Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2024 FUKUOKA
  • Published:

Establishment of a HFpEF model using female Dahl salt-sensitive rats: a valuable tool for elucidating the pathophysiology of HFpEF in women

A Comment to this article was published on 27 January 2025

Abstract

The pathogenesis of heart failure with preserved ejection fraction (HFpEF) remains unclear, and effective treatments are limited. HFpEF is more prevalent in females, indicating potential gender differences in its pathogenesis. However, no female HFpEF model animals have been established. Hypertension is a major contributor to HFpEF, and sympathetic activation is thought to play a role in both conditions. This study aimed to establish a female HFpEF model using hypertensive Dahl salt-sensitive rats and to assess the presence of sympathetic activation. Seven-week-old female Dahl salt-sensitive rats were fed an 8% high-salt diet (HS group, n = 6), while a low-salt diet group (LS group, n = 9) served as controls. The HS group exhibited increased systolic blood pressure and heart rate. Echocardiography revealed an increased left ventricular (LV) wall thickness, a decreased E/A ratio, and an increased E/e’ ratio, all indicative of diastolic dysfunction without reduced LV ejection fraction. Additionally, the HS group showed elevated LV end-diastolic pressure, LV weight, and lung weight, along with histological cardiomyocyte hypertrophy and interstitial fibrosis. Gene expression markers for cardiac hypertrophy and fibrosis were also increased. Renal function was significantly impaired, and plasma norepinephrine levels were elevated, consistent with heightened pre-sympathetic neuronal activity in the brain. In conclusion, high salt loading from 7 weeks of age in female Dahl salt-sensitive rats induced hypertensive HFpEF phenotypes with LV hypertrophy and fibrosis, and sympathetic activation by 16 to 19 weeks of age. This model provides a valuable tool for studying HFpEF pathophysiology in women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2013;62:1495–539.

    Article  Google Scholar 

  2. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    Article  PubMed  Google Scholar 

  3. Pieske B, Patel MJ, Westerhout CM, Anstrom KJ, Butler J, Ezekowitz J, et al. Baseline features of the VICTORIA (Vericiguat Global Study in Subjects with Heart Failure with Reduced Ejection Fraction) trial. Eur J Heart Fail. 2019;21:1596–604.

    Article  CAS  PubMed  Google Scholar 

  4. Zannad F, Anker SD, Byra WM, Cleland JGF, Fu M, Gheorghiade M, et al. Rivaroxaban in patients with heart failure, sinus rhythm, and coronary disease. N Engl J Med. 2018;379:1332–42.

    Article  CAS  PubMed  Google Scholar 

  5. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.

    Article  CAS  PubMed  Google Scholar 

  6. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92.

    Article  CAS  PubMed  Google Scholar 

  7. Sotomi Y, Hikoso S, Nakatani D, Mizuno H, Okada K, Dohi T, et al. Sex differences in heart failure with preserved ejection fraction. J Am Heart Assoc. 2021;10:e018574. https://doi.org/10.1161/JAHA.120.018574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Triposkiadis F, Briasoulis A, Sarafidis P, Magouliotis D, Athanasiou T, Paraskevaidis I, et al. The sympathetic nervous system in hypertensive heart failure with preserved LVEF. J Clin Med. 2023;12:6486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53:205–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kaye DM, Nanayakkara S, Wang B, Shihata W, Marques FZ, Esler M, et al. Characterization of cardiac sympathetic nervous system and inflammatory activation in HFpEF patients. JACC Basic Transl Sci. 2022;7:116–27.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D. Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertension. 2006;47:901–11.

    Article  CAS  PubMed  Google Scholar 

  12. Kilfoil PJ, Lotteau S, Zhang R, Yue X, Aynaszyan S, Solymani RE, et al. Distinct features of calcium handling and β-adrenergic sensitivity in heart failure with preserved versus reduced ejection fraction. J Physiol. 2020;598:5091–108.

    Article  CAS  PubMed  Google Scholar 

  13. Mesquita T, Zhang R, Cho JH, Zhang R, Lin Y-N, Sanchez L, et al. Mechanisms of sinoatrial node dysfunction in heart failure with preserved ejection fraction. Circulation. 2022;145:45–60.

    Article  CAS  PubMed  Google Scholar 

  14. Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA. Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats. Nat Protoc. 2008;3:1422–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Investig. 1976;58:751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iyonaga T, Shinohara K, Mastuura T, Hirooka Y, Tsutsui H. Brain perivascular macrophages contribute to the development of hypertension in stroke-prone spontaneously hypertensive rats via sympathetic activation. Hypertens Res. 2020;43:99–110.

    Article  CAS  PubMed  Google Scholar 

  17. Ikeda S, Shinohara K, Kashihara S, Matsumoto S, Yoshida D, Nakashima R, et al. Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2023;46:268–79.

    Article  CAS  PubMed  Google Scholar 

  18. Elkholey K, Morris L, Niewiadomska M, Houser J, Ramirez M, Tang M, et al. Sex differences in the incidence and mode of death in rats with heart failure with preserved ejection fraction. Exp Physiol. 2021;106:673–82.

    Article  CAS  PubMed  Google Scholar 

  19. Adams V, Alves M, Fischer T, Rolim N, Werner S, Schütt N, et al. High-intensity interval training attenuates endothelial dysfunction in a Dahl salt-sensitive rat model of heart failure with preserved ejection fraction. J Appl Physiol. 2015;119:745–52.

    Article  CAS  PubMed  Google Scholar 

  20. Quiroz R, Doros G, Shaw P, Liang C, Gauthier DF, Sam F. Comparison of characteristics and outcomes of patients with heart failure preserved ejection fraction versus reduced left ventricular ejection fraction in an Urban Cohort. Am J Cardiol. 2014;113:691–6.

    Article  PubMed  Google Scholar 

  21. Yaku H, Ozasa N, Morimoto T, Inuzuka Y, Tamaki Y, Yamamoto E, et al. Demographics, management, and in-hospital outcome of hospitalized acute heart failure syndrome patients in contemporary real clinical practice in Japan―observations from the prospective, multicenter Kyoto Congestive Heart Failure (KCHF) Registry. Circ J. 2018;82:2811–9.

    Article  PubMed  Google Scholar 

  22. Silverman DN, Plante TB, Infeld M, Callas PW, Juraschek SP, Dougherty GB, et al. Association of β-Blocker use with heart failure hospitalizations and cardiovascular disease mortality among patients with heart failure with a preserved ejection fraction: a secondary analysis of the TOPCAT trial. JAMA Network Open. 2019;2:e1916598. https://doi.org/10.1001/jamanetworkopen.2019.16598.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Palau P, Seller J, Domínguez E, Sastre C, Ramón JM, de La Espriella R, et al. Effect of β-blocker withdrawal on functional capacity in heart failure and preserved ejection fraction. J Am Coll Cardiol. 2021;78:2042–56.

    Article  CAS  PubMed  Google Scholar 

  24. Verloop WL, Beeftink MMA, Santema BT, Bots ML, Blankestijn PJ, Cramer MJ, et al. A systematic review concerning the relation between the sympathetic nervous system and heart failure with preserved left ventricular ejection fraction. PLOS ONE. 2015;10:e0117332. https://doi.org/10.1371/journal.pone.0117332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Badrov MB, Mak S, Floras JS. Cardiovascular autonomic disturbances in heart failure with preserved ejection fraction. Can J Cardiol. 2021;37:609–20.

    Article  PubMed  Google Scholar 

  26. Kresoja K-P, Rommel K-P, Fengler K, von Roeder M, Besler C, Lücke C, et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2021;14:e007421. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007421

    Article  CAS  PubMed  Google Scholar 

  27. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4:669–75.

    Article  PubMed  Google Scholar 

  28. Fudim M, Hernandez AF, Felker GM. Role of volume redistribution in the congestion of heart failure. J Am Heart Assoc. 2017;6:e006817

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fudim M, Litwin SE, Borlaug BA, Mohan RC, Price MJ, Fail P, et al. Endovascular ablation of the right greater splanchnic nerve in heart failure with preserved ejection fraction: rationale, design and lead-in phase results of the REBALANCE-HF trial. J Card Fail. 2024;30:877–89.

    Article  PubMed  Google Scholar 

  30. Perlini S, Palladini G, Ferrero I, Tozzi R, Fallarini S, Facoetti A, et al. Sympathectomy or doxazosin, but not propranolol, blunt myocardial interstitial fibrosis in pressure-overload hypertrophy. Hypertension. 2005;46:1213–8.

    Article  CAS  PubMed  Google Scholar 

  31. Noda M, Matsuda T. Central regulation of body fluid homeostasis. Proc Jpn Acad Ser B Phys Biol Sci. 2022;98:283–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stocker SD, Kinsman BJ, Farquhar WB, Gyarmati G, Peti-Peterdi J, Sved AF. Physiological mechanisms of dietary salt sensing in the brain, kidney, and gastrointestinal tract. Hypertension. 2024;81:447–55.

    Article  CAS  PubMed  Google Scholar 

  33. Hirooka Y. Sympathetic activation in hypertension: importance of the central nervous system. Am J Hypertens. 2020;33:914–26.

    Article  CAS  PubMed  Google Scholar 

  34. Fujisawa Y, Nagai Y, Lei B, Nakano D, Fukui T, Hitomi H, et al. Roles of central renin-angiotensin system and afferent renal nerve in the control of systemic hemodynamics in rats. Hypertens Res. 2011;34:1228–32.

    Article  CAS  PubMed  Google Scholar 

  35. Ye C, Qiu Y, Zhang F, Chen A-D, Zhou H, Wang J-J, et al. Chemical stimulation of renal tissue induces sympathetic activation and a pressor response via the paraventricular nucleus in rats. Neurosci Bull. 2020;36:143–52.

    Article  CAS  PubMed  Google Scholar 

  36. Osborn JW, Tyshynsky R, Vulchanova L. Function of renal nerves in kidney physiology and pathophysiology. Annu Rev Physiol. 2021;83:429–50.

    Article  CAS  PubMed  Google Scholar 

  37. Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertens Res. 2022;45:198–209.

    Article  PubMed  Google Scholar 

  38. Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ, Carattino MD, et al. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J Neurophysiol. 2019;122:358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shinohara K. Renal denervation in patients with chronic kidney disease: an approach using CO2 angiography. Hypertens Res. 2024;47:1431–3.

    Article  CAS  PubMed  Google Scholar 

  40. Mori T, Polichnowski A, Glocka P, Kaldunski M, Ohsaki Y, Liang M, et al. High perfusion pressure accelerates renal injury in salt-sensitive hypertension. J Am Soc Nephrol. 2008;19:1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mattson DL. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am J Physiol Renal Physiol. 2014;307:F499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Miguel C, Das S, Lund H, Mattson DL. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1136–42.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yao K, Sato H, Sonoda R, Ina Y, Suzuki K, Ohno T. Effects of benidipine and candesartan on kidney and vascular function in hypertensive Dahl rats. Hypertens Res. 2003;26:569–76.

    Article  CAS  PubMed  Google Scholar 

  44. Jin C, O’Boyle S, Kleven DT, Pollock JS, Pollock DM, White JJ. Antihypertensive and anti-inflammatory actions of combined azilsartan and chlorthalidone in Dahl salt-sensitive rats on a high-fat, high-salt diet. Clin Exp Pharmacol Physiol. 2014;41:579–88.

  45. Arai K, Tsuruoka H, Homma T. CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol. 2015;769:266–73.

    Article  CAS  PubMed  Google Scholar 

  46. Naruse T, Otake H, Takahashi T. Effects of a lysophosphatidic acid receptor 1 antagonist on hypertensive renal injury in Dahl-Iwai salt-sensitive rats. J Pharmacol Sci. 2022;149:179–88.

    Article  CAS  PubMed  Google Scholar 

  47. Chiba H, Seo Y, Sai S, Namekawa M, Ishizu T, Aonuma K. Renoprotective effects of tolvaptan in hypertensive heart failure rats depend on renal decongestion. Hypertens Res. 2019;42:319–28.

    Article  CAS  PubMed  Google Scholar 

  48. Morooka H, Iwanaga Y, Tamaki Y, Takase T, Akahoshi Y, Nakano Y, et al. Chronic administration of oral vasopressin type 2 receptor antagonist tolvaptan exerts both myocardial and renal protective effects in rats with hypertensive heart failure. Circ Heart Fail. 2012;5:484–92.

    Article  CAS  PubMed  Google Scholar 

  49. Ishikawa M, Kobayashi N, Sugiyama F, Onoda S, Ishimitsu T. Renoprotective effect of vasopressin v2 receptor antagonist tolvaptan in Dahl rats with end-stage heart failure. Int Heart J. 2013;54:98–106.

    Article  CAS  PubMed  Google Scholar 

  50. de Couto G, Mesquita T, Wu X, Rajewski A, Huang F, Akhmerov A, et al. Cell therapy attenuates endothelial dysfunction in hypertensive rats with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2022;323:H892–H903.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim MY, Pellot I, Bresee C, Nawaz A, Fournier M, Cho JH, et al. Diet modification reverses diastolic dysfunction in rats with heart failure and preserved ejection fraction. J Mol Cell Cardiol Plus. 2023;3:10003. https://doi.org/10.1016/j.jmccpl.2023.100031

    Article  Google Scholar 

  52. Gallet R, De Couto G, Simsolo E, Valle J, Sun B, Liu W, et al. Cardiosphere-derived cells reverse heart failure with preserved ejection fraction in rats by decreasing fibrosis and inflammation. JACC Basic Transl Sci. 2016;1:14–28.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current understanding of molecular pathophysiology of heart failure with preserved ejection fraction. Front Physiol. 2022;13:928232. https://doi.org/10.3389/fphys.2022.928232

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134:73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Upadhya B, Kitzman DW. Heart failure with preserved ejection fraction: new approaches to diagnosis and management. Clinical Cardiology. 2020;43:145–55.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from JSPS (KAKENHI Grant Numbers JP21K08032 and 24K11270) to KS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Shinohara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima, H., Shinohara, K., Matsumoto, S. et al. Establishment of a HFpEF model using female Dahl salt-sensitive rats: a valuable tool for elucidating the pathophysiology of HFpEF in women. Hypertens Res 48, 672–680 (2025). https://doi.org/10.1038/s41440-024-02025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-02025-7

Keywords

Search

Quick links