Vyver M. Immunology of chronic low-grade inflammation: relationship with metabolic function. J Endocrinol. 2023;257.

  83. Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, et al. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med. 2023;15.

  84. Askarpour M, Khani D, Sheikhi A, Ghaedi E, Alizadeh S. Effect of bariatric surgery on serum inflammatory factors of obese patients: a systematic review and meta-analysis. Obes Surg. 2019;29:2631–47.

    Article  PubMed  Google Scholar 

  85. Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of leptin in inflammation and vice versa. Int J Mol Sci. 2020;21:5887.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Diker-Cohen T, Cochran E, Gorden P, Brown RJ. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. J Clin Endocrinol Metab. 2015;100:1802–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Grewal S, Gubbi S, Fosam A, Sedmak C, Sikder S, Talluru H, et al. Metabolomic analysis of the effects of leptin replacement therapy in patients with lipodystrophy. J Endocr Soc. 2020;4.

  88. Palhinha L, Liechocki S, Hottz ED, Pereira JA da S, de Almeida CJ, et al. Leptin induces proadipogenic and proinflammatory signaling in adipocytes. Front Endocrinol. 2019;10.

  89. Acosta-Martinez M, Cabail MZ. The PI3K/Akt pathway in meta-inflammation. Int J Mol Sci. 2022;23:15330.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 2019;25:141–51.

    Article  CAS  PubMed  Google Scholar 

  91. Savva C, Copson E, Johnson PWM, Cutress RI, Beers SA. Obesity is associated with immunometabolic changes in adipose tissue that may drive treatment resistance in breast cancer: immune-metabolic reprogramming and novel therapeutic strategies. Cancers. 2023;15:2440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Yang K, Bao T, Zeng J, Wang S, Yuan X, Xiang W, et al. Research progress on pyroptosis-mediated immune-inflammatory response in ischemic stroke and the role of natural plant components as regulator of pyroptosis: a review. Biomed Pharmacother. 2023;157:113999.

    Article  CAS  PubMed  Google Scholar 

  93. Wang M, Jiang S, Zhang Y, Li P, Wang K. The multifaceted roles of pyroptotic cell death pathways in cancer. Cancers. 2019;11:1313.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J, et al. The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis. 2019;10:650.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Baral A, Park PH. Leptin induces apoptotic and pyroptotic cell death via NLRP3 inflammasome activation in rat hepatocytes. Int J Mol Sci. 2021;22:12589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Zheng Z, Yang S, Dai W, Xue P, Sun Y, Wang J, et al. The role of pyroptosis in metabolism and metabolic disease. Biomed Pharmacother. 2024;176:116863.

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen T, Kumar RP, Park PH. Cathepsin B maturation plays a critical role in leptin-induced hepatic cancer cell growth through activation of NLRP3 inflammasomes. Arch Pharm Res. 2023;46:160–76.

    Article  CAS  PubMed  Google Scholar 

  98. Wu L, Lu H, Pan Y, Liu C, Wang J, Chen B, et al. The role of pyroptosis and its crosstalk with immune therapy in breast cancer. Front Immunol. 2022;13.

  99. Wang J, Cheng Y, Xiaoran Y, Chen F, Jie W, Yahui H, et al. Globular adiponectin induces esophageal adenocarcinoma cell pyroptosis via the miR‐378a‐3p/ UHRF1 axis. Environ Toxicol. 2025;40:429–44.

    Article  CAS  PubMed  Google Scholar 

  100. Jardé T, Perrier S, Vasson MP, Caldefie-Chézet F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer. 2011;47:33–43.

    Article  PubMed  Google Scholar 

  101. Perera CN, Chin HG, Duru N, Camarillo IG. Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J Endocrinol. 2008;199:221–33.

    Article  CAS  PubMed  Google Scholar 

  102. Chen C, Chang YC, Liu CL, Liu TP, Chang KJ, Guo IC. Leptin induces proliferation and anti-apoptosis in human hepatocarcinoma cells by up-regulating cyclin D1 and down-regulating Bax via a Janus kinase 2-linked pathway. Endocr Relat Cancer. 2007;14:513–29.

    Article  CAS  PubMed  Google Scholar 

  103. Nkhata KJ, Ray A, Schuster TF, Grossmann ME, Cleary MP. Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncol Rep. 2009;21:1611–9.

  104. Jiang H, Yu J, Guo H, Song H, Chen S. Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells. Biochem Biophys Res Commun. 2008;368:1–5.

    Article  CAS  PubMed  Google Scholar 

  105. Chen W, Sun Q, Ju J, Chen W, Zhao X, Zhang Y, et al. Effect of Astragalus polysaccharides on cardiac dysfunction in db/db mice with respect to oxidant stress. Biomed Res Int. 2018;2018:1–10.

    Google Scholar 

  106. Michurina SV, Ishchenko IYU, Arkhipov SA, Cherepanova MA, Vasendin DV, Zavjalov EL. Apoptosis in the liver of male <em>db/db</em> mice during the development of obesity and type 2 diabetes. Vavilov J Genet Breed. 2020;24:435–40.

    Article  CAS  Google Scholar 

  107. Pérez-Pérez A, Toro AR, Vilarino-Garcia T, Guadix P, Maymó JL, Dueñas JL, et al. Leptin reduces apoptosis triggered by high temperature in human placental villous explants: the role of the p53 pathway. Placenta 2016;42:106–13.

    Article  PubMed  Google Scholar 

  108. Jiménez-Cortegana C, Hontecillas-Prieto L, García-Domínguez DJ, Zapata F, Palazón-Carrión N, Sánchez-León ML, et al. Obesity and risk for lymphoma: possible role of leptin. Int J Mol Sci. 2022;23:15530.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Souza-Almeida G, Palhinha L, Liechocki S, da Silva Pereira JA, Reis PA, Dib PRB, et al. Peripheral leptin signaling persists in innate immune cells during diet-induced obesity. J Leukoc Biol. 2021;109:1131–8.

    Article  CAS  PubMed  Google Scholar 

  110. Mylod E, Lysaght J, Conroy MJ. Natural killer cell therapy: a new frontier for obesity-associated cancer. Cancer Lett. 2022;535:215620.

    Article  CAS  PubMed  Google Scholar 

  111. Singh A, Mayengbam SS, Yaduvanshi H, Wani MR, Bhat MK. Obesity programs macrophages to support cancer progression. Cancer Res. 2022;82:4303–12.

    Article  CAS  PubMed  Google Scholar 

  112. Basirjafar P, Zandvakili R, Masoumi J, Zainodini N, Taghipour Z, Khorramdelazad H, et al. Leptin/lipopolysaccharide-treated dendritic cell vaccine improved cellular immune responses in an animal model of breast cancer. Immunopharmacol Immunotoxicol. 2024;46:73–85.

    Article  CAS  PubMed  Google Scholar 

  113. Caligiuri MA. Human natural killer cells. Blood 2008;112:461–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Aribi M. Introductory chapter: a brief overview on natural killer cells. In: Natural Killer Cells. InTech; 2017.

  115. Laue T, Wrann CD, Hoffmann-Castendiek B, Pietsch D, Hübner L, Kielstein H, et al. Cell function in obese healthy humans. BMC Obes. 2015;2:1.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Bähr I, Jahn J, Zipprich A, Pahlow I, Spielmann J, Kielstein H. Impaired natural killer cell subset phenotypes in human obesity. Immunol Res. 2018;66:234–44.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Oswald J, Büttner M, Jasinski-Bergner S, Jacobs R, Rosenstock P, Kielstein H. Leptin affects filopodia and cofilin in NK-92 cells in a dose- and time-dependent manner. Eur J Histochem. 2018;62:2848.

  118. Lo CKC, Lam QLK, Yang M, Ko KH, Sun L, Ma R, et al. Leptin signaling protects NK cells from apoptosis during development in mouse bone marrow. Cell Mol Immunol. 2009;6:353–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Bähr I, Goritz V, Doberstein H, Hiller GGR, Rosenstock P, Jahn J, et al. Diet-induced obesity is associated with an impaired NK cell function and an increased colon cancer incidence. J Nutr Metab. 2017;2017:1–14.

    Article  Google Scholar 

  120. Subedi N, Verhagen LP, Bosman EM, van Roessel I, Tel J. Understanding natural killer cell biology from a single cell perspective. Cell Immunol. 2022;373:104497.

    Article  CAS  PubMed  Google Scholar 

  121. Scoville SD, Freud AG, Caligiuri MA. Modeling human natural killer cell development in the era of innate lymphoid cells. Front Immunol. 2017;8:360.

  122. Lamas B, Goncalves‐Mendes N, Nachat‐Kappes R, Rossary A, Caldefie‐Chezet F, Vasson M, et al. Leptin modulates dose‐dependently the metabolic and cytolytic activities of NK‐92 cells. J Cell Physiol. 2013;228:1202–9.

    Article  CAS  PubMed  Google Scholar 

  123. Bähr I, Spielmann J, Quandt D, Kielstein H. Obesity-associated alterations of natural killer cells and immunosurveillance of cancer. Front Immunol. 2020;11.

  124. Nave H, Mueller G, Siegmund B, Jacobs R, Stroh T, Schueler U, et al. Resistance of Janus kinase-2 dependent leptin signaling in Natural Killer (NK) cells: a novel mechanism of NK cell dysfunction in diet-induced obesity. Endocrinology 2008;149:3370–8.

    Article  CAS  PubMed  Google Scholar 

  125. Wrann CD, Laue T, Hübner L, Kuhlmann S, Jacobs R, Goudeva L, et al. Short-term and long-term leptin exposure differentially affect human natural killer cell immune functions. Am J Physiol-Endocrinol Metab. 2012;302:E108–16.

    Article  CAS  PubMed  Google Scholar 

  126. Baltayeva J, Konwar C, Castellana B, Mara DL, Christians JK, Beristain AG. Obesogenic diet exposure alters uterine natural killer cell biology and impairs vasculature remodeling in mice†. Biol Reprod. 2019;102:63–75.

  127. Spielmann J, Hanke J, Knauf D, Ben-Eliyahu S, Jacobs R, Stangl GI, et al. Significantly enhanced lung metastasis and reduced organ NK cell functions in diet-induced obese rats. BMC Obes. 2017;4:24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Lamas B, Nachat‐Kappes R, Goncalves‐Mendes N, Mishellany F, Rossary A, Vasson M, et al. Dietary fat without body weight gain increases in vivo MCF‐7 human breast cancer cell growth and decreases natural killer cell cytotoxicity. Mol Carcinog. 2015;54:58–71.

    Article  CAS  PubMed  Google Scholar 

  129. Viel S, Besson L, Charrier E, Marçais A, Disse E, Bienvenu J, et al. Alteration of Natural Killer cell phenotype and function in obese individuals. Clin Immunol. 2017;177:12–7.

    Article  CAS  PubMed  Google Scholar 

  130. Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol. 2018;19:1330–40.

    Article  CAS  PubMed  Google Scholar 

  131. Canter RJ, Judge SJ, Collins CP, Yoon DJ, Murphy WJ. Suppressive effects of obesity on NK cells: is it time to incorporate obesity as a clinical variable for NK cell-based cancer immunotherapy regimens? J Immunother Cancer. 2024;12:e008443.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Duan MC, Zhong XN, Liu GN, Wei JR. The Treg/Th17 paradigm in lung cancer. J Immunol Res. 2014;2014:1–9.

    Article  Google Scholar 

  133. Lee HL, Jang JW, Lee SW, Yoo SH, Kwon JH, Nam SW, et al. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci Rep. 2019;9:3260.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Xu X, Wang R, Su Q, Huang H, Zhou P, Luan J, et al. Expression of Th1- Th2- and Th17-associated cytokines in laryngeal carcinoma. Oncol Lett. 2016;12:1941–8.

  135. Ribeiro R, Araújo A, Lopes C, Medeiros R. Immunoinflammatory mechanisms in lung cancer development: is leptin a mediator? J Thorac Oncol. 2007;2:105–8.

    Article  PubMed  Google Scholar 

  136. Cormanique TF, Costa FAG, da, Justina EY, Della, Broto GE, Moraes JZ, et al. Role of leptin in the pathogenesis of breast cancer. Semin Ciênc Biol Saúde. 2016;36:97–116.

    Google Scholar 

  137. Stefanakis K, Samiotaki M, Papaevangelou V, Valenzuela-Vallejo L, Giannoukakis N, Mantzoros CS. Longitudinal proteomics of leptin treatment in humans with acute and chronic energy deficiency-induced hypoleptinemia reveal novel, mainly immune-related, pleiotropic effects. Metabolism 2024;159:155984.

    Article  CAS  PubMed  Google Scholar 

  138. Deng J, Chen Q, Chen Z, Liang K, Gao X, Wang X, et al. The metabolic hormone leptin promotes the function of TFH cells and supports vaccine responses. Nat Commun. 2021;12:3073.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol. 2005;174:6820–8.

    Article  CAS  PubMed  Google Scholar 

  140. Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, et al. Obesity, fat mass and immune system: role for leptin. Front Physiol. 2018;9.

  141. Zeng Q, Luo X, Han M, Liu W, Li H. Leptin/osteopontin axis regulated type 2T helper cell response in allergic rhinitis with obesity. EBioMedicine 2018;32:43–9.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Aktar T, Modak S, Majumder D, Maiti D. A detailed insight into macrophages’ role in shaping lung carcinogenesis. Life Sci. 2024;352:122896.

    Article  CAS  PubMed  Google Scholar 

  143. Orekhov AN, Orekhova VA, Nikiforov NG, Myasoedova VA, Grechko AV. Romanenko EB, et al. Monocyte differentiation and macrophage polarization. Vessel Plus. 2019; 2019.

  144. Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res. 2021;10:1889–916.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  PubMed  Google Scholar 

  146. Wu MF, Lin CA, Yuan TH, Yeh HY, Su SF, Guo CL, et al. The M1/M2 spectrum and plasticity of malignant pleural effusion-macrophage in advanced lung cancer. Cancer Immunol, Immunother. 2021;70:1435–50.

    Article  CAS  PubMed  Google Scholar 

  147. Jeannin P, Paolini L, Adam C, Delneste Y. The roles of CSFs on the functional polarization of tumor‐associated macrophages. FEBS J. 2018;285:680–99.

    Article  CAS  PubMed  Google Scholar 

  148. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019;26:78.

    Article  PubMed Central  PubMed  Google Scholar 

  149. Aminin D, Wang Y. Macrophages as a “weapon” in anticancer cellular immunotherapy. Kaohsiung J Med Sci. 2021;37:749–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Zhou X, Wang X, Sun Q, Zhang W, Liu C, Ma W, et al. Natural compounds: a new perspective on targeting polarization and infiltration of tumor-associated macrophages in lung cancer. Biomed Pharmacother. 2022;151:113096.

    Article  CAS  PubMed  Google Scholar 

  151. Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, et al. Leptin: a heavyweight player in obesity-related cancers. Biomolecules 2023;13:1084.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Afrin S, Ramaiyer M, Begum UAM, Borahay MA. Adipocyte and adipokines promote a uterine leiomyoma friendly microenvironment. Nutrients 2023;15:715.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Cao H, Lin J, Chen W, Xu G, Sun C. Baseline adiponectin and leptin levels in predicting an increased risk of disease activity in rheumatoid arthritis: a meta-analysis and systematic review. Autoimmunity 2016;49:547–53.

    Article  CAS  PubMed  Google Scholar 

  154. Gelsomino L, Naimo GD, Malivindi R, Augimeri G, Panza S, Giordano C, et al. Knockdown of leptin receptor affects macrophage phenotype in the tumor microenvironment inhibiting breast cancer growth and progression. Cancers. 2020;12:2078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Cao H, Huang Y, Wang L, Wang H, Pang X, Li K, et al. Leptin promotes migration and invasion of breast cancer cells by stimulating IL-8 production in M2 macrophages. Oncotarget 2016;7:65441–53.

    Article  PubMed Central  PubMed  Google Scholar 

  156. Zhao S, Liu Y, He L, Li Y, Lin K, Kang Q, et al. Gallbladder cancer cell-derived exosome-mediated transfer of leptin promotes cell invasion and migration by modulating STAT3-mediated M2 macrophage polarization. Anal Cell Pathol. 2022;2022:1–11.

    Article  Google Scholar 

  157. Al-Hassi HO, Bernardo D, Murugananthan AU, Mann ER, English NR, Jones A, et al. A mechanistic role for leptin in human dendritic cell migration: differences between ileum and colon in health and Crohn’s disease. Mucosal Immunol. 2013;6:751–61.

    Article  CAS  PubMed  Google Scholar 

  158. Scheurlen KM, Snook DL, Walter MN, Cook CN, Fiechter CR, Pan J, et al. Itaconate and leptin affecting PPARγ in M2 macrophages: a potential link to early-onset colorectal cancer. Surgery 2022;171:650–6.

    Article  PubMed  Google Scholar 

  159. Alroqi FJ, Chatila TAT. Regulatory cell biology in health and disease. Curr Allergy Asthma Rep. 2016;16:27.

    Article  PubMed Central  PubMed  Google Scholar 

  160. Togashi Y, Nishikawa H. Regulatory T cells: molecular and cellular basis for immunoregulation. In: Yoshimura, A (eds) Emerging concepts targeting immune checkpoints in cancer and autoimmunity. current topics in microbiology and immunology, vol 410. Springer, Cham.

  161. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14:307–8.

    Article  CAS  PubMed  Google Scholar 

  162. Liang J, Bi G, Shan G, Jin X, Bian Y, Wang Q. Tumor-associated regulatory T cells in non-small-cell lung cancer: current advances and future perspectives. J Immunol Res. 2022;2022:1–8.

    Google Scholar 

  163. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11:7–13.

    Article  CAS  PubMed  Google Scholar 

  164. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109–18.

    Article  CAS  PubMed  Google Scholar 

  165. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol. 2016;17:1322–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Shang B, Liu Y, Juan J S, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Wang X, Xiao Z, Gong J, Liu Z, Zhang M, Zhang Z. A prognostic nomogram for lung adenocarcinoma based on immune-infiltrating Treg-related genes: from bench to bedside. Transl Lung Cancer Res. 2021;10:167–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Zabeau L, Jensen CJ, Seeuws S, Venken K, Verhee A, Catteeuw D, et al. Leptin’s metabolic and immune functions can be uncoupled at the ligand/receptor interaction level. Cell Mol Life Sci. 2015;72:629–44.

    Article  CAS  PubMed  Google Scholar 

  169. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168:4272–6.

    Article  CAS  PubMed  Google Scholar 

  170. Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, et al. Leptin, both bad and good actor in cancer. Biomolecules 2021;11:913.

    Article  PubMed Central  PubMed  Google Scholar 

  171. De Rosa V, Procaccini C, Calì G, Pirozzi G, Fontana S, Zappacosta S, et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 2007;26:241–55.

    Article  PubMed  Google Scholar 

  172. Li M, Li D, Wang HY, Zhang W, Zhuo Z, Guo H, et al. Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells. Oncoimmunology. 2025;14:2460281.

  173. Croce S, Avanzini MA, Regalbuto C, Cordaro E, Vinci F, Zuccotti G, et al. Adipose tissue immunomodulation and Treg/Th17 imbalance in the impaired glucose metabolism of children with obesity. Children 2021;8:554.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Procaccini C, De Rosa V, Galgani M, Abanni L, Calì G, Porcellini A, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010;33:929–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer Immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019;10:1205.

  176. Kim SY, Lim JH, Choi SW, Kim M, Kim ST, Kim MS, et al. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor. Biochem Biophys Res Commun. 2010;394:562–8.

    Article  CAS  PubMed  Google Scholar 

  177. Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, MacIver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J Immunol. 2014;192:136–44.

    Article  CAS  PubMed  Google Scholar 

  178. Gerriets VA, Danzaki K, Kishton RJ, Eisner W, Nichols AG, Saucillo DC, et al. Leptin directly promotes T‐cell glycolytic metabolism to drive effector T‐cell differentiation in a mouse model of autoimmunity. Eur J Immunol. 2016;46:1970–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Reis BS, Lee K, Fanok MH, Mascaraque C, Amoury M, Cohn LB, et al. Leptin receptor signaling in T cells is required for Th17 differentiation. J Immunol. 2015;194:5253–60.

    Article  CAS  PubMed  Google Scholar 

  180. Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, et al. Guardians and mediators of metastasis: exploring T lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in the breast cancer microenvironment. Int J Mol Sci. 2024;25:6224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Rumiano L, Manzo T. Lipids guide T cell antitumor immunity by shaping their metabolic and functional fitness. Trends Endocrinol Metab. 2024.

  182. Tan R, Nie M, Long W. The role of B cells in cancer development. Front Oncol. 2022;12.

  183. Xue D, Hu S, Zheng R, Luo H, Ren X. Tumor-infiltrating B cells: Their dual mechanistic roles in the tumor microenvironment. Biomed Pharmacother. 2024;179:117436.

    Article  CAS  PubMed  Google Scholar 

  184. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 2020;577:561–5.

    Article  CAS  PubMed  Google Scholar 

  185. Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol. 2017;14:662–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B, et al. Bruton tyrosine kinase–dependent immune cell cross-talk drives pancreas. Cancer Cancer Discov 2016;6:270–85.

    Article  CAS  PubMed  Google Scholar 

  187. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci. 2013;110:5133–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17:610–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Oleinika K, Slisere B, Catalán D, Rosser EC. B cell contribution to immunometabolic dysfunction and impaired immune responses in obesity. Clin Exp Immunol. 2022;210:263–72.

    Article  PubMed Central  PubMed  Google Scholar 

  190. Hersoug LG, Møller P, Loft S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr Res Rev. 2018;31:153–63.

    Article  CAS  PubMed  Google Scholar 

  191. Agrawal S, Gollapudi S, Su H, Gupta S. Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J Clin Immunol. 2011;31:472–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB. Obesity decreases B cell responses in young and elderly individuals. Obesity 2016;24:615–25.

    Article  CAS  PubMed  Google Scholar 

  193. Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, et al. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology. 2024;13:2412876.

  194. Orlova EG, Shirshev SV, Loginova OA. Mechanisms of leptin and ghrelin action on maturation and functions of dendritic cells. Biochemistry. 2019;84:1–10.

    CAS  PubMed  Google Scholar 

  195. Chen IC, Awasthi D, Hsu CL, Song M, Chae CS, Dannenberg AJ, et al. High-fat diet–induced obesity alters dendritic cell homeostasis by enhancing mitochondrial fatty acid oxidation. J Immunol. 2022;209:69–76.

    Article  CAS  PubMed  Google Scholar 

  196. Boi SK, Buchta CM, Pearson NA, Francis MB, Meyerholz DK, Grobe JL, et al. Obesity alters immune and metabolic profiles: new insight from obese‐resistant mice on high‐fat diet. Obesity 2016;24:2140–9.

    Article  CAS  PubMed  Google Scholar 

  197. Turbitt WJ, Buchta Rosean C, Weber KS, Norian LA. Obesity and CD8 T cell metabolism: Implications for anti‐tumor immunity and cancer immunotherapy outcomes. Immunol Rev. 2020;295:203–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. McDowell SAC, Luo RBE, Arabzadeh A, Doré S, Bennett NC, Breton V, et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat Cancer. 2021;2:545–62.

    Article  CAS  PubMed  Google Scholar 

  199. Moraes‐Vieira PMM, Larocca RA, Bassi EJ, Peron JPS, Andrade‐Oliveira V, Wasinski F, et al. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol. 2014;44:794–806.

    Article  PubMed Central  PubMed  Google Scholar 

  200. Bai Z, Ye Y, Ye X, Yuan B, Tang Y, Wei J, et al. Leptin promotes glycolytic metabolism to induce dendritic cells activation via STAT3-HK2 pathway. Immunol Lett. 2021;239:88–95.

    Article  CAS  PubMed  Google Scholar 

  201. Hwang J, Yoo JA, Yoon H, Han T, Yoon J, An S, et al. The role of leptin in the association between obesity and psoriasis. Biomol Ther. 2021;29:11–21.

    Article  CAS  Google Scholar 

  202. Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic cell metabolism and function in tumors. Trends Immunol. 2019;40:699–718.

    Article  CAS  PubMed  Google Scholar 

  203. Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Portincasa P, et al. Functional relationship between leptin and nitric oxide in metabolism. Nutrients 2019;11:2129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Herrera-Vargas AK, García-Rodríguez E, Olea-Flores M, Mendoza-Catalán MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev. 2021;62:23–41.

    Article  CAS  PubMed  Google Scholar 

  205. Bouloumié A, Drexler HCA, Lafontan M, Busse R. Leptin, the product of Ob gene, promotes angiogenesis. Circ Res. 1998;83:1059–66.

    Article  PubMed  Google Scholar 

  206. Ambrosini G, Nath AK, Sierra-Honigmann MR, Flores-Riveros J. Transcriptional activation of the human leptin gene in response to hypoxia. J Biol Chem. 2002;277:34601–9.

    Article  CAS  PubMed  Google Scholar 

  207. Han DS, Lee EO. Leptin promotes vasculogenic mimicry in breast cancer cells by regulating aquaporin-1. Int J Mol Sci. 2024;25:5215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Gómez-Ambrosi J, Catalán V, Rodríguez A, Ramírez B, Silva C, Gil MJ, et al. Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans . J Nutr Biochem. 2010;21:774–80.

    Article  PubMed  Google Scholar 

  209. Zhou W, Guo S, Gonzalez-Perez RR. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer. 2011;104:128–37.

    Article  CAS  PubMed  Google Scholar 

  210. Kurtovic S, Ng TT, Gupta A, Arumugaswami V, Chaiboonma KL, Aminzadeh MA, et al. Leptin enhances endothelial cell differentiation and angiogenesis in murine embryonic stem cells. Microvasc Res. 2015;97:65–74.

    Article  CAS  PubMed  Google Scholar 

  211. Garonna E, Botham KM, Birdsey GM, Randi AM, Gonzalez-Perez RR, Wheeler-Jones CPD. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One. 2011;6:e18823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Peng C, Sun Z, Li O, Guo C, Yi W, Tan Z, et al. Leptin stimulates the epithelial-mesenchymal transition and pro-angiogenic capability of cholangiocarcinoma cells through the miR-122/PKM2 axis. Int J Oncol. 2019;55:298–308.

  213. Amjadi F, Mehdipoor R, Zarkesh-Esfahani H, Javanmard S. Leptin serves as angiogenic/mitogenic factor in melanoma tumor growth. Adv Biomed Res. 2016;5:127.

    Article  PubMed Central  PubMed  Google Scholar 

  214. Crean-Tate KK, Reizes O. Leptin regulation of cancer stem cells in breast and gynecologic cancer. Endocrinology 2018;159:3069–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, et al. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther. 2024;9:170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol. 2022;82:11–25.

    Article  CAS  PubMed  Google Scholar 

  217. Park J, Scherer PE. Leptin and cancer: from cancer stem cells to metastasis. Endocr Relat Cancer. 2011;18:C25–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Zheng Q, Dunlap SM, Zhu J, Downs-Kelly E, Rich J, Hursting SD, et al. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocr Relat Cancer. 2011;18:491–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Park K, Kim E, Chin H, Yoon D, Jun KH. Leptin stimulates migration and invasion and maintains cancer stem-like properties in gastric cancer cells. Oncol Rep. 2022;48:162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Zheng Q, Banaszak L, Fracci S, Basali D, Dunlap SM, Hursting SD, et al. Leptin receptor maintains cancer stem-like properties in triple negative breast cancer cells. Endocr Relat Cancer. 2013;20:797–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Bowers LW, Rossi EL, McDonell SB, Doerstling SS, Khatib SA, Lineberger CG, et al. Leptin signaling mediates obesity-associated CSC enrichment and EMT in preclinical TNBC Models. Mol Cancer Res. 2018;16:869–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Greco M, De Santo M, Comandè A, Belsito EL, Andò S, Liguori A, et al. Leptin-activity modulators and their potential pharmaceutical applications. Biomolecules 2021;11:1045.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. Ardid-Ruiz A, Ibars M, Mena P, Del Rio D, Muguerza B, Bladé C, et al. Potential involvement of peripheral leptin/STAT3 signaling in the effects of resveratrol and its metabolites on reducing body fat accumulation. Nutrients 2018;10:1757.

    Article  PubMed Central  PubMed  Google Scholar 

  224. Yu H, Sheen J, Tiao M, Tain Y, Chen C, Lin I, et al. Resveratrol treatment ameliorates leptin resistance and adiposity programed by the combined effect of maternal and post‐weaning high‐fat diet. Mol Nutr Food Res. 2019;63.

  225. Ibars M, Ardid-Ruiz A, Suárez M, Muguerza B, Bladé C, Aragonès G. Proanthocyanidins potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced obesity. Int J Obes. 2017;41:129–36.

    Article  CAS  Google Scholar 

  226. Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. Cell 2015;161:999–1011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Camargo RL, Batista TM, Ribeiro RA, Branco RCS, Da Silva PMR, Izumi C, et al. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids. 2015;47:2419–35.

    Article  CAS  PubMed  Google Scholar 

  228. Hosoi T, Toyoda K, Nakatsu K, Ozawa K. Caffeine attenuated ER stress-induced leptin resistance in neurons. Neurosci Lett. 2014;569:23–6.

    Article  CAS  PubMed  Google Scholar 

  229. Castejón ML, Rosillo MÁ, Montoya T, González-Benjumea A, Fernández-Bolaños JM, Alarcón-de-la-Lastra C. Oleuropein down-regulated IL-1β-induced inflammation and oxidative stress in human synovial fibroblast cell line SW982. Food Funct. 2017;8:1890–8.

    Article  PubMed  Google Scholar 

  230. Hoek-van den Hil EF, van Schothorst EM, van der Stelt I, Swarts HJM, van Vliet M, Amolo T, et al. Direct comparison of metabolic health effects of the flavonoids quercetin, hesperetin, epicatechin, apigenin and anthocyanins in high-fat-diet-fed mice. Genes Nutr. 2015;10:23.

    Article  PubMed Central  PubMed  Google Scholar 

  231. Su HM, Feng LN, Zheng XD, Chen W. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice. J Zhejiang Univ-Sci B. 2016;17:437–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  232. Zulet MA, Navas-Carretero S, Lara y Sánchez D, Abete I, Flanagan J, Issaly N, et al. A Fraxinus excelsior L. seeds/fruits extract benefits glucose homeostasis and adiposity related markers in elderly overweight/obese subjects: a longitudinal, randomized, crossover, double-blind, placebo-controlled nutritional intervention study. Phytomedicine 2014;21:1162–9.

    Article  CAS  PubMed  Google Scholar 

  233. Avtanski DB, Nagalingam A, Kuppusamy P, Bonner MY, Arbiser JL, Saxena NK, et al. Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner. Oncotarget 2015;6:16396–410.

    Article  PubMed Central  PubMed  Google Scholar 

  234. Verploegen SABW, Plaetinck G, Devos R, Van der Heyden J, Guisez Y. A human leptin mutant induces weight gain in normal mice. FEBS Lett. 1997;405:237–40.

    Article  CAS  PubMed  Google Scholar 

  235. Panza S, Gelsomino L, Malivindi R, Rago V, Barone I, Giordano C, et al. Leptin receptor as a potential target to inhibit human testicular seminoma growth. Am J Pathol. 2019;189:687–98.

    Article  CAS  PubMed  Google Scholar 

  236. Catalano S, Leggio A, Barone I, De Marco R, Gelsomino L, Campana A, et al. A novel leptin antagonist peptide inhibits breast cancer growth in vitro and in vivo. J Cell Mol Med. 2015;19:1122–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  237. Otvos L Jr. Potential leptin receptor response modifier peptides. Aust J Chem. 2020;73:264.

    Article  CAS  Google Scholar 

  238. Leggio A, Catalano S, De Marco R, Barone I, Andò S, Liguori A. Therapeutic potential of leptin receptor modulators. Eur J Med Chem. 2014;78:97–105.

    Article  CAS  PubMed  Google Scholar 

  239. Miyoshi Y, Funahashi T, Tanaka S, Taguchi T, Tamaki Y, Shimomura I, et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int J Cancer. 2006;118:1414–9.

    Article  CAS  PubMed  Google Scholar 

  240. Rene Gonzalez R, Watters A, Xu Y, Singh UP, Mann DR, Rueda BR, et al. Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 2009;11:R36.

    Article  PubMed Central  PubMed  Google Scholar 

  241. Gonzalez RR, Leavis PC. A peptide derived from the human leptin molecule is a potent inhibitor of the leptin receptor function in rabbit endometrial cells. Endocrine 2003;21:185–96.

    Article  CAS  PubMed  Google Scholar 

  242. Otvos L, Kovalszky I, Scolaro L, Sztodola A, Olah J, Cassone M, et al. Peptide‐based leptin receptor antagonists for cancer treatment and appetite regulation. Pept Sci. 2011;96:117–25.

    Article  CAS  Google Scholar 

  243. Chin YT, Wang LM, Hsieh MT, Shih YJ, Nana AW, Changou CA, et al. Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. J Biomed Sci. 2017;24:51.

    Article  PubMed Central  PubMed  Google Scholar 

  244. Yang YCS, Chin YT, Hsieh MT, Lai HY, Ke CC, Crawford DR, et al. Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: Comparison with leptin. Oncotarget 2016;7:27641–54.

    Article  PubMed Central  PubMed  Google Scholar 

  245. Ho Y, Wang SH, Chen YR, Li ZL, Chin YT. Yang YCSH, et al. Leptin-derived peptides block leptin-induced proliferation by reducing expression of pro-inflammatory genes in hepatocellular carcinoma cells. Food Chem Toxicol. 2019;133:110808.

    Article  CAS  PubMed  Google Scholar 

  246. Fusco R, Galgani M, Procaccini C, Franco R, Pirozzi G, Fucci L, et al. Cellular and molecular crosstalk between leptin receptor and estrogen receptor-α in breast cancer: molecular basis for a novel therapeutic setting. Endocr Relat Cancer. 2010;17:373–82.

    Article  CAS  PubMed  Google Scholar 

  247. Carpenter B, Hemsworth GR, Wu Z, Maamra M, Strasburger CJ, Ross RJ, et al. Structure of the human obesity receptor leptin-binding ___domain reveals the mechanism of leptin antagonism by a monoclonal antibody. Structure 2012;20:487–97.

    Article  CAS  PubMed  Google Scholar 

  248. Munikumar M, Krishna VS, Reddy VS, Rajeswari B, Sriram D, Rao MV. In silico design of small peptides antagonist against leptin receptor for the treatment of obesity and its associated immune-mediated diseases. J Mol Graph Model. 2018;82:20–36.

    Article  CAS  PubMed  Google Scholar 

  249. Zabeau L, Verhee A, Catteeuw D, Faes L, Seeuws S, Decruy T, et al. Selection of non-competitive leptin antagonists using a random nanobody-based approach. Biochem J. 2012;441:425–34.

    Article  CAS  PubMed  Google Scholar 

  250. Lipsey CC, Harbuzariu A, Daley-Brown D, Gonzalez-Perez RR. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J Methodol. 2016;6:43.

    Article  PubMed Central  PubMed  Google Scholar 

  251. Harmon T, Harbuzariu A, Lanier V, Lipsey CC, Kirlin W, Yang L, et al. Nanoparticle-linked antagonist for leptin signaling inhibition in breast cancer. World J Clin Oncol. 2017;8:54.

  252. Vick LV, Canter RJ, Monjazeb AM, Murphy WJ. Multifaceted effects of obesity on cancer immunotherapies: bridging preclinical models and clinical data. Semin Cancer Biol. 2023;95:88–102.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.M. drafted the initial version of the manuscript and prepared the figures. T.A. contributed to the manuscript writing and assisted preparing a figure. D.M.R. participated in manuscript writing and performed critical revisions. A.K.S. contributed to the writing and provided substantive input during the critical revision process, D.M. conceptualized the review, reviewed and supervised its execution, and was responsible for final review and editing of the manuscript. All authors reviewed and approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Debasish Maiti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modak, S., Aktar, T., Majumder, D. et al. A systematic review on leptin’s role in defining cancer: special emphasis on immunomodulation, inflammation, and therapeutic interventions. Genes Immun 26, 266–286 (2025). https://doi.org/10.1038/s41435-025-00333-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-025-00333-7

Search

Quick links