Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Elucidating the complex interplay between chronic kidney disease and hypertension

Abstract

Chronic kidney disease (CKD) and hypertension share a complex relationship, each exacerbating the progression of the other. CKD contributes to hypertension by decreasing renal function, leading to fluid retention and increased plasma volume, whereas hypertension exacerbates CKD by increasing glomerular pressure and causing renal damage. This review examines the intertwined nature of CKD and hypertension, exploring the factors driving hypertension in CKD and how hypertension accelerates CKD progression. It discusses the role of the renin-angiotensin system and inflammatory cytokines in this relationship, as well as the potential of blood pressure management to slow renal decline. While studies suggest that meticulous blood pressure control can help attenuate CKD progression, optimal management strategies remain unclear and require further investigation. This review also evaluates the evidence surrounding strict antihypertensive therapy in patients with CKD, considering both diabetic and non-diabetic cases. It recommends blood pressure targets based on CKD stage and presence of diabetes, emphasizing the importance of individualized treatment approaches. Renin-angiotensin system inhibitors are highlighted as a key pharmacological intervention due to their renal protective effects, particularly in patients with CKD with proteinuria. However, evidence regarding their efficacy in patients with CKD but without proteinuria is inconclusive. This review underscores the need for comprehensive approaches to effectively address the intertwined nature of CKD and hypertension and calls for further research to optimize clinical management strategies in this complex interplay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagata D, Hishida E, Masuda T. Practical Strategy for Treating Chronic Kidney Disease (CKD)-Associated with Hypertension. Int J Nephrol Renovasc Dis. 2020;13:171–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med. 2020;9:2359.

  3. Rey J, Townsend RR. Renal Denervation: A Review. Am J Kidney Dis. 2022;80:527–35.

    Google Scholar 

  4. Wood JM, Stanton JL, Hofbauer KG. Inhibitors of renin as potential therapeutic agents. J Enzym Inhib. 1987;1:169–85.

    CAS  PubMed  Google Scholar 

  5. Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ichihara A, Itoh H, Inagami T. Critical roles of (pro)renin receptor-bound prorenin in diabetes and hypertension: sallies into therapeutic approach. J Am Soc Hypertens. 2008;2:15–9.

    PubMed  Google Scholar 

  7. Nishiyama A, Kobori H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin Exp Nephrol. 2018;22:1231–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrera-Chimal J, Girerd S, Jaisser F. Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney Int. 2019;96:302–19.

    CAS  PubMed  Google Scholar 

  9. Epstein M, Kovesdy CP, Clase CM, Sood MM, Pecoits-Filho R. Aldosterone, Mineralocorticoid Receptor Activation, and CKD: A Review of Evolving Treatment Paradigms. Am J Kidney Dis. 2022;80:658–66.

    CAS  PubMed  Google Scholar 

  10. Wen Y, Crowley SD. Renal Effects of Cytokines in Hypertension. Adv Exp Med Biol. 2019;1165:443–54.

    CAS  PubMed  Google Scholar 

  11. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.

    CAS  PubMed  Google Scholar 

  12. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124:1370–81.

    CAS  PubMed  Google Scholar 

  13. Chan CT, Moore JP, Budzyn K, Guida E, Diep H, Vinh A, et al. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice. Hypertension. 2012;60:1207–12.

    CAS  PubMed  Google Scholar 

  14. Mathis KW, Wallace K, Flynn ER, Maric-Bilkan C, LaMarca B, Ryan MJ. Preventing autoimmunity protects against the development of hypertension and renal injury. Hypertension. 2014;64:792–800.

    CAS  PubMed  Google Scholar 

  15. Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, et al. Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension. Hypertension. 2015;66:1023–33.

    CAS  PubMed  Google Scholar 

  16. Yatim KM, Gosto M, Humar R, Williams AL, Oberbarnscheidt MH. Renal dendritic cells sample blood-borne antigen and guide T-cell migration to the kidney by means of intravascular processes. Kidney Int. 2016;90:818–27.

    CAS  PubMed  Google Scholar 

  17. Majid DS. Tumor necrosis factor-α and kidney function: experimental findings in mice. Adv Exp Med Biol. 2011;691:471–80.

    CAS  PubMed  Google Scholar 

  18. Markó L, Kvakan H, Park JK, Qadri F, Spallek B, Binger KJ, et al. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension. 2012;60:1430–6.

    PubMed  Google Scholar 

  19. Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice. Hypertension. 2015;65:569–76.

    CAS  PubMed  Google Scholar 

  20. Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharm. 2016;173:752–65.

    CAS  Google Scholar 

  21. Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN-γ Contributes to the Immune Mechanisms of Hypertension. Kidney360. 2022;3:2164–73.

    PubMed  PubMed Central  Google Scholar 

  22. Benson LN, Liu Y, Wang X, Xiong Y, Rhee SW, Guo Y, et al. The IFNγ-PDL1 Pathway Enhances CD8T-DCT Interaction to Promote Hypertension. Circ Res. 2022;130:1550–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest. 1994;93:2431–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mozes MM, Böttinger EP, Jacot TA, Kopp JB. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. J Am Soc Nephrol. 1999;10:271–80.

    CAS  PubMed  Google Scholar 

  25. Douthwaite JA, Johnson TS, Haylor JL, Watson P, El Nahas AM. Effects of transforming growth factor-beta1 on renal extracellular matrix components and their regulating proteins. J Am Soc Nephrol. 1999;10:2109–19.

    CAS  PubMed  Google Scholar 

  26. Didion SP, Kinzenbaw DA, Schrader LI, Chu Y, Faraci FM. Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension. 2009;54:619–24.

    CAS  PubMed  Google Scholar 

  27. Murphy SR, Dahly-Vernon AJ, Dunn KM, Chen CC, Ledbetter SR, Williams JM, et al. Renoprotective effects of anti-TGF-β antibody and antihypertensive therapies in Dahl S rats. Am J Physiol Regul Integr Comp Physiol. 2012;303:R57–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lima VV, Zemse SM, Chiao CW, Bomfim GF, Tostes RC, Clinton Webb R, et al. Interleukin-10 limits increased blood pressure and vascular RhoA/Rho-kinase signaling in angiotensin II-infused mice. Life Sci. 2016;145:137–43.

    CAS  PubMed  Google Scholar 

  29. Dhande I, Ma W, Hussain T. Angiotensin AT2 receptor stimulation is anti-inflammatory in lipopolysaccharide-activated THP-1 macrophages via increased interleukin-10 production. Hypertens Res. 2015;38:21–9.

    CAS  PubMed  Google Scholar 

  30. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol. 2006;17:S218–25.

    CAS  PubMed  Google Scholar 

  31. Yu ASL, Chertow GM, Luyckx VA, Marsden PA, Skorecki K, Taal MW, et al. Brenner & Rector’s The Kidney 11th. Philadelphia, PA: Elsevier; 2020.

  32. Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension. 2003;41:1341–5.

    CAS  PubMed  Google Scholar 

  33. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165:923–8.

    PubMed  Google Scholar 

  34. Safar ME, London GM. Arterial and venous compliance in sustained essential hypertension. Hypertension. 1987;10:133–9.

    CAS  PubMed  Google Scholar 

  35. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–33.

    PubMed  Google Scholar 

  36. Palmer BF. Impaired renal autoregulation: implications for the genesis of hypertension and hypertension-induced renal injury. Am J Med Sci. 2001;321:388–400.

    CAS  PubMed  Google Scholar 

  37. Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol. 2012;74:351–75.

    CAS  PubMed  Google Scholar 

  38. Hill GS, Heudes D, Jacquot C, Gauthier E, Bariéty J. Morphometric evidence for impairment of renal autoregulation in advanced essential hypertension. Kidney Int. 2006;69:823–31.

    CAS  PubMed  Google Scholar 

  39. Freedman BI, Iskandar SS, Appel RG. The link between hypertension and nephrosclerosis. Am J Kidney Dis. 1995;25:207–21.

    CAS  PubMed  Google Scholar 

  40. Rule AD, Amer H, Cornell LD, Taler SJ, Cosio FG, Kremers WK, et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Intern Med. 2010;152:561–7.

    PubMed  PubMed Central  Google Scholar 

  41. Ninomiya T, Kubo M, Doi Y, Yonemoto K, Tanizaki Y, Tsuruya K, et al. Prehypertension increases the risk for renal arteriosclerosis in autopsies: the Hisayama Study. J Am Soc Nephrol. 2007;18:2135–42.

    PubMed  Google Scholar 

  42. Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension. 2004;44:595–601.

    CAS  PubMed  Google Scholar 

  43. Group UPDS. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317:703–13.

    Google Scholar 

  44. Ogihara T, Saruta T, Rakugi H, Saito I, Shimamoto K, Matsuoka H, et al. Combinations of olmesartan and a calcium channel blocker or a diuretic in elderly hypertensive patients: a randomized, controlled trial. J Hypertens. 2014;32:2054–63. discussiom 63

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirayama A, Konta T, Kamei K, Suzuki K, Ichikawa K, Fujimoto S, et al. Blood Pressure, Proteinuria, and Renal Function Decline: Associations in a Large Community-Based Population. Am J Hypertens. 2015;28:1150–6.

    CAS  PubMed  Google Scholar 

  46. Lee CJ, Ryu J, Kim HC, Ryu DR, Ihm SH, Kim YJ, et al. Clinical Benefit of Treatment of Stage-1, Low-Risk Hypertension. Hypertension. 2018;72:1285–93.

    CAS  PubMed  Google Scholar 

  47. Maeda T, Yoshimura C, Takahashi K, Ito K, Yasuno T, Abe Y, et al. Usefulness of the blood pressure classification in the new 2017 ACC/AHA hypertension guidelines for the prediction of new-onset chronic kidney disease. J Hum Hypertens. 2019;33:873–8.

    PubMed  Google Scholar 

  48. Berkowitz SA, Sussman JB, Jonas DE, Basu S. Generalizing Intensive Blood Pressure Treatment to Adults With Diabetes Mellitus. J Am Coll Cardiol. 2018;72:1214–23.

    PubMed  PubMed Central  Google Scholar 

  49. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015;373:2103–16.

    CAS  PubMed  Google Scholar 

  50. Lewis CE, Fine LJ, Beddhu S, Cheung AK, Cushman WC, Cutler JA, et al. Final Report of a Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2021;384:1921–30.

    PubMed  PubMed Central  Google Scholar 

  51. Magriço R, Bigotte Vieira M, Viegas Dias C, Leitão L, Neves JS. BP Reduction, Kidney Function Decline, and Cardiovascular Events in Patients without CKD. Clin J Am Soc Nephrol. 2018;13:73–80.

    PubMed  Google Scholar 

  52. Cushman WC, Evans GW, Byington RP, Goff DC Jr. Grimm RH, Jr., Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    PubMed  Google Scholar 

  53. Ueki K, Sasako T, Okazaki Y, Kato M, Okahata S, Katsuyama H, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:951–64.

    PubMed  Google Scholar 

  54. Bangalore S, Kumar S, Lobach I, Messerli FH. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123:2799–810. 9 p following 810

    CAS  PubMed  Google Scholar 

  55. Imai E, Ito S, Haneda M, Harada A, Kobayashi F, Yamasaki T, et al. Effects of blood pressure on renal and cardiovascular outcomes in Asian patients with type 2 diabetes and overt nephropathy: a post hoc analysis (ORIENT-blood pressure). Nephrol Dial Transpl. 2016;31:447–54.

    CAS  Google Scholar 

  56. Bansal N, McCulloch CE, Lin F, Robinson-Cohen C, Rahman M, Kusek JW, et al. Different components of blood pressure are associated with increased risk of atherosclerotic cardiovascular disease versus heart failure in advanced chronic kidney disease. Kidney Int. 2016;90:1348–56.

    PubMed  PubMed Central  Google Scholar 

  57. Berl T, Hunsicker LG, Lewis JB, Pfeffer MA, Porush JG, Rouleau JL, et al. Impact of achieved blood pressure on cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial. J Am Soc Nephrol. 2005;16:2170–9.

    CAS  PubMed  Google Scholar 

  58. Chiang HP, Lee JJ, Chiu YW, Tsai JC, Hung CC, Hwang SJ, et al. Systolic blood pressure and outcomes in stage 3-4 chronic kidney disease patients: evidence from a Taiwanese cohort. Am J Hypertens. 2014;27:1396–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Benavente OR, Coffey CS, Conwit R, Hart RG, McClure LA, Pearce LA, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013;382:507–15.

    CAS  PubMed  Google Scholar 

  60. Rueda-Ochoa OL, Rojas LZ, Ahmad S, van Duijn CM, Ikram MA, Deckers JW, et al. Impact of cumulative SBP and serious adverse events on efficacy of intensive blood pressure treatment: a randomized clinical trial. J Hypertens. 2019;37:1058–69.

    CAS  PubMed  Google Scholar 

  61. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 - Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens. 2017;35:922–44.

    CAS  PubMed  Google Scholar 

  62. Wright JT Jr, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288:2421–31.

    CAS  PubMed  Google Scholar 

  63. Appel LJ, Wright JT Jr, Greene T, Agodoa LY, Astor BC, Bakris GL, et al. Intensive blood-pressure control in hypertensive chronic kidney disease. N Engl J Med. 2010;363:918–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsai WC, Wu HY, Peng YS, Yang JY, Chen HY, Chiu YL, et al. Association of Intensive Blood Pressure Control and Kidney Disease Progression in Nondiabetic Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. JAMA Intern Med. 2017;177:792–9.

    PubMed  PubMed Central  Google Scholar 

  65. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330:877–84.

    CAS  PubMed  Google Scholar 

  66. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995;123:754–62.

    CAS  PubMed  Google Scholar 

  67. Sarnak MJ, Greene T, Wang X, Beck G, Kusek JW, Collins AJ, et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med. 2005;142:342–51.

    PubMed  Google Scholar 

  68. Herrington W, Staplin N, Judge PK, Mafham M, Emberson J, Haynes R, et al. Evidence for Reverse Causality in the Association Between Blood Pressure and Cardiovascular Risk in Patients With Chronic Kidney Disease. Hypertension. 2017;69:314–22.

    CAS  PubMed  Google Scholar 

  69. Cheung AK, Rahman M, Reboussin DM, Craven TE, Greene T, Kimmel PL, et al. Effects of Intensive BP Control in CKD. J Am Soc Nephrol. 2017;28:2812–23.

    PubMed  PubMed Central  Google Scholar 

  70. Obi Y, Kalantar-Zadeh K, Shintani A, Kovesdy CP, Hamano T. Estimated glomerular filtration rate and the risk-benefit profile of intensive blood pressure control amongst nondiabetic patients: a post hoc analysis of a randomized clinical trial. J Intern Med. 2018;283:314–27.

    CAS  PubMed  Google Scholar 

  71. Inaguma D, Imai E, Takeuchi A, Ohashi Y, Watanabe T, Nitta K, et al. Risk factors for CKD progression in Japanese patients: findings from the Chronic Kidney Disease Japan Cohort (CKD-JAC) study. Clin Exp Nephrol. 2017;21:446–56.

    PubMed  Google Scholar 

  72. Yamamoto T, Nakayama M, Miyazaki M, Matsushima M, Sato T, Taguma Y, et al. Relationship between low blood pressure and renal/cardiovascular outcomes in Japanese patients with chronic kidney disease under nephrologist care: the Gonryo study. Clin Exp Nephrol. 2015;19:878–86.

    PubMed  Google Scholar 

  73. Kurasawa S, Yasuda Y, Kato S, Maruyama S, Okada H, Kashihara N, et al. Relationship between the lower limit of systolic blood pressure target and kidney function decline in advanced chronic kidney disease: an instrumental variable analysis from the REACH-J CKD cohort study. Hypertens Res. 2023;46:2478–87.

    PubMed  Google Scholar 

  74. Ptinopoulou AG, Pikilidou MI, Lasaridis AN. The effect of antihypertensive drugs on chronic kidney disease: a comprehensive review. Hypertens Res. 2013;36:91–101.

    CAS  PubMed  Google Scholar 

  75. Mishima E, Haruna Y, Arima H. Renin-angiotensin system inhibitors in hypertensive adults with non-diabetic CKD with or without proteinuria: a systematic review and meta-analysis of randomized trials. Hypertens Res. 2019;42:469–82.

    CAS  PubMed  Google Scholar 

  76. Japanese Society of Nephrology. Essential points from evidence-based clinical practice guideline for chronic kidney disease 2023. Clin Exp Nephrol. 2024; https://doi.org/10.1007/s10157-024-02497-4.

  77. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Google Scholar 

  78. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:1269–324.

    CAS  PubMed  Google Scholar 

  79. The GISEN Group. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349:1857–63.

    Google Scholar 

  80. Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet. 1999;354:359–64.

    CAS  PubMed  Google Scholar 

  81. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    CAS  PubMed  Google Scholar 

  82. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    CAS  PubMed  Google Scholar 

  83. Casas JP, Chua W, Loukogeorgakis S, Vallance P, Smeeth L, Hingorani AD, et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet. 2005;366:2026–33.

    CAS  PubMed  Google Scholar 

  84. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–97.

    Google Scholar 

  85. Bangalore S, Fakheri R, Toklu B, Messerli FH. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ. 2016;352:i438.

    PubMed  PubMed Central  Google Scholar 

  86. Fu EL, Evans M, Clase CM, Tomlinson LA, van Diepen M, Dekker FW, et al. Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study. J Am Soc Nephrol. 2021;32:424–35.

    CAS  PubMed  Google Scholar 

  87. Bhandari S, Mehta S, Khwaja A, Cleland JGF, Ives N, Brettell E, et al. Renin-Angiotensin System Inhibition in Advanced Chronic Kidney Disease. N Engl J Med. 2022;387:2021–32.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported in part by The Moriya Scholarship Foundation (to DN). We would like to thank Editage for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Nagata or Erika Hishida.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, D., Hishida, E. Elucidating the complex interplay between chronic kidney disease and hypertension. Hypertens Res 47, 3409–3422 (2024). https://doi.org/10.1038/s41440-024-01937-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01937-8

Keyword

Search

Quick links