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Caloric restriction delays age-related methylation
drift
Shinji Maegawa1,5, Yue Lu2, Tomomitsu Tahara1, Justin T. Lee1, Jozef Madzo1, Shoudan Liang3, Jaroslav Jelinek1,

Ricki J. Colman4 & Jean-Pierre J. Issa1

In mammals, caloric restriction consistently results in extended lifespan. Epigenetic infor-

mation encoded by DNA methylation is tightly regulated, but shows a striking drift associated

with age that includes both gains and losses of DNA methylation at various sites. Here, we

report that epigenetic drift is conserved across species and the rate of drift correlates with

lifespan when comparing mice, rhesus monkeys, and humans. Twenty-two to 30-year-old

rhesus monkeys exposed to 30% caloric restriction since 7–14 years of age showed

attenuation of age-related methylation drift compared to ad libitum-fed controls such that

their blood methylation age appeared 7 years younger than their chronologic age. Even more

pronounced effects were seen in 2.7–3.2-year-old mice exposed to 40% caloric restriction

starting at 0.3 years of age. The effects of caloric restriction on DNA methylation were

detectable across different tissues and correlated with gene expression. We propose that

epigenetic drift is a determinant of lifespan in mammals.
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The only intervention known to lengthen lifespan in tax-
onomically diverse organisms is caloric restriction (CR), a
reduction in food intake without malnutrition. Evidence

that mammalian longevity could be increased first emerged in
1935 in a rat study showing that CR-extended lifespan1. CR
prolongs lifespan in most mouse strains examined2. This phe-
nomenon has been extended to primates in a long-term experi-
ment showing increased survival and reduction of age-related
diseases including diabetes, cancer, cardiovascular disease, and
brain atrophy in CR monkeys (rhesus macaques)3. Although
health benefits and disease prevention have clearly been observed,
the molecular basis for the delayed aging remains unknown.

During normal aging, gene expression and epigenetic mod-
ification changes occur in a tissue-specific manner. In mammals,
DNA methylation occurs almost exclusively within the context of
CpG dinucleotides and an estimated 80% of all CpG sites are
methylated4. CpG islands (CGIs) are clusters of CpG dinucleo-
tides that are often located around gene transcription start sites
(TSS)5. Although most CGIs are unmethylated in normal human
tissues, methylation changes of a small subset of genes can be seen
in normal healthy individuals in aging tissues. Several groups
identified age-related methylated (ARM) genes in human whole
blood6–9, and reported that this methylation could be used as a
biomarker to predict biological age (epigenetic age)9–11.

CGI methylation has also been suggested to be a good bio-
marker for the progression of cancers and diabetes12, 13.

A number of tumor suppressor genes are silenced by promoter
CGI methylation in cancers14. In parallel, genome-wide DNA
hypomethylation is thought to play an important role in genomic
instability and carcinogenesis15. Because cancer is largely a dis-
ease of aging, we and others proposed that age-related epigenetic
changes initiate tumorigenesis16–18. Indeed, age-related DNA
methylation drift is accelerated in age-related diseases including
cancers, diabetes, and chronic inflammation19–24.

Here, we studied CR as an intervention that could potentially
influence age-related DNA methylation drift, and compared
methylation status by genome-wide DNA methylation profiling
among mouse (Mus musculus), rhesus monkey (Macaca mulatta),
and human (Homo sapiens) blood cells. We find that the rate of
epigenetic drift correlates with lifespan and that CR protects
against DNA methylation deregulation with age.

Results
Age-related methylation drift is conserved across species. DNA
methylation drifts with age in mice and humans25–28 but com-
parable analysis with lifespan is lacking. The maximum longevity
of mice, rhesus monkeys, and humans is 4, 40, and 122.5 years,
respectively (The Animal Ageing and Longevity Database)29–31.
To assess conservation in methylation drift among species, we
utilized a quantitative deep sequencing-based method Digital
Restriction Enzyme Analysis of Methylation (DREAM)32, 33 for
DNA methylation analysis of whole blood samples from 19 mice
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Fig. 1 DREAM DNA methylation analysis of whole blood DNA from different species. a Unsupervised hierarchical clustering analysis of CpG sites in CpG
island (CGI), non-CGI, and all genomic regions. The green to red color scale indicates the methylation percentage. The color codes for age are shown on the
left. b DNA methylation in old vs. newborn/infant/young. Average DNA methylation level of each CpG site in old individuals (y axis) is plotted against that
in newborn/infant/young individuals (x axis). The red and green dots represent CGI and non-CGI CpG sites, respectively. The low range (0–20%) and high
range (80–100%) of methylation status are shown. c Volcano plots show CpG sites differentially methylated between old and newborn/infant/young.
Plots on left are sites in promoter CGI (red) and on right site are sites in non-promoter non-CGI (green). The promoter region is defined as –1 kb≤ TSS≤+
500 bp. The methylation difference between old and newborn/infant/young is shown on the x axis, the p-value (in –log10 scale) on the y axis. The
horizontal line indicates p-value at 0.05
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(age; 0.3–2.8 years), 16 monkeys (age; 0.8–30 years), and 16
humans (age; 0–86 years) (Supplementary Tables 1, 2). We used
cord blood to represent age zero in humans. Cord blood samples
have been used previously for DNA methylation studies in aging6,
34–37. DNA methylation profiles in cord blood cell specimens can
be potentially affected by the presence of nucleated red blood cells
in case of a low gestational age38, 39. This was likely not the case
in our study because all cord blood samples we tested showed a
very high concordance of methylation values (Pearson r> 0.95)
(Supplementary Table 3).

Unsupervised hierarchical clustering analysis of CpG sites with
high sequencing depth (≥100 reads) and variable methylation
(standard deviation >10%, representing 20.8, 18.7, and 5.5% of
sites in mice, monkeys, and humans, respectively) revealed clear
clustering by age in all three species (Fig. 1a). Age-related gains of
methylation were most pronounced in CGI sites that were
unmethylated (<5%) in young individuals (Fig. 1b); out of these,
the highly variable sites increased from a mean (±standard error
of the mean; SEM) of 2± 0.1% in the young to 18± 5% in the old
mice (p= 0.03, unpaired t-test with Welch’s correction).

Corresponding numbers were 2± 0.3%–22± 3% in young vs.
old monkeys (p= 0.002) and 3± 0.5%–20± 4% in newborn vs.
old humans (p= 0.009). Conversely, age-related hypomethylation
occurred at highly methylated (>90%) non-CGI sites (Fig. 1b).
The variable of these decreased from an average methylation of
94± 0.4% in the young to 78± 4% in the old mice (p= 0.003).
Corresponding numbers were 94± 0.3%–73± 4% in infant vs.
old monkeys (p= 0.007) and 93± 1%–74± 2% in newborn vs.
old humans (p< 0.001). The sample sizes for all comparisons
were sufficient to give statistical power >0.8 (Supplementary
Table 4). These differences are also evident in volcano plots for
promoter CGI sites and non-promoter non-CGI sites (Fig. 1c).
Generally similar results were seen for all three species, but with
more variability in humans possibly due to a higher degree of
heterogeneity (genetic, diet etc.).

To identify ARM sites more precisely, we computed Spear-
man’s rank correlation (r) between methylation and age for each
CpG site and assigned an empirical p-value for each r based on a
data set of 1000 random permutations of ages. Based on the
distributions of observed and permuted correlation coefficients
(Supplementary Fig. 1; Supplementary Table 5), CpG sites that
showed r≥ 0.5 (hypermethylation) or r≤ –0.5 (hypomethyla-
tion), empirical p< 0.05, and average methylation ≥1% were
selected for further analyses. Ingenuity pathway analysis of
hypermethylated genes showed enrichment for developmental
processes, gene networks involved in cancer and cardiovascular
disease, and molecular and cellular functions including cell
development, signaling, growth and maintenance (Supplementary
Tables 6–8). There was general conservation in the pathways that
affected across species.

To assess the effects of blood composition on age-related
methylation status detected in whole blood, we performed
DREAM methylation analysis using purified subpopulations of
blood cells: granulocytes (n= 6), CD34+ cells (n= 2), and T-cells
(n= 3) and compared these to whole blood samples (n= 16). We
detected 222, 1045, and 1923 sites significantly hyper- or hypo-
methylated (methylation differences ≥2%, sequence depth ≥100
reads in each site, false discovery rate (FDR)< 0.05) in
granulocytes, CD34+ cells, and T-cells, respectively, compared
to the whole blood. A limited overlap of 0.2–10% between these
cell-type-specific sites and the ARM sites determined using whole
blood suggested that age-related methylation drift cannot be
explained by variability in blood cell subtypes (Supplementary
Fig. 2; Supplementary Table 9). This is in agreement with a
previous study using neutrophils, eosinophils, monocytes, and
lymphocytes6. Moreover, age-related methylation affects both
CGIs and non-CGIs, while tissue-specific methylation affects
predominantly non-CGI sites40. Thus, it is likely that the changes
observed here are independent of tissue composition.

We also compared ARM genes obtained by DREAM to those
obtained by other methods and reported in previous studies7–9

(Supplementary Tables 10, 11). Overall, there was a significant
overlap, but DREAM detected a much higher number of drifted
genes likely reflecting different methods and the higher quantita-
tion ability of DREAM.

To directly compare methylation drift across the three species,
we focused on promoter regions (Supplementary Data 1–3)
because other sites (e.g., intergenic CGI sites) show little sequence
conservation. We analyzed 2282 genes that had high sequencing
coverage (minimum 100 reads in 75% of cases) in both human
and monkey blood. 250 genes (11%) showed hypermethylation in
human DNA and 202 of those (81%) were also hypermethylated
in monkey DNA (p< 0.001, χ2-test). In a similar comparison,
73% (79/108) of the homologs of mouse hypermethylated ARM
genes also showed age-related hypermethylation in monkeys
(p< 0.001, χ2-test). Finally, 42% (50/118) of human

Hypermethylated genes

Mouse Human

/ 1219

50 68118 p<0.001

Monkey Human

/ 2282

202 48460 p<0.001

Mouse Monkey

/ 784

79 16329 p<0.001

Fig. 2 Methylation analysis by DREAM in mouse, monkey, and human
DNA. Area-proportional Venn diagrams of overlapping gene promoters
(−1kb< TSS<+ 500 bp) showing age-related methylation drift in whole
blood in each combination. The denominators represent the number of
homologous genes with high-quality sequence data (sequencing depth≥
100 reads in 75% of cases), which are detectable between two species in
each comparison. We counted the number of genes using human homolog
gene names of mouse and monkey genes in each comparison. A χ2-test
using 2×2 tables (Supplementary Table 12) was used to calculate p-values
for the significance of the overlaps. p-values are indicated on the right side
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hypermethylated ARM genes were also detected as hypermethy-
lated ARM genes in mice (p< 0.001, χ2-test) (Fig. 2; Supplemen-
tary Table 12). These data suggest that aging methylation drift is
evolutionarily conserved across species. Moreover, we are likely
underestimating conservation because of the limited number of
analyzed CpG sites and samples.

Methylation drift correlates with gene expression changes. To
analyze the impact of age-related DNA methylation changes on
gene expression, we first correlated our DREAM data with gene
expression using published RNA-seq data set from human whole
blood (GSE53655)41. We divided the 8663 unique genes with
methylation data (35,379 CpG sites) into four groups based on
the ranking of expression levels. Methylation in a window of –1 to
+1 kb relative to TSS was 15± 1% (mean± SEM) in unexpressed
genes, 8± 0.4% in genes expressed at low levels, and 4± 0.2% in
genes with moderate or high levels of expression (Supplementary
Fig. 3). We next analyzed an RNA-seq data set of age-related gene
expression in human monocytes (GSE60216)42. There were 328
genes that changed gene expression (fold change> 2, p< 0.05,
DESeq43) for which promoter methylation was available, and
there was a significant negative correlation between methylation
drift and change in gene expression (Spearman r= –0.20,
p< 0.001, two-tailed). Genes showing gains of expression with
age had significant demethylation, and a fraction of genes that
lost expression with age showed striking concomitant gains of
DNA methylation (Supplementary Fig. 4).

Age-related methylation correlates with lifespan. To validate
DREAM results with an orthogonal technology and to extend the
number of samples, we used bisulfite pyrosequencing assays to
study DNA from 31 mice (age; 0.3–2.8 y), 39 monkeys (age;
0.8–30 y), and 139 humans (age; 0–86 y). We selected genes based
on age-related drift detected in at least one species
(Supplementary Table 13) and separately based on prior

publications20, 26–28, 44. Supplementary Figure 5 shows CpG maps
of the genes analyzed, along with the location of the regions
amplified. We studied 34 genes (24 showing hypermethylation
and 10 showing hypomethylation) in mice; 29 showed statistically
significant differences between methylation levels in old and
young mice (Supplementary Fig. 6a; Supplementary Table 14).
We also studied 36 genes in monkey DNA; 33 showed age-related
drift (Supplementary Fig. 6b; Supplementary Table 15). In four
individual monkeys, we analyzed three genes in DNA from per-
ipheral blood mononuclear cells sampled at two-time points 4–5
years apart (Supplementary Table 13). Of 12 comparisons (three
genes and four animals), nine cases showed age-related differ-
ences consistent among the animals (p= 0.02, binomial dis-
tribution). No methylation changes were detected in the
remaining three cases (Supplementary Fig. 7). Finally, we studied
16 genes in human DNA and all genes showed significant drift
with age (Supplementary Fig. 6c; Supplementary Table 16).
Hypermethylation and hypomethylation occurring with aging
could be seen as a regression to the mean. We previously reported
age-related methylation changes (increased and decreased pat-
terns in promoter regions) showing increased epigenetic noise
(with increased variabilities in older populations) in multiple
tissue types in mice20, 44. Hierarchical clustering analyses of the
pyrosequencing data showed clear age-related patterns (Supple-
mentary Fig. 8). Of note, some of the genes that showed sig-
nificant changes by pyrosequencing (selected based on prior
studies in cross-species comparisons) were not detected as
changed by the DREAM assays (Supplementary Table 13), sug-
gesting that the genome-wide study may have underestimated the
extent of changes and conservation.

Having validated the DREAM data, we next compared age-
related methylation drift by studying 10 genes that had a high
level of sequence conservation and showed age-related hyper-
methylation in all three species (Supplementary Table 13). We
employed a multilevel linear mixed effect model to calculate
methylation drift at 10 homologous genes and obtained slopes
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representing methylation drift per year in each species (Supple-
mentary Table 17). The drift rates (mean± SEM) were 4.1± 1.2%
per year in mice, 0.34± 0.14% per year in monkeys, and
0.10± 0.02% per year in humans (Fig. 3a). Methylation drift
was thus inversely proportional to longevity (Fig. 3b). Similar
results were obtained when considering all hypermethylated
genes tested regardless of conservation (5.1± 0.4% per year in 24
genes in mice, 0.47± 0.02% per year in 24 genes in monkeys, 0.09
± 0.01% per year in 14 genes in humans) (Supplementary
Table 17). Thus, methylation drift correlated strongly with
lifespan across these three mammalian species.

Caloric restriction delays DNA methylation drift. To study the
effects of CR on methylation drift, we analyzed 2.7–3.2-year-old
mice exposed to 40% CR starting at 0.3 years of age. We also
studied rhesus macaques exposed to 30% CR starting in middle
age (age; 7–14 y) and analyzed at 22–30 years of age (CR treat-
ment period; 15–21 years). Unsupervised hierarchical clustering
of DREAM data in mice showed that four out of five CR animals
studied (median age; 2.8 y) clustered with young animals while
the ad libitum (AL)-fed older mice clustered separately (Fig. 4a).
Principal component analysis showed that CR old mice were
close to the young and middle age animals, while AL old samples
showed a clear separation (Supplementary Fig. 9). The CR effect
was most pronounced at CGI sites that were unmethylated in
young animals (Fig. 4b). To reveal the CR effect, we compared
methylation differences in CR vs. AL animals to the rate of
methylation drift with age in AL mice and found a strong
negative correlation (Spearman r= –0.74, p< 0.001, two-tailed,
Fig. 4c). To illustrate this, an analysis restricted to those CpG sites
that drift heavily with age showed striking effects of CR in mice

(Supplementary Fig. 10). This strong correlation suggests that CR
counteracts aging drift and does not create novel methylation
patterns. Similar results were seen in CR-exposed monkeys
(n= 6; median age; 26 y) where there was also a negative corre-
lation between methylation drift with age and the effects of CR
(Spearman r= –0.75, p< 0.001, two-tailed, Fig. 4; Supplementary
Figs. 9, 10). However, the effects of CR in monkeys were less
pronounced, suggesting that CR severity (30 vs. 40% in mice) and
duration (2/3 of lifespan vs. almost entire lifespan in mice)
influenced the resulting methylation patterns.

We investigated whether CR was related to methylation drift
by a multiple linear regression of methylation on age with an
interaction for CR allowed. Based on the p-values< 0.05 provided
by the regression results for each CpG site, we defined genes
where age-related drift was significantly alleviated by CR
(Supplementary Table 18). As expected, almost every gene
detected by this model (Supplementary Table 18) was also
detected as undergoing age-related methylation as listed in
Supplementary Data 1, 2. Most of the genes that showed a
significant effect of CR as indicated by negative coefficients
overlapped with hypermethylated ARM genes and vice versa.
(Supplementary Fig. 11; Supplementary Table 18). These data
suggest that CR may diminish or eliminate methylation changes
with age.

We used bisulfite pyrosequencing assays described earlier to
validate the CR effects on DNA methylation drift. In mice, we
studied 12 CR animals (age; 2.7–3.2 y) together with 31 AL
animals (age; 0.3–2.8 y). All of the 24 genes hypermethylated with
age showed lower methylation levels in CR animals. The
differences were statistically significant (p< 0.05, unpaired t-test
with Welch’s correction) in 15 genes (Supplementary Fig. 12a;
Supplementary Table 14) and the average methylation of all 24
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genes was 26± 2% in AL old mice and 17± 0.7% in CR old mice
(p= 0.003, unpaired t-test with Welch’s correction). We found a
strong negative correlation (Spearman r= –0.92, p< 0.001, two-
tailed) between the effects of CR (calculated as methylation in CR
minus methylation in AL) and the rate of age-related methylation
drift in AL animals (Supplementary Fig. 13). Hierarchical
clustering analysis divided the samples into three clusters. Cluster
1 contained all AL young mice and half of CR old mice. Cluster 2
contained the rest of CR old mice while cluster 3 contained
mostly AL old mice (Fig. 5a). We next analyzed 18 monkeys
subjected to CR (age; 22–30 y) compared with the 39 AL animals
(age; 0.8–30 y) described earlier. Lower-methylation levels were
seen in CR old monkeys compared with AL old monkeys for most
of the 24 genes analyzed (Supplementary Fig. 12b; Supplementary
Table 15) and average methylation was 27± 0.7% in AL animals
compared to 24± 0.9% in CR animals (p= 0.04, unpaired t-test
with Welch’s correction). As was the case for mice, there was a
strong correlation between the effects of CR and age-related
methylation drift (Spearman r= –0.78, p< 0.001, two-tailed)
(Supplementary Fig. 13). Unsupervised hierarchical clustering of
pyrosequencing results revealed four clusters; cluster 1 included
mostly young animals, cluster 2 contained half of the middle aged
plus 20% of the CR old animals, while clusters 3 and 4 had AL old
animals and the rest of the CR old animals (Fig. 5b).

It has been previously shown that DNA methylation can be
used as a predictor of chronological age9–11. To quantitate the CR
effects on methylation in the process of aging, we used the

pyrosequencing data on 24 genes in mice and monkeys, and
calculated a “methylation age” in CR animals based on the linear
model built in AL animals (Fig. 5c). The 12 CR mice had an
average chronologic age of 2.8 years and a methylation age of 0.8
years (p< 0.001, paired t-test). For 18 CR monkeys, the average
chronologic age was 27 years while the predicted methylation age
was 20 years (p= 0.003, paired t-test). Thus, in both mice and
monkeys, CR was associated with a significantly lower-
methylation age, though the effect was much more pronounced
in mice (40% CR since early adulthood) than in monkeys (30%
CR since middle age).

We next examined the tissue specificity of this process by
studying DNA from spleen, bone marrow, liver, kidney, small
intestine, and large intestine derived from the same mice we
analyzed earlier. We tested 15 genes showing aging drift in the
blood (12 hypermethylated genes and 3 hypomethylated genes)
(Supplementary Table 13). Most of these genes showed age-
related methylation drift in most of the tissues (Supplementary
Table 19) with some exceptions. Kidney and liver generally
showed less age-related hypermethylation at these loci, while
large intestine showed even larger drift than blood. Blood, spleen,
and kidney showed consistent hypomethylation drift, while liver,
small, and large intestine had lower drift, and bone marrow
showed hypomethylation in only 1/3 loci examined. Hierarchical
clustering analyses showed broadly similar patterns in all tissues
(Supplementary Fig. 14) with DNA from young animals
clustering separately from old animals, while DNA from CR
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animals mostly clustered in-between young and old (for the most
part). The patterns in blood, bone marrow, and spleen were
similar, which likely reflects the fact that the genes were selected
based on blood. Nevertheless, the same genes showed clear age-
related clusters in small and large intestinal tissues as well,
suggesting that the effects are not restricted to blood. These data
also proved that age-related methylation changes occur in
multiple tissues and the effect of tissue composition is limited.
Similar to results in blood, we observed a strong negative
correlation between the effects of CR on methylation and age-
related methylation drift in most tissues (Supplementary Fig. 14).
As before, we compared methylation age to chronological age in
CR mice in all seven tissue types tested. Methylation age appeared
lower in all tissues albeit with significant variability likely
reflecting gene selection and tissue-specific variables. The
differences between methylation age and chronological age were
as follows (p-values; paired t-test): blood—1.7 years (p< 0.001);
spleen—0.8 years (p= 0.007); bone marrow—0.8 years (p<
0.001); liver—1.5 years (p= 0.02); kidney—1.5 years (p< 0.001);
small intestine—0.3 years (p= 0.12), and large intestine—0.5
years (p< 0.001) (Supplementary Fig. 14).

CR effects correlate with gene expression. To further test the
impact of DNA methylation changes with age on gene expression,

we performed quantitative reverse transcription PCR (RT-PCR)
analysis on RNA isolated from young and old mouse livers (young;
n= 6, AL old; n= 12, CR old; n= 12). We selected four ARM genes
for which we had pyrosequencing data in promoters (Supplemen-
tary Table 13) and which were expressed in normal liver based on
publicly available data (Elovl2, Ripk4, Lims2, and Tapbp)45. All four
genes showed expected aging trends (repressed by hypermethyla-
tion or activated by hypomethylation) and expression levels of CR
animals were in between those of young and old animals (Fig. 6a).
Hierarchical clustering based on expression levels divided the spe-
cimens into two distinct groups, one containing mainly young and
CR old liver, with the other containing AL old liver (Fig. 6b).

Given the strong correlations between methylation drift, aging,
and the effects of CR, we next compared this biological clock to
telomere shortening, which had previously been proposed as a
biological clock of aging46, 47. Using quantitative PCR to measure
telomere length, we also found age-related telomere shortening in
the blood of mice, monkeys, and humans (Supplementary
Fig. 15), though the shortening was too small to be measured
precisely. CR had no measurable effect on telomere length in
either mice or monkeys (Supplementary Fig. 15) as previously
reported in monkeys48.
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Discussion
In this study, we found that DNA methylation drifts with age in
an analogous manner in three mammalian species and that the
rate of drift generally correlates with lifespan (Figs. 1, 3). Changes
in DNA methylation occur during the aging process in mammals,
and this age-related change in DNA methylation is accelerated in
tumorigenesis. Methylation drift can be seen as an erosion of
highly organized methylation patterns: focal unmethylated status
of CGIs, distinctly different from the global methylated status of
CpG sites in CpG poor regions40. Consistent with our previous
studies20, 44, we detected age-related methylation drift in multiple
tissue types. One of the limitations of this study is the reliance on
cross-sectional samples. While we did observe methylation
changes in a limited number of paired samples obtained from the
same individual in the span of 5 years, longitudinal prospective
studies are needed to confirm our observations. Additionally,
DNA methylation studies in pure cell populations would better
address potential cell-specific effects on the methylation drift. We
also found that CR, which prolongs lifespan in mice and mon-
keys, markedly delayed methylation drift and resulted in a sig-
nificantly younger “methylation age” (Figs. 4, 5). Together with
previous findings showing that chronic inflammation (which
shortens lifespan) accelerates methylation drift24, our data suggest
that epigenetic drift is an excellent biomarker of lifespan. We also
found that methylation drift generally correlates with gene
expression changes (Supplementary Figs 3, 4; Fig. 6), suggesting it
is a possible mediator of age-related functional decline and dis-
ease. We note that previous reports failed to see such a rela-
tionship with expression but the high accuracy of our method
combined with the focus on promoters is likely to explain these
differences49–51.

Mechanisms underlying the vastly different lifespans across
different species remain incompletely understood. Telomere
shortening has been proposed as a potential mechanism reg-
ulating longevity but data across species have not been supportive
of this hypothesis52, and we did not find significant effects of CR
on telomere length (Supplementary Fig. 15). While we analyze
cells and tissues that are a mixture of stem cells and differentiated
cells, it is likely that the most reproducible changes observed are
happening in adult stem cells and are carried into differentiated
somatic cells16. Changes that are restricted to differentiated cells
would likely be lost upon cell death and contribute to increasing
noise with age but not to the most dramatic and reproducible
associations between methylation and age. The “stemness” origin
of methylation drift in the hematopoietic system was experi-
mentally established by prior studies53, and differing stem cell
turnover rates may explain the tissue specificity we observed—
highest drift in large intestine for example (high stem cell turn-
over). While our data do not establish that methylation drift
actually causes changes in lifespan, correlations with gene
expression and prior data on methylation drift in stem cells
suggest the possibility that restriction of stem cell plasticity by
aging epigenetic drift may be a key regulator of lifespan. Stem cell
dysfunction and exhaustion have recently emerged as a potential
mechanism of age-related functional decline54–56. Given that
epigenetic programs are largely set and reset during cellular
replication57, it is plausible that methylation drift reflects accu-
mulated random epigenetic errors during stem cell division. The
markedly differing rates of methylation drift across species would
then suggest differing rates of stem cell turnover. Within a spe-
cies, one can further speculate that inflammation increases
methylation drift through cycles of injury/repair that stimulate
stem cell turnover, while CR slows down drift by dampening stem
cell turnover.

It has been known for decades that restricting the food intake
of laboratory rodents extends their mean and maximum

lifespan1. In monkeys, the WNPPRC study (from which we
obtained samples for the current report) showed a clear effect of
CR on aging3. However, another CR study using rhesus mon-
keys conducted at the National Institute on Aging (NIA) con-
cluded that CR resulted in a lower cancer incidence but had no
effect on lifespan30. The two studies differed substantially in the
diets they used, possibly accounting for the different out-
comes58. A comparison of epigenetic drift between the studies
might help shed light on the differing outcomes. Data on CR
and longevity are not available for humans. However, obesity
increases the risk of chronic age-related diseases, such as type 2
diabetes, heart disease, osteoarthritis, and certain types of
cancer (including colorectal, breast, pancreatic, and
prostatic)59, 60, and thus constitutes a major and rising global
health problem. Our data in monkeys showed a positive cor-
relation between methylation drift in whole blood and body
mass index (Spearman r = 0.38, p = 0.04, two-tailed) (Supple-
mentary Fig. 16). Recent data in humans also showed that body
mass index is associated with DNA methylation in human
whole blood and that obesity accelerates methylation drift23, 61.
Thus, it is a plausible hypothesis that obesity increases the risk
of diseases through accelerated epigenetic tissue aging, while
CR dampens this risk through an opposite effect.

In conclusion, we find striking conservation of methylation
drift with aging among species and the strong negative correlation
between methylation drift and lifespan across several species. The
CR effects on age-related methylation of delaying the drift may be
important to the health and life extension seen in CR animals.
Thus, we propose that DNA methylation drift is one of the
strongest known biomarkers of lifespan. It is worth investigating
whether interventions that further slowdown age-related DNA
methylation drift may have beneficial effects on longevity and/or
preventing the progression of age-related diseases.

Methods
Tissue samples. We studied a total of 43 mouse (female; n= 23, male; n= 20) and
57 rhesus monkey (female; n= 26, male; n = 31) blood samples including animals
fed normally (ad libitum; AL) and CR (mouse; AL; n = 31, CR; n= 12, monkey;
AL; n= 39, CR; n= 18). All mice were purchased from the CR rodent colony at the
National Institutes on Aging, National Institutes of Health. All rhesus monkeys
were part of a larger longitudinal CR project at the Wisconsin National Primate
Research Center. We also examined cord blood or whole blood cells from 139
humans (all healthy individuals; Japanese; n = 123, unknown; n= 16; sex; female;
n = 57, male; n= 69, unknown; n= 13). We selected the size of samples based on
our previous studies of age-related methylation in mice20, 44. All research with mice
was reviewed and approved by the Institutional Animal Care and Use Committee
(IACUC) of Temple University. All non-human primate samples were collected at
the Wisconsin National Primate Research Center under a protocol approved by the
IACUC of the Graduate School of the University of Wisconsin, Madison. All
human samples were collected under protocols approved by the institutional
review boards of the involved institutions (MD Anderson Cancer Center, Temple
University and Fujita Health University School of Medicine) and all subjects
provided written informed consent for the collection of residual tissues as per
institutional guidelines and in accordance with the Declaration of Helsinki. We
summarized sample information including age and caloric status, and assays
performed in Supplementary Tables 1, 2. We analyzed female and male samples
together to increase statistical power, since there were no statistically significant
differences between the sexes in age-related methylation. Human granulocytes were
separated by gradient centrifugation to ~98% purity. Polyclonal activated T-cells
were obtained from the mononuclear cell fraction and in vitro expanded using
Human T-Activator CD3/CD28 Dynabeads (Gibco). All animals and human
subjects were clinically healthy (disease-free) at the time of sample collection. We
isolated genomic DNA using standard procedures. Briefly, the tissue was digested
in a lysis buffer (10 mM TrisHCI, pH 8.0, 10 mM NaCl, 10 mM EDTA, 1% SDS)
containing proteinase K (500 μg/mL) overnight at 50 °C, extracted with phenol/
chloroform (1:1), and precipitated with 100% ethanol. The resulting pellet was then
washed with 70% ethanol, dried, and dissolved in distilled deionized water.

DREAM. DREAM was performed as described previously32, 33. Briefly, genomic
DNA samples were spiked in with methylation standards, sequentially digested
with the SmaI (methylation sensitive) and XmaI (methylation insensitive)
restriction endonucleases creating methylation-specific signatures at the ends of the
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restriction fragments based the CpG methylation status at CCCGGG target sites.
After the digestion and ligation of sequencing adaptors, the libraries were
sequenced on Illumina Gene Analyzer II or Illumina HiSeq 2000 at the MD
Anderson Center for Cancer Epigenetics and HiSeq 2500 at the Fox Chase Cancer
Center. Sequencing reads were mapped to the reference genome (mm9, rheMac2,
hg19), the reads with unmethylated GGG and methylated CCGGG signatures at
individual target CpG sites were counted and the methylation values were adjusted
based on spiked in standards. We used for further analyses CpG sites covered with
≥100 reads in at least 75% samples located on autosomal chromosomes. Potential
individual SNPs at target CCCGGG sites would not affect the data analysis. Since a
single-nucleotide polymorphism will destroy the SmaI/XmaI target site, the poly-
morphic allele would not be included in the analysis. In the case of a homozygous
single-nucleotide polymorphism, the CpG site of the affected individual would not
be represented. To assess the reproducibility of the method, we performed replicate
analyses of identical DNA sample from the normal human whole blood. There was
a high concordance among seven technical replicates (Pearson correlation r ≥
0.997; Supplementary Fig. 17). The DREAM data are deposited in the GEO
database (GSE75499) (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
token=itmlcimapdadbsb&acc=GSE75499).

Permutation analyses. In order to evaluate the association between age and
methylation level, we calculated the Spearman’s correlation coefficient (r) between
age and methylation level of each CpG site measured in the DREAM assay. To
assess the statistical significance of these correlations, a permutation approach was
used. Briefly, the age was shuffled 1000 times, then the correlation between these
randomly shuffled values and methylation level was calculated. Empirical p-values
were calculated by comparing the observed Spearman’s r-value against the dis-
tribution of r-values calculated after random age shuffling, and were equal to the
number of permutations with higher correlations than the observed correlations
divided by 1000. Next, we used |r|≥ 0.5 and empirical p-value < 0.05 as thresholds
to select CpG sites showing age-related drifts. All statistical analyses were per-
formed independently in each species (mouse, monkey, or human) using the R
statistical framework (www.r-project.org/).

Pathway analyses. Functional class annotation analysis was performed on hyper-
or hypo-methylated genes by using the Ingenuity Pathway Analysis software. We
analyzed biological processes, molecular functions, and cellular components that
were relatively enriched by the gene lists of interest.

Differential expression analysis by RNA-seq. RNA-seq data were downloaded
from Gene Expression Omnibus (GEO) Series GSE60216. The reads were mapped
to the human genome (hg18) by TopHat (version 2.0.10)62. The number of reads in
each known gene from RefSeq database63 (downloaded from UCSC Genome
Browser on 02 June 2014) was enumerated using htseq-count from HTSeq package
(version 0.6.1) (http://www-huber.embl.de/users/anders/HTSeq/). The differential
expression between conditions was statistically assessed by R/Bioconductor pack-
age DESeq (version 1.16.0)43. Genes with p-value < 0.05 and fold change >2 were
called significant.

Bisulfite pyrosequencing for DNA methylation analysis. Bisulfite treatment of
genomic DNA was performed using the EpiTect Bisulfite Kit according to the
manufacturer’s instructions (Qiagen). We used a quantitative bisulfite pyr-
osequencing method for DNA methylation analyses as reported previously20, 44. In
brief, bisulfite-treated DNA was amplified with gene-specific primers in a two-step
PCR. The second step of PCR was used to label the reverse DNA strand with biotin.
DNA methylation was measured as the percentage of bisulfite-resistant cytosines at
CpG sites by pyrosequencing. Pyrosequencing was performed using the PyroMark
Gold Q96 CDT Reagents (Qiagen) on the PyroMark Q96 MD platform (Qiagen).
Pyro Q-CpG Software (Qiagen) was used to analyze the data. Primer sequences and
PCR conditions for bisulfite pyrosequencing assays are listed in Supplementary
Table 20. The data points represent averages of bisulfite PCR/pyrosequencing
assays performed in duplicates or triplicates.

Age-related methylation drift. We used an R package lme464, to build a multi-
level mixed linear model including data from all 10 hypermethylated ARM genes
homologous across all three species, including species as a fixed effect with an
interaction term for age allowed to give the difference in methylation rate between
genes and species.

To test the CR effect on aging methylation drift, multiple linear regression for
methylation with two predictors and their interaction term was performed for each
site in DREAM data: age (quantitative variable) and diet (qualitative variable with
two levels: AL and CR). Taking AL as the baseline, if the coefficient for the
interaction term is significantly non-zero, it indicates CR significantly changes the
rate of methylation drift.

Age prediction. We derived a linear model for chronological age based on
methylation values of 24 hypermethylated genes in AL mice characterized by the
equation based on the values of slope and intercept calculated by the multilevel
mixed linear model in whole blood (Supplementary Table 17). By substituting the
values of the average methylation percentage (24 genes) of individual CR mice into

the equation, we obtained the predicted epigenetic age. We also predicted the ages
of CR mice based on methylation status using the linear models calculated using
age and methylation status average of 12 hypermethylated ARM genes in AL
animals across multiple tissues (coefficient and intercept for age prediction are
shown in Supplementary Table 17). Using bisulfite pyrosequencing results of 24
hypermethylated genes, we also made a linear model to predict the age of CR old
monkeys based on the values of slope and intercept shown in Supplementary
Table 17.

Quantitative RT-PCR assay for gene expression. Total RNA from young and
old liver samples was prepared by using the RNeasy Mini Kit (Qiagen) and reverse
transcribed into complimentary DNA using random hexamer primers and the
high-capacity complimentary DNA reverse transcription kit (Applied Biosystems)
according to the manufacturer’s directions. The expression of genes was quantified
using TaqMan gene expression assays and a StepOne Real-Time PCR system
(Applied Biosystems). Gene expression was normalized to Gapdh. Assay IDs are
following (Elovl2; Mm00517086_m1, Ripk4; Mm00458366_m1, Lims2;
Mm00523019_m1, Tapbp; Mm00493417_m1, Gapdh; Mm99999915_g1, Applied
Biosystems).

Measurement of telomere length by quantitative PCR. We performed quanti-
tative PCR assay to determine the relative telomere length65–67. Telomere repeat
copy-number/reference gene (RPLP0; 36B4, or HBG1) copy-number values were
calculated by the formula 2^–dCt where dCt =Ct telomere-Ct reference gene. The
DNA samples (10 ng) were assayed in triplicate in 20 μl reaction volume using
SYBR Kit (Bio-Rad). The oligonucleotide primers are shown in Supplementary
Table 21. The PCR conditions for amplification (using Telomere-1 primers and
36B4 primers) were: 95 °C for 10 min followed by 40 cycles at 95 °C for 15 s, and
60 °C for 1 min. To amplify telomere by Telomere-2 primers, the same conditions
were used except annealing temperature as 54 °C. The PCR conditions for HBG1
gene amplification were: 95 °C for 10 min followed by 40 cycles at 95 °C for 15 s,
and 58 °C for 1 min. The quantitative PCR was performed using a StepOne Real-
Time PCR system.

Statistics. Spearman correlation between methylation and age was calculated using
GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA). Correlation
analysis for DREAM data was performed using the statistical software package R.
All p-values are two-sided with a p < 0.05 considered to be significant. Hierarchical
clustering was performed by ArrayTrack Software available at http://edkb.fda.gov/
webstart/arraytrack/ using Ward’s method. p-values for comparisons between
sample groups based on age/caloric status in each species were obtained using the
unpaired t-test with Welch’s correction. A χ-test using 2×2 tables was used to
calculate p-values for the significance of the overlaps.

Data availability. The DREAM data discussed in this publication have been
deposited in NCBI Gene Expression Omnibus with the accession number
GSE75499. All other relevant data are available from the corresponding author
upon request.
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