Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitogenomic resolution of phylogenetic conflicts and adaptive signatures in feliform carnivorans

Abstract

Feliform carnivores face dual threats from habitat fragmentation and climate change, but unresolved phylogenetic relationships and unclear adaptive mechanisms hinder the development of conservation strategies. This study integrates mitochondrial genome data from 75 extant species (including three newly obtained taxa: Helogale parvula, Suricata suricatta, and Neofelis diardi) to resolve taxonomic controversies and reveal adaptive evolutionary mechanisms. Bayesian phylogenetic reconstruction strongly supports a sister-group relationship between Felidae and Prionodontidae (posterior probability PP = 1.0), overturning traditional morphological classifications. Divergence time estimation indicates that the crown group of Feliformia originated in the Middle Eocene (46 Ma), with key radiation events synchronized with Oligocene-Miocene climatic upheavals and continental collisions. Adaptive evolution analyses show that mitochondrial protein-coding genes (PCGs) are predominantly under purifying selection. However, significant positive selection signals were detected in the ND4 gene of Nandinia binotata and the COX2 gene of Pantherinae, potentially linked to arid adaptation and predatory energy demands, respectively. The frequent use of GTG start codons in the COX1 gene of Neofelis diardi suggests metabolic fine-tuning for island ecosystems. Conservation genomics identifies Prionodon pardicolor and Neofelis nebulosa as Evolutionarily Significant Units (ESUs) with heightened vulnerability to habitat fragmentation. By integrating mitogenomic architecture, deep-time biogeography, and contemporary selection pressures, this study establishes a unified framework bridging molecular systematics and conservation strategies, providing scientific guidance for protecting rapidly evolving lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the mitogenome of Helogale parvula, Suricata suricatta, Neofelis diardi.
Fig. 2: Relative synonymous codon usage (RSCU) of Helogale parvula, Suricata suricatta, Neofelis diardi.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexanian A, Sorokin A (2017) Cyclooxygenase 2: protein-protein interactions and posttranslational modifications. Physiol Genom 49(11):667–681.

    Article  CAS  Google Scholar 

  • Awadi A, Ben Slimen H, Schaschl H, Knauer F, Suchentrunk F (2021) Positive selection on two mitochondrial coding genes and adaptation signals in hares (genus Lepus) from China. BMC Ecol Evol 21(1):100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett R, Barnes I, Phillips MJ, Martin LD, Harington CR, Leonard JA et al. (2005) Evolution of the extinct Sabretooths and the American cheetah-like cat. Curr Biol 15(15):R589–R590.

    Article  CAS  PubMed  Google Scholar 

  • Barycka E (2007) Evolution and systematics of the feliform Carnivora. Mamm Biol 72(5):257–282.

    Article  Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G et al. (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319.

    Article  PubMed  Google Scholar 

  • Bininda-Emonds OR, Gittleman JL, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74(2):143–175.

    Article  CAS  PubMed  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A et al. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15(4):e1006650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broggini C, Cavallini M, Vanetti I, Abell J, Binelli G, Lombardo G (2024) From Caves to the Savannah, the Mitogenome History of Modern Lions (Panthera leo) and Their Ancestors. Int J Mol Sci 25(10):5193.

  • Burgin CJ, Colella JP, Kahn PL, Upham NS (2018) How many species of mammals are there?. J Mammal 99(1):1–14.

    Article  Google Scholar 

  • Bursell MG, Dikow RB, Figueiró HV, Dudchenko O, Flanagan JP, Aiden EL et al. (2022) Whole genome analysis of clouded leopard species reveals an ancient divergence and distinct demographic histories. iScience 25(12):105647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clyde D (2019) Decoding dragon DNA. Nat Rev Genet 20(10):564–565.

    Article  CAS  PubMed  Google Scholar 

  • Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18.

    PubMed  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ et al. (2011) Trophic downgrading of planet Earth. Science 333(6040):301–306.

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Bai M, Rivas-González I, Li C, Liu S, Tong Y et al. (2022) Incomplete lineage sorting and phenotypic evolution in marsupials. Cell 185(10):1646–1660.e1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiró HV, Li G, Trindade FJ, Assis J, Pais F, Fernandes G et al. (2017) Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Sci Adv 3(7):e1700299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galtier N, Nabholz B, Glémin S, Hurst GD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18(22):4541–4550.

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A, Veron G, Ropiquet A, Jansen van Vuuren B, Lécu A, Goodman SM et al. (2021) Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes. PLoS ONE 16(2):e0240770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E et al. (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311(5757):73–77.

    Article  CAS  PubMed  Google Scholar 

  • Kitchener A, Breitenmoser C, Eizirik E, Gentry A, Werdelin L, Wilting A et al. (2017) A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News Special Issue: 80 pp.

  • Koufos GD (2022) The Fossil Record of Hyaenids (Mammalia: Carnivora: Hyaenidae) in Greece. In: Vlachos E (ed) Fossil Vertebrates of Greece Vol. 2: Laurasiatherians, Artiodactyles, Perissodactyles, Carnivorans, and Island Endemics. Springer International Publishing: Cham, pp 555-576.

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol Biol Evol 34(3):772–773.

    CAS  PubMed  Google Scholar 

  • Miralles A, Puillandre N, Vences M (2024) DNA Barcoding in Species Delimitation: From Genetic Distances to Integrative Taxonomy. Methods Mol Biol 2744:77–104.

    Article  PubMed  Google Scholar 

  • Nyakatura K, Bininda-Emonds ORP (2012) Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol 10(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvathy ST, Udayasuriyan V, Bhadana V (2022) Codon usage bias. Mol Biol Rep 49(1):539–565.

    Article  CAS  PubMed  Google Scholar 

  • Polly PD (2001) Paleontology and the comparative method: ancestral node reconstructions versus observed node values. Am Nat 157(6):596–609.

    Article  CAS  PubMed  Google Scholar 

  • Popadin KY, Nikolaev SI, Junier T, Baranova M, Antonarakis SE (2013) Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. Mol Biol Evol 30(2):347–355.

    Article  CAS  PubMed  Google Scholar 

  • de Queiroz A (2005) The resurrection of oceanic dispersal in historical biogeography. Trends Ecol Evol 20(2):68–73.

    Article  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozewicki J, Li S, Amada KM, Standley DM, Katoh K (2019) MAFFT-DASH: integrated protein sequence and structural alignment. Nucl Acids Res 47(W1):W5–W10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rundell RJ, Price TD (2009) Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol Evol 24(7):394–399.

    Article  PubMed  Google Scholar 

  • Seehausen O (2015) Process and pattern in cichlid radiations - inferences for understanding unusually high rates of evolutionary diversification. N Phytol 207(2):304–312.

    Article  Google Scholar 

  • Sen S (2013) Dispersal of African mammals in Eurasia during the Cenozoic: Ways and whys. Geobios 46(1):159–172.

    Article  Google Scholar 

  • Shackleton S, Seltzer A, Baggenstos D, Lisiecki LE (2023) Benthic δ18O records Earth’s energy imbalance. Nat Geosci 16(9):797–802.

    Article  CAS  Google Scholar 

  • Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta (BBA) - Bioenerg 1797(6):1171–1177.

    Article  CAS  Google Scholar 

  • Strömberg CAE (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39(39):517–544.

    Article  Google Scholar 

  • Summerer M, Horst J, Erhart G, Weißensteiner H, Schönherr S, Pacher D et al. (2014) Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar. BMC Evol Biol 14(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunnucks P, Morales HE, Lamb AM, Pavlova A, Greening C (2017) Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front Genet 8:25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Jia P, Gao S, Zhao H, Zheng G, Xu L et al. (2025) Long and accurate: how HiFi sequencing is transforming genomics. Genom Proteom Bioinf 7:qzaf003.

    Article  Google Scholar 

  • Wang Q, Wu Y, Merchant A, Li E, Wei M, Zhang Y et al. (2024) The mitochondrial genome and life history of Tomostethus sinofraxini (Hymenoptera: Tenthredinidae), an emerging pest of Fraxinus chinensis. J Econ Entomol 117(2):564–577.

    Article  PubMed  Google Scholar 

  • Wang X, Shang Y, Wu X, Wei Q, Zhou S, Sun G et al. (2023) Divergent evolution of mitogenomics in Cetartiodactyla niche adaptation. Org Divers Evol 23(1):243–259.

    Article  CAS  Google Scholar 

  • Wang X, Zhou S, Wu X, Wei Q, Shang Y, Sun G et al. (2021) High-altitude adaptation in vertebrates as revealed by mitochondrial genome analyses. Ecol Evol 11(21):15077–15084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei L, He J, Jia X, Qi Q, Liang Z, Zheng H et al. (2014) Analysis of codon usage bias of mitochondrial genome in Bombyx moriand its relation to evolution. BMC Evol Biol 14(1):262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wei F, Zhan X, Fan H, Zhao P, Huang G et al. (2022) Evolutionary conservation genomics reveals recent speciation and local adaptation in threatened takins. Mol Biol Evol 39(6):msac111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (2007) PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 24(8):1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Zhang WQ, Zhang MH (2013) Complete mitochondrial genomes reveal phylogeny relationship and evolutionary history of the family Felidae. Genet Mol Res : GMR 12(3):3256–3262.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Wang S-R, Ma J-Z (2017) Comprehensive species set revealing the phylogeny and biogeography of Feliformia (Mammalia, Carnivora) based on mitochondrial DNA. PLoS ONE 12(3):e0174902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwonitzer KD, Iverson ENK, Sterling JE, Weaver RJ, Maclaine BA, Havird JC (2023) Disentangling positive selection from relaxed selection in animal mitochondrial genomes. Am Nat 202(4):E121–e129.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (32470448, 32270444), the Youth Innovation Team of Shandong Universities (2022KJ177).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoyang Wu, Yamin Xing and Xibao Wang conducted the project, collected the fitness and copy-number data, interpreted results, and wrote the initial draft of the manuscript. Honghai Zhang generated the original experimental line, provided funding, made several figures and helped write the later versions of the manuscript. Yongquan Shang, Yao Chen, Mingke Han and Weilai Sha provided funding, designed the experiments and helped write the later versions of the manuscript. All authors contributed to the final revision of the manuscript.

Corresponding author

Correspondence to Honghai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Research ethics statement

The culturing is not associated with any research ethics constraints.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Xiangjiang Zhan.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Xing, Y., Wang, X. et al. Mitogenomic resolution of phylogenetic conflicts and adaptive signatures in feliform carnivorans. Heredity (2025). https://doi.org/10.1038/s41437-025-00772-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41437-025-00772-y

Search

Quick links