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Abstract
Prevention of dementia represents a public health priority. Hypertension is a risk factor for mild cognitive impairment
(MCI), a precursor to progressive dementia. A great effort is underway to develop accurate and sensitive tools to detect the
MCI condition in hypertensive patients. To investigate the potential association of subclinical left ventricular dysfunction
expressed by the global longitudinal strain (GLS) with the MCI, defined by the Italian version of the quick mild cognitive
impairment (Qmci-I). This multi-centric study included 180 consecutive hypertensive patients without medical diseases and/
or drugs with known significant effects on cognition but with a not negligible comorbidity burden to avoid a possible
“hyper-normality bias”. The study cohort was classified into two main groups concerning the median value of the GLS. A
weighted logistic regression model was employed after an inverse probability of treatment weighting (IPTW) analysis to
characterize a potential association between GLS and MCI. Almost 41,1% of the whole study population was female. The
mean age was 65,6 ± 7,2. 39 patients (21,7%) showed MCI. After IPTW, the GLS was significantly associated with the study
endpoint (OR, 1,22; 95% CI: 1,07–1,39, P= 0.003). Our results highlight that the GLS is a potential predictor of MCI and,
therefore, a valuable tool for establishing preventive strategies to arrest the progression toward a cognitive decline in
hypertensive patients.
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Introduction

It has been estimated that almost 78 million people by 2030
and 139 million by 2050 will be affected by dementia, with
substantial social and economic consequences [1].

Therefore, dementia prevention represents a public health
priority [2, 3]. One of the most attainable targets for
improving cognitive health among older adults is the tight
control of arterial hypertension [4–6]. Indeed, several studies
have observed a significant association between midlife
hypertension and risk of mild cognitive impairment-MCI (a
precursor to progressive dementia) [7]. Recently, the guide-
lines on hypertension published by the European Societies of
Hypertension and Cardiology acknowledge cognitive func-
tion (and its decline) as hypertension-mediated organ damage
[8]. Specifically, persistently high systemic blood pressure
can cause direct modifications of the brain structure or
indirectly affect brain function by leading to other syn-
dromes, such as kidney and heart failure [8, 9]. Hypertensive
patients are routinely screened for kidney and cardiac dys-
function [8, 10], and, in this specific population, new tools
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have been developed to detect MCI, which is an early-stage
cognitive performance loss, in individuals who still retain the
ability to perform most activities of daily living, indepen-
dently [11]. Given the importance of the early detection of
dementia to identify modifiable risk factors before the onset
of functional impairment [12], a great effort has been made to
develop accurate, reliable, and sensitive tools to improve the
detection of MCI [13]. Even if the diagnosis of MCI is mainly
clinical, different studies have also investigated the potential
predictive role of both neurologic and cardiac imaging
parameters in detecting MCI in hypertensive patients
[14, 15]. In terms of cardiac function, a promising parameter,
in the context of hypertensive cohorts, is represented by the
global longitudinal strain (GLS) [16], which appeared to
overcome the information provided by LV hypertrophy
(LVH), allowing the identification of a subclinical target
organ damage [10]. We aimed, therefore, to investigate the

potential association of subclinical LV dysfunction quantified
by GLS with MCI, defined by the Italian version of quick
mild cognitive impairment (Qmci-I), recently developed in
Italy in adults over 50 years of age [17].

Methods

Study design and participants

We conducted a multi-center observational study in a hyper-
tensive population identified from Cardiology Clinics of 5 Ita-
lian University Hospitals, during the year 2023. Inclusion
criteria were subjects between 50 and 80 years, with preserved
ejection fraction (EF ≥ 50%), and at least 5 years of school
education. Exclusion criteria were: the presence of significant
neurological and/or psychiatric disorders (including epilepsy,
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Parkinson’s disease, stroke, psychosis, bipolar disorder, and
major depressive disorder); significant general medical diseases
interfering with cognition (e.g., atrial fibrillation, significant
carotid artery disease with stenosis > 50%); history of alcohol or
substance abuse; use of medications with known significant
effects on cognition (e.g., anti-psychotics), history of heart
failure, and a poor echocardiographic window which strongly
limited us to perform the required strain analysis. To avoid a
“hyper-normality bias,” disorders usually observed in hyper-
tensive older adults, such as diabetes, hyperlipidemia, ischemic
heart disease, and chronic kidney disease, were not considered
as exclusion criteria.

Complete demographic, clinical characteristics, labora-
tory analyses, and echocardiographic data were collected.

All participants provided written informed consent, and
the Institutional Research Ethics Committee approved the
protocol using the Declaration of Helsinki principles and
national regulations.

Clinical profiling

Hypertension was defined as systolic blood pressure
≥140 mm Hg or diastolic blood pressure ≥90 mmHg or the
participant’s self-reported history of hypertension or use of
antihypertensive medication, according to the guidelines
[8]. Diabetes mellitus was defined as fasting blood glucose
≥126 mg/dL or the participant’s self-reported history of
diabetes mellitus or using medications to treat diabetes
mellitus. Hypercholesterolemia was defined as total serum
cholesterol >240 mg/dL, a patient’s self-report of hyperch-
olesterolemia, or lipid-lowering treatment. Cigarette smok-
ing was recorded during the interview or in the past.
Coronary artery disease was defined as a history of myo-
cardial infarction, coronary artery bypass grafting, percu-
taneous coronary intervention, typical angina, or anti-
ischemic medications. Chronic kidney disease was defined
as an estimated glomerular filtration rate < 60 mL/min per
1.73 m2. The estimated glomerular filtration rate was cal-
culated using the last serum creatinine value available at the
time of enrollment or the first value post-enrollment
(whichever was closer) with the MDRD study (Modifica-
tion of Diet in Renal Disease) equation [18].

Self-reporting to assess chronic conditions has been
validated as a reliable and cost-effective approach in large-
scale population studies [19]. The main medical treatment
was reported, and polypharmacy categories were created
according to the number of medications used (from 1 to 3,
from 4 to 6 and more than 6).

Cognitive function assessment

Participants completed the Italian version of the quick mild
cognitive impairment (Qmci-I) screen. The Qmci-I is

composed of six subtests, i.e., orientation, clock drawing,
verbal fluency, and three tests of memory (five-word
immediate and delayed recall and logical memory-
immediate verbal recall of a short story) with scores from
0 (indicating severe impairment) to 100 (indicating higher
levels of normal cognition) [13]. It has been showed that the
Qmci is a useful test for MCI detection in clinical practice,
because of higher sensitivity, in comparison to the stan-
dardized Mini-Mental State Examination (MMSE), in dif-
ferentiating MCI from normal cognition [13].

Every single domain of the Qmci-I was corrected for age
and education, and an MCI condition was defined by a total
Qmci-I corrected for age and education <49.4 according to
the recent literature [17].

Finally, to define compliance with medical treatment, we
applied the Morisky medication adherence scale [20].

Echocardiographic measurements

Echocardiographic examinations were performed with a
3.5 MHz monoplane ultrasound probe of Vivid E-9 (GE-
Vingmed Ultrasound, Horten, Norway), according to
international guidelines [21]. All parameters were analysed
offline by expert operators, blinded to clinical data. The left
ventricular ejection fraction (LVEF) was calculated by the
Simpson biplane method according to the following for-
mula: LVEF = [left ventricular end-diastolic volume
(LVEDV)-left ventricular end-systolic volume (LVESV)]/
LVEDV * 100 as a mean of two measures in four and two
apical chambers. The mitral E and A velocities, E/A ratio,
tissue Doppler analysis of mitral annular E’ velocity, and
mitral E/e’ ratio were measured. The presence of a diastolic
dysfunction was made according to a specific consensus
document [22].

LV hypertrophy was defined, according to the interna-
tional guidelines [19], as a LV mass index of 125 g/m2 or
more in men, and 110 g/m2 or more in women.

LV strain analysis was performed with 2D strain soft-
ware EchoPAC (GE Healthcare) using high frame rate
acquisitions ( > 40 frames per second) of the apical four-
chamber, two-chamber, and long-axis view for the LV
global longitudinal strain (GLS), as outlined in a specific
consensus document [23]. As GLS is a negative value, we
used the absolute value of GLS for easier interpretation.
According to the GLS median value, our cohort was cate-
gorized as having a GLS ≤ 18% or GLS > 18%.

Statistical analysis

Continuous variables were expressed as mean, standard
deviation (SD), or median with interquartile range,
depending on the normality of distribution (verified via the
Kolmogorov–Smirnov test). Categorical data were
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expressed as percentages. Comparisons between the two
GLS groups were performed using the Student t- and the
Mann-Whitney U-test for normally and non-normally
distributed continuous variables. Categorical variables
were compared using the χ2- or the Fisher exact test when
appropriate. The primary study outcome was the pre-
valence of mild cognitive impairment, defined by a total
Qmci-I corrected for age and education <49.4, in the
whole study cohort and the GLS subgroups. We first
conducted exploratory analysis by testing bivariate unad-
justed associations between GLS and LVEF with the total
Qmci-I, using Spearman correlations, then we employed
an inverse probability of treatment weighting (IPTW)
approach to account for the effects of confounding on
outcome between the two GLS subgroups (average effect
weights).

Inverse probability of treatment weighting is a propensity
score method that uses weights based on the propensity
score to create a synthetic sample in which the distribution
of measured baseline covariates is independent of the GLS
median value [24]. In our study, the propensity score was
constructed using a logistic regression model that estimated
the probability of having a GLS ≤ 18% conditional on the
covariates shown in Table 1.

Covariates in the weighted model were selected based
on previous studies on factors associated with GLS and/or
the study outcome. The balance between the GLS sub-
groups was assessed using weighted standardized mean
difference (SMD), and graphically represented by density
and love plots [25]. For each variable, the absolute stan-
dardized mean difference represents the absolute differ-
ence between the mean values in the two groups divided
by the common SD. An SMD value < 0.1 was considered
acceptable. In the weighted comparative samples, we used
a logistic regression model to estimate the weighted odds
ratio (wOR) and their 95% CI for the study outcome using
a robust variance estimator [26]. Residual differences
between GLS groups after IPTW were adjusted by forcing
the insufficiently balanced variables into the weighted
model (providing adjusted wOR) [27]. As a sensitivity
analysis, we used several different strategies: (1) we fitted
a multivariable logistic regression model to assess the
effect of GLS on mild cognitive impairment in the non-
weighted population, using covariates that showed a
p < 0.05 in the univariate analysis and forcing only the
LVEF; (2) we employed a nonparametric bootstrapping
approach to calculate point estimates and CIs, drawing
1000 random samples with replacement after IPTW [28];
(3) we developed a different IPTW model using, as GLS
cut off value, the best threshold to predict MCI, identified
by the highest value of the Youden J index in the receiver

operating characteristic (ROC) curve analysis [29]; (4) we
calculated the E-value, defined as the minimum strength of
association on the risk-ratio scale that an unmeasured
confounder would need to have with both the treatment
assignment and the outcome, to reverse a specific
treatment-outcome association, conditional on the mea-
sured covariates [30]. Finally, in order to better define the
potential incremental value of GLS in comparison to
conventional echocardiographic parameters, we analysed
different predictive models defined by both clinical char-
acteristics (age and gender) and echocardiographic para-
meters (EF, diastolic grading, E/e’ ratio, LAVi, LVMi)
and tested the discriminatory ability of each model, and its
modification by adding the GLS, calculating the difference
of the area under the ROC curve (AUC), using the
DeLong’s test. Statistical analyses were conducted using
SPSS software version 25.0 (SPPS Inc., Chicago, Illinois)
and R version 4.0.5 (R Foundation for Statistical Com-
puting, Vienna, Austria, using, specifically, the WeightIt
package to create the pseudo population, the Cobalt
package to assess the success in achieving covariate bal-
ance, and the Evalue package to calculate bounds and
E-values for unmeasured confounding). A p value of less
than 0.05 was considered significant.

Results

Table 1 presents the baseline demographic and clinical
characteristics of the whole study cohort and according to
the GLS median value. Among the 180 patients enrolled,
almost 41,1% were female, and the mean age was
65,6 ± 7,2. We detected an MCI condition in 39 study
participants (21.7%).

The study selection process is shown in Supplementary
Fig. 1. As part of the study selection process, 9 patients
were excluded from the overall study population due to
inadequate echocardiographic images to perform GLS
estimation.

When the study population was stratified according to
the GLS median value, significant differences were detected
in age, gender, prevalence of ischemic heart disease, ejec-
tion fraction, and medical treatment (Table 1). We also
detected an almost significant difference in the duration of
hypertension history and prevalence of left ventricle
hypertrophy (Table 1).

Extensive analysis of echocardiographic parameters in
the whole study cohort and according to the GLS median
value is presented in the supplementary Table 1. The
median GLS value was 18% (IQR: 16,5–19,7), and the
median LVEF was 58% (IQR: 55–60).
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The outcome analysis showed a higher prevalence of
MCI in patients with lower GLS values (Table 2), and the
GLS was significantly correlated with the Qmci-I score, as
clearly outlined in Fig. 1A. On the contrary, the LVEF did

not show a significant correlation with the Qmci-I
(Fig. 1B).

Regarding the IPTW population, the absolute standar-
dized difference showed that the populations were generally

Table 1 Clinical characteristics of the whole study cohort, and according to GLS ≤ and > 18%

Variables Whole study
population
(N= 180)

GLS > 18%
(N= 92)

GLS ≤ 18%
(N= 88)

P value SMD
before
IPTW

SMD
after
IPTW

Demographic and clinical data

Age 65.6 ± 7.2 64.1 ± 6.9 67.2 ± 7.3 0.003 0.442 0.016

Female gender, N (%) 74 (41.1) 45 (48.9) 29 (33) 0.03 0.329 0.071

Body mass index (BMI) 26,6
(24.4–28.7)

26.7
(24.3–28.7)

26.6
(24.5–28.7)

0.48 0.189 0.028

Systolic blood pressure
(mmHg)

130 (120–135) 127.5
(120–140)

130
(120–135)

0.51 0.138 0.088

Heart rate (beats/min) 65 (61–74) 66 (60.2–75) 65 (62–72.7) 0.56 0.145 0.048

Comorbidities

Coronary artery disease,
N (%)

80 (44.4) 33 (35.9) 47 (53,4,6) 0.02 0.358 0.051

Diabetes, N (%) 50 (27.8) 26 (28.3) 24 (27.3) 0.88 0,022 0.093

Dyslipidemia, N (%) 140 (77.8) 69 (75) 71 (80.7) 0.36 0.137 0.068

Smoking habit, N (%) 89 (49.4) 44 (47.8) 45 (51.1) 0.66 0.066 0.070

Hypertension duration
(years)

11 (5.2–17.8) 10 (5–15) 14 (8–19.5) 0.07 0.256 0.045

Thyroid disorders, N (%) 30 (16.7) 16 (17.4) 14 (15,9) 0.79 0.040 0.048

Laboratory data

Glycosylated
hemoglobin (HbA1c), %

5.8 (5.3–6.3) 5.8 (5.4–6.2) 5,8 (5.1–6.3) 0.68 0.025 0.085

LDL cholesterol, mg/dl 79.5
(51.2–106.5)

85 (51–111.5) 75,5
(52–100.7)

0.12 0.231 0.028

eGFR, ml/min 89 (75–98) 90
(75,2–99,7)

88,5
(72.2–97)

0.27 0.172 0.027

Hemoglobin, g/dl 13.6 ± 1.4 13,7 ± 1,3 13,6 ± 1.5 0.45 0.113 0.043

Echocardiographic data

EF, % 58 (55–60) 60 (55.2–62) 55 (54–59.7) <0.001 0.848 0.143

LV hypertrophy, N (%) 47 (26.1) 19 (20.7) 28 (31.8) 0.09 0.256 0.045

LAV index, ml/m2 30 (26–35) 29.5 (25–35) 30 (26–35) 0.33 0.132 0.001

Medical therapy

Aspirin, N (%) 113 (62.8) 47 (51.1) 66 (75) 0.001 0.511 0.078

P2Y12 inhibitor, N (%) 52 (28.9) 20 (21.7) 32 (36.4) 0.03 0.326 0.005

ACE inhibitors, N (%) 83 (46.1) 46 (50) 37 (42) 0.28 0.160 0.032

Mineralcorticoid receptor
antagonist (MRA), N (%)

9 (5) 4 (4.3) 5 (5,7) 0.68 0.061 0.004

β-Blockers, N (%) 100 (55.6) 50 (54.3) 50 (56.8) 0.74 0.050 0.019

Morisky scale 4 (3–4) 4 (4–4) 4 (3–4) 0.01 0.418 0.070

Polypharmacy categories

1–3 41 (22.8) 28 (30.4) 13 (14.8) 0.04 0.391 0.044

4–6 90 (50) 43 (46.7) 47 (53.4)

>6 49 (27.2) 21 (22.8) 28 (31.8)

ACE angiotensin converting enzyme, ARBs angiotensin receptor blockers, BMI body mass index, DBP diastolic blood pressure, eGFR Estimated
Glomerular Filtration Rate, GLS Global Longitudinal Strain, HbA1c Glycosylated hemoglobin, HR heart rate, LAV left atrial volume, LDL low-
density lipoprotein, LV left ventricle, MRA mineralcorticoid receptor antagonist, SMD standardized mean difference, SBP systolic blood pressure
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well-balanced in both groups of patients with GLS > 18%
and GLS ≤ 18%, except for the value of ejection fraction
(Table 1 and Fig. 2A, B).

Outcome analysis after IPTW and sensitivity analysis

The GLS was significantly associated with the study end-
point (OR, 1,22 [95% CI, 1.07–1.39], P= 0.003; Table 3).
Further adjustment for the residual differences (after IPWT)
did not alter the results (adjusted wOR, 1.23 [95% CI,
1.07–1.40], P= 0.003; Table 3).

The sensitivity analyses confirmed the results found in
the propensity weighting model (Tables 3, 4). The uni-
variate logistic regression analysis (Supplementary Table 2)
identified the following predictors: age, heart rate, Morisky
scale, and the GLS. When we performed the multivariate
logistic regression model forcing also the LVEF, the
GLS ≤ 18% was still significantly associated with the out-
come of interest, with an OR of 4.29 (95% CI: 1.69–10.9;
P= 0.002, Table 4). The bootstrapping also confirmed the

robustness of the IPTW results, showing small change in
the point estimate and confidence intervals (Table 3). After
identification of the best GLS threshold in predicting MCI
(supplementary Fig. 2), we performed a further sensitivity
analysis using this new cut-off in order to create new pro-
pensity weighted sample. When we applied a logistic
regression model in this new weighted sample, the results
were still consistent (Table 4). The calculated E-value was
1,74, indicating that to undermine the estimate, there should
be unmeasured confounders linked to both the outcome and
the exposure at a minimum of 1,74 times the measured
confounders, with an OR of 1.2 after the IPTW analysis.
Finally, in order to better define the incremental value of the
GLS in comparison to traditional echocardiographic para-
meters, we analysed the modification in the discriminatory
ability of a predicting model, including age, gender, and
conventional echocardiographic parameters after the addi-
tion of the GLS (Supplementary Fig. 3). The analysis
showed a significant incremental value of the GLS (Sup-
plementary Fig. 3).

Table 2 Outcome analysis

Variables Whole study population (N= 180) GLS > 18% (N= 92) GLS ≤ 18% (N= 88) P value

Quick mild cognitive impairment (Qmci-I) scorea 59 ± 12 62,1 ± 11,7 55,7 ± 11,6 <0.001

Mild cognitive impairment (MCI)b 39 (21.7) 10 (10.9) 29 (33) <0.001

GLS global longitudinal strain, MCI mild cognitive impairment, Qmci-I Italian version of quick mild cognitive impairment
aCorrected by age and education level
bMCI condition was defined by a total Qmci corrected for age and education <49.4

Fig. 1 Representation of the correlation, with the relative coefficients,
between the GLS* (A) and the EF (B) with the i-Qmci. *We used the
GLS absolute value for easier interpretation. GLS global longitudinal

strain, EF ejection fraction, i-Qmci Italian version of quick mild
cognitive impairment
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Discussion

Two main findings emerge from our analysis: (1) 22% of
hypertensive patients show signs of MCI, according to the
Qmci-I; (2) subclinical LV dysfunction, detected by the
GLS, is associated with MCI.

Regarding the first point, the prevalence of cognitive
impairment in hypertensive patients is highly variable in
literature due to differences in population characteristics and
in tools utilized to assess cognitive functions among studies
[31]. Nevertheless, our results align with previous studies
[32, 33], where the prevalence of cognitive impairment in
hypertensive patients is around 20–30%.

Our study focused on finding a parameter associated with
MCI rather than with overt dementia, since this approach is
crucial in clinical practice to establish early cognitive dys-
function in order to identify hypertensive patients with a
higher risk of progressive brain functional impairment.

Concerning the role of subclinical LV dysfunction,
measured by the GLS, in the prediction of MCI and silent
cerebrovascular disease, to the best of our knowledge, only
a couple of studies have investigated this aspect [16, 34].

Both studies suffer from an essential bias due to selecting a
relatively healthy sample with a lower cardiovascular risk
profile than the general real-world population. Indeed, the
prevalence of coronary artery disease was only 3% for the
first study, while it was among the exclusion criteria in the
second one. Our study showed that GLS is independently
associated with MCI despite a not negligible burden of
cardiovascular comorbidity, with 44,4% of patients affected

Table 3 Logistic regression
analysis: odds ratios for MCI in
patients with GLS ≤ 18% vs.
patients with GLS > 18%

Analysis OR (95% CI) P value Bootstrap adjusted OR (bootstrap 95% CI)a

IPTW 1.22 (1.07–1.39) 0.003 1.21 (1.01–1.56)

adjusted IPTWb 1.23 (1.07–1.40) 0.003 1.22 (1.01–1.53)

CI confidence intervals, IPTW inverse probability of treatment weighting, GLS global longitudinal strain,
MCI mild cognitive impairment, OR odd ratio
aBootstrap adjusted ORs and 95% CIs were estimated using 1000 bootstrap samples
badjusted for EF, which was not perfectly balanced after IPTW

Table 4 Sensitivity analysis: odds ratios for MCI in patients with
GLS ≤ 18% vs. patients with GLS > 18%, and in patients with
GLS ≤ 16.1% after propensity weighting

Analysis OR (95% CI) P value

Unweighted univariate logistic
regression

4.03 (1.82–8.91) <0.001

Unweighted multivariate logistic
regressiona

4.29 (1.69–10.9) 0.002

IPTW with GLS cut off of 16,1% 1.62 (1.28–2.06) 0.001

CI confidence intervals, GLS global longitudinal strain, MCI mild
cognitive impairment, OR odd ratios
aAdjusted for the following variables: Age, Heart rate, Morisky scale,
(which showed a P < 0.05 at the univariate analysis), and EF

Fig. 2 A Propensity score distributional overlap before (unadjusted)
and after (adjusted) propensity score weighting. B Love plot for
standardized mean differences comparing covariate values before (red

circle) and after (blue triangle) propensity score weighting. A stan-
dardized mean differences <0.1 was considered acceptable to support
the assumption of balance between the GLS sub-groups
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by coronary artery disease. Moreover, we used a propensity
weighting analysis to correct for the several confounders
measured in our study cohort. Therefore, we can affirm that
our results strengthen the value of GLS as a valuable tool
for assessing pre-clinical cognitive and cardiac dysfunction.
Another important finding of our analysis is that only GLS
was associated with MCI, not the LVEF. The LVEF has
been associated with cognitive impairment in previous
reports [35, 36]. Still, it represents a mid-to-late feature of
impaired myocardial contractility [37] with limited pre-
dictive power, especially if the goal is to detect cognitive
dysfunction in its early stage.

Moreover, the LVEF is load-dependent, influenced by
heart rate, and may not accurately reflect cardiac con-
tractility, especially in cardiac hypertrophy [38]. On the
contrary, the GLS has been widely recognized as a more
effective technique than conventional LVEF in detecting
subtle changes in LV function in the context of several
cardiovascular diseases [39] due to its property of
detecting abnormalities of the longitudinal myocardial
fibers located predominantly in the sub-endocardium [38],
which represents the wall layer most susceptible to
ischemia [40]. The exact mechanisms accounting for the
associations between subclinical cardiac dysfunction and
cognitive impairment are generally considered multi-
factorial but remain elusive. Previous studies have
observed an association between GLS impairment and
unfavorable cerebral structural and hemodynamic changes
[34, 41, 42].

Russo and colleagues reported that a lower GLS is
associated, through direct and indirect mechanisms, with
subclinical brain diseases, including silent infarcts and
white matter volume hyperintensity, consequently affecting
brain health [34].

An alternative explanation could be related to hemody-
namic consequences of subclinical LV dysfunction, such as
a decreased stroke volume, that may influence the auto-
regulatory mechanisms to preserve cerebral blood flow and
directly impact brain tissue [41, 43]. Indeed, brain regions
with a less extensive network of collateral sources of blood
flow, including the temporal lobes, appear particularly
vulnerable to compromised cognitive performance [41, 42].

Moreover, these unfavorable structural and hemody-
namic changes may affect the synthesis of brain proteins
required for synaptic plasticity, potentially detrimentally
affecting cognitive functions [5, 9].

These pathophysiological mechanisms could explain the
close relationship between subclinical left ventricular dys-
function defined by GLS and MCI in hypertensive patients.

In conclusion, our results highlight that the GLS is a
potential predictor of MCI and, therefore, a valuable tool for
establishing preventive strategies to arrest the progression
toward a cognitive decline in hypertensive patients.

Strengths

Our study has several strengths. First, we recruited hypertensive
patients without clinical dementia, stroke, medical diseases, and/
or drugs with known significant effects on cognition but with a
not negligible comorbidity burden to avoid a possible “hyper-
normality bias”. Second, GLS provides a more reliable measure
of subclinical cardiac dysfunction than LVEF. Furthermore, we
used a propensity weighting analysis to correct for possible
confounding and several statistical approaches to confirm the
robustness of our primary analysis, such as a traditional multi-
variable logistic regression model and a bootstrapping approach
due to the relatively small sample size. We also assessed the
potential value that a hypothetical unmeasured factor should
have to nullify our results, finding that value equal to 1.74,
which is a not negligible order factor if compared with the ORs
detected in our analysis. An additional strength includes utiliz-
ing a comprehensive, rapid, multi-domain cognitive screening
instrument adjusted for age and education.

Limitations

Our results should be interpreted considering some limita-
tions. First, this study involves a relatively small sample
size. However, this study applies rigorous exclusion criteria
with known significant effects on cognition to reduce con-
founding factors that complicate the recruitment of a large
population of hypertensive patients. Therefore, the gen-
eralizability of the results could be improved. Second, the
cross-sectional design precludes causal assumptions, and
longitudinal and/or prospective trial data will be necessary
to clarify a causality relationship between the observations
detected in our analysis.

Also, our study does not provide a centralised analysis of
echocardiographic data in a core laboratory.

Another limitation concerns the absence of brain magnetic
resonance imaging information, which was not performed in
our study. However, our study was not conceived to evaluate
the association of the GLS with brain magnetic resonance
imaging information but to investigate the role of the GLS in
predicting anMCI, as defined by the Qmci-I. Finally, we do not
have information on the atherosclerotic burden in our hyper-
tensive population due to missing information about ankle/
brachial index and carotid ultrasonography, which have been
associated with subclinical atherosclerotic disease, and we do
not provide information about the microvascular function
which could be interesting in the effort to find a pathogenetic
link between the GLS and the brain function. Indeed, we
cannot rule out that the GLS could be an expression of a more
extensive microvascular dysfunction potentially affecting dif-
ferent organ functions, including the brain; however, a deep
investigation of microcirculation in various organs was prohi-
bitive in our case, and it will require a different study design.
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Conclusion

In a real-world study, including hypertensive patients without
medical diseases and/or drugs with known significant effects
on cognition but with a not negligible comorbidity burden, we
demonstrated a strong significant association between sub-
clinical cardiac dysfunction quantified by GLS and the MCI.

Our study suggests that GLS is an additional parameter of
utmost importance in clinical practice for early recognition of
MCI and should be carefully and systematically assessed in
these peculiar hypertensive patients. However, studies on a
larger population will be needed to confirm this association.

Perspective

In this real-world study, including hypertensive patients
without medical diseases and/or drugs with known sig-
nificant effects on cognition but with a not negligible
comorbidity burden, subclinical cardiac dysfunction defined
by GLS is strongly correlated with MCI, representing,
therefore, a valuable tool for establishing preventive stra-
tegies to arrest the progression toward a cognitive decline.
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