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Priming of lineage-specifying genes by Bcl11b is
required for lineage choice in post-selection
thymocytes
Satoshi Kojo1, Hirokazu Tanaka1, Takaho A. Endo 2, Sawako Muroi1, Ye Liu3, Wooseok Seo1, Mari Tenno1,

Kiyokazu Kakugawa1, Yoshinori Naoe1, Krutula Nair1, Kazuyo Moro4, Yoshinori Katsuragi5, Akinori Kanai6,

Toshiya Inaba6, Takeshi Egawa7, Byrappa Venkatesh8, Aki Minoda3, Ryo Kominami5 & Ichiro Taniuchi1

T-lineage committed precursor thymocytes are screened by a fate-determination process

mediated via T cell receptor (TCR) signals for differentiation into distinct lineages. However,

it remains unclear whether any antecedent event is required to couple TCR signals with the

transcriptional program governing lineage decisions. Here we show that Bcl11b, known as a T-

lineage commitment factor, is essential for proper expression of ThPOK and Runx3, central

regulators for the CD4-helper/CD8-cytotoxic lineage choice. Loss of Bcl11b results in random

expression of these factors and, thereby, lineage scrambling that is disconnected from TCR

restriction by MHC. Initial Thpok repression by Bcl11b prior to the pre-selection stage is

independent of a known silencer for Thpok, and requires the last zinc-finger motif in Bcl11b

protein, which by contrast is dispensable for T-lineage commitment. Collectively, our findings

shed new light on the function of Bcl11b in priming lineage-specifying genes to integrate TCR

signals into subsequent transcriptional regulatory mechanisms.
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Early thymocyte progenitors (ETPs) retain their develop-
mental potential to become non-T- lymphoid cells, but,
upon exposure to the thymic microenvironment, the ETP

expression program is dramatically altered to commit them to the
T-lymphoid lineage1, 2. Previous studies demonstrated that a final
T-lymphoid lineage commitment occurs at a developmental
checkpoint during the transition from the CD4−CD8− double
negative (DN)2a to the DN2b stage, where expression of the
transcription factor Bcl11b is induced3, 4. Bcl11b-deficiency
results in a developmental arrest of early T cell progenitors at
the DN2a stage along with a concomitant acquisition of myeloid-
lineage/natural killer (NK) cell gene signatures5. Bcl11b thus
serves as a T-lineage commitment factor that eliminates devel-
opmental potential to non-T lymphoid cells at the DN2

checkpoint3–5. Beside its function during early thymocyte devel-
opment, Bcl11b continues to be expressed during T lymphocyte
differentiation5, 6 and modulates the development of many lym-
phoid subsets, including natural killer T (NKT)7, regulatory T
(Treg)8 and type2 innate lymphoid (ILC2) cells9–11.

After commitment to the T-lineage, another checkpoint,
known as β-selection, selectively expands DN3 cells that suc-
cessfully express functional TCRβ chain after V(D)J recombina-
tion of the Tcrb locus. Thymocytes that have passed
β-selection become αβT-lineage-restricted CD4+CD8+ double
positive (DP) precursor thymocytes, which express complete
αβTCR complexes for the first time during T cell development.
DP precursors are then subjected to additional positive and
negative selections that enrich precursors with TCRs recognizing
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Fig. 1 Binding of Bcl11b to regulatory regions in the Thpok gene. a DNA pull-down assay showing in vitro Bcl11b binding to wild-type (Wt) Thpok silencer
(Sth) core sequences, but not efficiently to mutant (Mut.) sequences. One representative of two experiments. b Co-immune precipitation assay showing
interaction of Bcl11b with Runx1. One representative of two experiments. c Flow cytometry showing an increase of CD8+ T cells de-repressing Thpok-GFP
upon reduction of Bcl11b dosage in Runx mutant mice. One representative of two independent experiments. d Bcl11b ChIP-seq tracks at the Thpok, Thpokgfp:
ΔTESPE, and Sfpi1 genes in total thymocytes along with Runx ChIP-seq (GSE90794) tracks at the Thpok gene (top) for reference. Gene structure,
transcriptional orientation and conservations in mammals (Cons.) in the Thpok gene are indicated. Positions of Thpok silencer (Sth), two enhancers (TE and
PE), distal P1-promoter (P1) and proximal enhancer (PE) in the Thpok gene, and upstream regulatory element (URE) in the Sfpi1 gene are indicated as
arrowheads. e Co-occupancy by Runx at Bcl11b-bound genome regions. Runx recognition site (5′-ACCPuCA-3′) was listed among the top two common
sequences for Bcl11b-bound regions. f ChIP-PCR assay for binding of Runx, Bcl11b, and ThPOK to Wt and Runx site mutated (RSM) Sth regions in CD4+

T cells from Thpok+/gfp:241-401RM mice. Lanes 1, 2, and 3 are input, control IgG and antibody-against the indicated transcription factor, respectively. One
representative of two independent experiments. g ChIP-qPCR analyses showing binding of Runx and Bcl11b to the Sth and PE in CD4+ (white bars) and CD8
+ (gray bars) T cells. Combined data from three independent ChIP experiments is shown. **P< 0.01 (unpaired t-test)
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antigen-MHC complexes with intermediate affinity but eliminate
precursors expressing self-reactive TCRs, respectively12. Posi-
tively selected thymocytes differentiate into distinct T cell subsets
with distinct functionalities via the activation of specific devel-
opmental programs. For instance, positive selection signaled via
TCR engagement by MHC class-II (MHC-II) and class-I (MHC-
I) guides precursors to differentiate into CD4+CD8− helper or
CD4−CD8+ cytotoxic T cells through the induction of key tran-
scription factors, ThPOK and Runx3, respectively13, 14. Thus, DP
precursors must be ready to integrate TCR signals, translating
them into the appropriate developmental program. However, an
important gap in our understanding of these processes is how
TCR signals are coupled to mechanisms that control the
expression of lineage-specifying genes, and it remains unclear
whether preceding events are required for this coupling.

One such lineage-specifying transcription factor, Zbtb7b, also
known as T-helper-inducing POZ/Krueppel− like factor
(ThPOK), is a member of the BTB-POZ zinc-finger transcription
factor family15 and is encoded by Zbtb7b, hereafter referred to as
the Thpok gene. Previous genetic studies for ‘gain and loss’ of
ThPOK function demonstrated that its presence or absence in
post-selection thymocytes is a major determinant of the
CD4-helper (ThPOK+) versus CD8-cytotoxic (ThPOK–) lineage
dichotomy16–18. Consistent with these findings, expression of the
Thpok gene is restricted to MHC-II selected thymocytes16 in
positively selected thymocytes. Accordingly, Thpok regulation has
been recognized as an ideal model to study how TCR signals are
coupled with the transcriptional program that establishes the
identity of CD4+ helper T cells. Such studies identified a tran-
scriptional silencer in Thpok, hereafter denoted as Thpok silencer
(Sth), which is an essential cis-acting element restricting Thpok
expression to post-selection thymocytes in the helper lineage19, 20.
In addition to Sth, there are at least three enhancers in the Thpok
locus20. Among them, the thymic enhancer (TE), located
upstream of the Sth, acts first to initiate Thpok expression21,
which is subsequently upregulated through the activity of a

proximal enhancer (PE) locating 1.8 kb downstream of the
proximal P2-promoter22. While factors that regulate Sth activity,
such as Runx family proteins19 and MAZR23, 24, have been
identified, the factors involved in the activation of TE and PE
remain poorly characterized. Gata325 and Tcf1/Lef126 regulate
Thpok expression, but primarily do so by targeting other reg-
ulatory regions such as general T-lymphoid enhancer, the known
third enhancer. In contrast to Thpok regulation, very little is
known about transcription factors that orchestrate CD8+ T cell-
specific expression of Runx3 from its distal P1-promoter27. Sig-
nals emanating from the IL-7 cytokine receptor have been shown
to activate Runx328, 29; however, the intermediaries and their cis-
regulatory targets in Runx3 remain to be established30.

Here we report two mechanisms by which Bcl11b governs the
transcriptional program dissecting helper versus cytotoxic lineage
commitment: Sth-independent repression of Thpok in DN thy-
mocytes and enhancer-dependent Runx3 repression in CD4-
lineage cells. Deletion of Bcl11b in thymocytes at
post-β-selection stage causes chaotic Thpok and Runx3 expres-
sion, inducing random differentiation of both MHC-I and MHC-
II selected cells into the helper and cytotoxic subsets. Along with
earlier requirement for Bcl11b prior to DP stage in later Foxp3
activation, we conclude that lineage-specifying genes are ‘primed’
by Bcl11b before or during transition to the DP stage to represent
an essential event for coupling TCR signals to expression pro-
grams for differentiating into the appropriate T-effector subsets.

Results
Bcl11b binds to the Thpok locus. Based on our assumption that
proteins bound to Thpok silencer (Sth) should mediate coupling
of TCR signals during positive selection with release of Thpok
expression, we attempted to purify protein complexes by in vitro
capture with an oligo-nucleotide harboring core Sth sequences.
Consistent with prior chromatin immunoprecipitation (ChIP)
assays31, Bcl11b protein was efficiently enriched by affinity
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Fig. 2 CD4-skewed development by impaired Thpok regulation from hypomorphic Bcl11bm/m progenitors. a Expression of truncated Bcl11b protein in the
neonatal thymus from the hypomorphic Bcl11bm allele detected by an antibody recognizing the N- (left), but not the C- (right), terminus of Bcl11b. One
representative of two experiments. b Summary of ChIP assay for binding of Wt (white bars) and hypomorphic (black bars) Bcl11b to indicated regions in
total neonatal thymocytes. c−e Flow cytometry analyzing the expression of CD4, CD8, and Thpok-GFP during T cell development in Rag1-deficient hosts c
and irradiated MHC-II deficient hosts e reconstituted with fetal liver cells with the indicated genotypes. Data are representative of at least two independent
experiments. Numbers in dot plots indicate the percentage of cells in each quadrant. Histograms showing CD40L expression 2 days after in vitro TCR
stimulation of peripheral CD4+, CD8+ and CD4−CD8− DN cells differentiated in Rag1-deficient mice from Bcl11b+/+and Bcl11bm/m fetal liver cells d. Data are
representative of two independent experiments
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purification with core Sth sequences, but to lesser extent with
mutant Sth sequences (Fig. 1a). Bcl11b also associated with other
known Sth binding proteins, Runx1 (Fig. 1b). Furthermore,
reduction of Bcll1b dosage to the half (Bcl11b+/−) in the Runx
mutant mice, in which combined mutations of Runx1 and Runx3
genes attenuated Sth-mediated Thpok repression32, resulted in an
increase of CD8+ subset de-repressing a Thpokgfp reporter22

(Fig. 1c), indicating genetic interaction between two factors in the

regulation of Sth function. Our ChIP sequencing (ChIP-seq) assay
of total thymocytes also detected that Bcl11b associated with Sth
and proximal enhancer (PE) as well as intronic regions down-
stream from distal P1-promoter in the Thpok locus (Fig. 1d).
Bcl11b also bound to an upstream regulatory element (URE)33 in
the Sfpi-1 locus, which encodes a myeloid transcription factor,
PU.1, and is a putative target of Bcl11b to eliminate myeloid
potential during T-lineage commitment (Fig. 1d). A more
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global analysis revealed the Runx recognition motif
(5′-ACCPuCA-3′) as the second-ranked sequence enriched at
Bcl11b-bound regions in thymocytes (Fig. 1e) and Runx bindings
coincided with ~ 85 % of Bcl11b-bound regions (Fig. 1e), which
is consistent with previous observation using neuronal cells34.
However, Bcl11b binding to Sth was Runx-independent, as
determined using primary CD4+ T cells in which two Runx sites
within the Sth were mutated by a knock-in on the Thpokgfp

reporter allele35, whereas ThPOK binding to the Thpok silencer
requires Runx-binding (Fig. 1f). Our analytical ChIP assay in
CD4+ and CD8+ T cell subset detected that Bcl11b binding at PE
was greater in Thpok-expressing CD4+ T cells, while fivefold
more Runx was bound to Sth in ThPOK-negative cells (Fig. 1g).
These results suggest that Bcl11b directly regulates activity of
Thpok locus through binding to the silencer and enhancer
elements.

Impaired Thpok regulation in Bcl11b mutant mice. Because
there is a developmental arrest at the DN2a stage when Bcl11b
function is completely lacking, it is necessary to utilize a Bcl11bfl

allele to examine the function of Bcl11b during T cell develop-
ment beyond the DN stage. We therefore attempted to generate
our own Bcl11bfl allele. However, our first trial unexpectedly
generated a mutant Bcl11b allele, hereafter referred as to a
Bcl11bm, which produced a truncated Bcl11b protein due to a
frameshift mutation incorporated into the targeting vector during
its construction (Fig. 2a and Supplementary Fig. 1a−c). Despite its
loss of the final zinc-finger motif, truncated mutant Bcl11b pro-
tein could bind to the Sth and an intronic region in the Thpok, as
well as to the URE in Sfpi-1 (Fig. 2b). Similar to Bcl11b null
animals (Bcl11b−/−), homozygous Bcl11bm mice died as neonates
(Supplementary Fig. 1d). However, in contrast to the null
animals, which completely lack CD4+CD8+ DP thymocytes and
thereby have small thymus36, we noticed that total thymocyte
number is only slightly reduced in Bcl11bm/m neonates (Supple-
mentary Fig. 1e) and, more strikingly, the DP population was
present in those mice (Supplementary Fig. 1f). In addition,
Bcl11bm/m progenitors gave rise to ILC2 cells (Supplementary
Fig. 1g), a subset that does not develop from Bcl11b−/−

progenitors9, 10. These results indicated that the mutant Bcl11bm

is a hypomorphic allele, thereby hereafter its product is referred
to as hypomorphic Bcl11b protein (Bcl11bHM).

We next investigated the T cell development of Bcl11bm/m

progenitors that also harbor a Thpokgfp reporter allele. For this
purpose, we transferred Bcl11bm/m:Thpok+/gfp or control Thpok
+/gfp fetal liver progenitors into T cell-deficient Rag1−/− hosts,
allowing differentiation of the progenitors to proceed for two
months. As shown in Fig. 2c, Thpok-GFP expression was absent
in pre-selection thymocytes (defined as CD24hiTCRβlo) from
control cells. In sharp contrast, nearly all pre-selection thymo-
cytes derived from the transferred Bcl11bm/m progenitors

expressed Thpok-GFP. While the two major T cell subsets,
CD4+ helper and CD8+ cytotoxic, were differentiated from
control Bcl11b+/+ progenitors, Bcl11bm/m progenitors gave rise to
predominantly CD4+ T cells with a helper-related signature (e.g.,
CD40L induction) in mature thymocyte and peripheral T cell
populations (Fig. 2c, d). To address whether a re-direction of
MHC-I selected cells to the CD4+ lineage contributed to this
CD4-skewing, we generated chimeras using irradiated MHC-II
deficient hosts expressing the Ly9.1 marker, in which only
differentiation of MHC-I selected cells was supported. Strikingly,
we continued to observe skewing of CD4 differentiation in Ly9.1−

donor-derived populations from Bcl11bm/m, but not Bcl11b+/+,
progenitors (Fig. 2e). The shift to CD4 dominant differentiation
was not observed when Bcl11bm/m:Thpokgfp/gfp progenitors
lacking ThPOK expression were transferred (Fig. 2c). Along with
de-repression of Thpok-GFP in remaining CD8+ T cells (Fig. 2c),
we conclude that aberrant Thpok expression redirects MHC class
I-selected Bcl11bm/m thymocytes to the CD4+ lineage. After these
initial characterizations of the hypomorphic Bcll11bm allele, we
generated a true conditional mutant (Bcl11bfl) allele and a mutant
allele that retains the identical frameshift mutation to the Bcl11bm

allele but lacks the loxP sequence in its 3′UTR, which we referred
to as the Bcl11bHM allele (Supplementary Fig. 1a).

Silencer-independent Thpok repression by Bcl11b. To further
investigate how Thpok expression was de-regulated in Bcl11bm/m

cells, we examined promoter usages. Prior studies have shown
that Thpok is transcribed from distal P1- and proximal
P2-promoters20, however, P2-derived transcripts were detected
specifically in T-lineage cells and require PE activity (Fig. 3a, b).
Given the loss of Thpok-GFP expression in peripheral T cells
upon removal of both TE and PE (Supplementary Fig. 2a), TE is
likely to drive P1-promoter activity in T cells. In contrast, Thpok
transcript in Bcl11bm/m pre-selection thymocytes was transcribed
only from the P1-promoter (Fig. 3c). To understand the under-
lying mechanisms for unusual P1-promoter activation without
P2-promoter activation in Bcl11bm/m thymocytes, we examined
Thpok-GFP expression from the Thpokgfp:ΔTESPE reporter allele,
in which all three T cell-specific regulatory elements, Sth, TE, and
PE, were removed from the Thpokgfp allele by sequential gene
targeting (Fig. 3d). In Bcl11b wild-type cells, Thpok expression
from the enhancer-deficient Thpokgfp:ΔTESPE reporter allele was
derived solely from the P1-promoter (Supplementary Fig. 2b),
and was detected only in cells after the post-selection
stages (Fig. 3d). In contrast, despite deletion of the Sth silencer,
Thpok-GFP expression from the Thpokgfp:ΔTESPE reporter allele
was initiated in Bcl11bm/m thymocytes at DN3 stage and its
expression level was increased during transition to DP stage
(Fig. 3d). These data revealed the presence of undefined
Sth-independent mechanism by which Bcl11b represses Thpok
expression in DN3 as well as in DP thymocytes.

Fig. 3 Sth-independent Thpok repression by Bcl11b in pre-selection DP thymocytes. a Quantitative RT-PCR showing amount of promoter-specific Thpok
transcripts in splenic CD4+ T cells and splenic B220+ B lymphocytes. Summary of three measurements. b Quantitative RT-PCR for Thpok-gfp expression in
CD4+ T cells from mutant reporter alleles, Thpokgfp:ΔTE and Thpokgfp:ΔPE, lacking the thymic enhancer (TE) or proximal enhancer (PE), respectively. Levels of
P1- and P2 promoter-specific transcripts relative to those from the control Thpokgfp allele harboring intact enhancers is shown. One representative of two
independent experiments. c Promoter-specific Thpok transcripts in Bcl11bm/m pre-selection DP thymocytes and CD4+ T cells relative to those in control
CD4+ T cells. Summary of three measurements. d Histograms showing Thpok-GFP expression from the Thpokgfp:ΔTESPE allele in the indicated cell subsets
differentiated in Rag1-deficient recipients from control (dotted line) and Bcl11bm/m (solid line) fetal liver cells. Expression pattern of Thpokgfp is shown as
reference (shaded). Schematic structure of the Thpokgfp:ΔTESPE allele is included (upper panel). One representative of two independent experiments. e ATAC-
seq tracks at the Thpok locus in CD24hiTCRβloCD4+CD8+ pre-selection thymocytes of 6-week-old Bcl11b+/+ mice, newborn Bcl11b+/fl:Lck-cre, newborn
Bcl11bHM/fl:Lck-cre and newborn Bcl11bHM/HM:Lck-cre mice. ATAC-seq results in immature B cells (GSM2123187) is shown as reference. DP thymocyte- and
B lymphocyte-specific peaks are marked with blue and red arrowheads, respectively. Position of the P1 promoter is indicated with black arrowhead
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To further address activation status of Thpok locus in Bcl11b
mutant cells, we examined chromatin accessibility in DP
thymocytes prepared from a Bcl11bHM/fl:Lck-Cre and Bcl11bHM/

HM:Lck-Cre mice by ATAC-seq37. Interestingly, the Thpok locus
in Bcl11bHM/HM pre-selection thymocytes retained open chro-
matin signatures around the P1-promoter, resembling those seen
in B cells expressing P1-derived transcripts (Fig. 3e). ChIP-seq
analyses for Bcl11b binding in thymocytes of Thpokgfp:ΔTESPE/gfp:
ΔTESPE mice detected association of Bcl11b at intronic regions
nearby the P1-promoter (Fig. 1d), which retained accessibility
in the Bcl11bHM/HM cells and whose sequences are evolutionally

conserved (Fig. 1d). Similar open structure was observed in
DP cells of Bcl11bHM/fl:Lck-Cre mice. These observations
indicate that truncation of Bcl11b C-terminal sequences
interferes, most specifically, with normal patterns of Thpok
expression at early thymocyte differentiation, reconfiguring its
regulome to mimic expression patterns found in B cells. However,
RNA-seq did not detect significant elevation of B cell signature
genes in Bcl11bm/m pre-selection thymocytes (Supplementary
Fig. 3a, b), suggesting that Bcll1b might be involved
in modulating chromatin accessibility at the restricted loci such
as Thpok.
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Fig. 4 Lineage scrambling resulting from inactivation of Bcl11b at the DP stage due to sporadic Thpok and Runx3 expression. a Flow cytometry analyzing the
expression of CD4, CD8, Thpok-GFP, and Runx3-tdTomato by various thymocyte subsets in mice with the indicated genotypes. The histogram in the
middle showing Thpok-GFP expression in CD4+CD8− mature thymocytes from control (open) and Bcl11b-deficient (shaded) cells. b Graph showing summary
of percentage of each subset in mature (CD24−TCRβhi) thymocytes population of mice with indicated genotype. c Flow cytometry analyzing the expression
of CD4, CD8, Thpok-GFP and Runx3-tdTomato in lymph node T cells of mice with the indicated genotypes. One representative of at least independent
mice. d Flow cytometry analyzing the expression of CD4, CD8, Thpok-GFP and Runx3-tdTomato in pre-selection DP thymocytes and lymph node T cells
differentiated in Rag1-KO hosts from Bcl11b+/+ and Bcl11bm/m fetal livers harboring Thpokgfp and Runx3tdTomato reporter alleles. One representative of two
independent experiments. e, f Representative flow cytometry e analyzing differentiation of MHC-I and MHC-II selected cells in MHC-II and MHC-I
deficient (MHC-II0 and MHC-I0) backgrounds, respectively, along with a graph f showing a statistical summary of the percentages and absolute numbers
in each cell subset in CD24−TCRβhi mature thymocytes population of control (white circles) and Bcl11bfl/fl:Cd4-Cre (filled circles) mice. Partial re-directed
differentiation occurred in both MHC-I and -II selected cells. *P< 0.05, **P< 0.01, and ***P< 0.001(unpaired t-test)
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Bcl11b is needed for lineage fidelity by MHC-restriction.
Contrary to CD4-skewing from Bcl11bm/m progenitor, a previous
study reported emergence of CD8+ T cells following Bcl11b
inactivation at the DP stage using a Cd4-Cre driver. We reasoned
that the apparent discrepancy could result from a stage-specific
requirement for Bcl11b in regulating Thpok gene. We therefore
next examined effect of Bcl11b inactivation by Cd4-Cre driver on
Thpok expression. Although Thpok-GFP was uniformly de-
repressed in all Bcl11bm/m pre-selection thymocytes (Fig. 2c),
expression of this reporter was variegated and detected in only
half of the pre-selection thymocytes from Bcl11bfl/fl:Cd4-Cre mice
(Fig. 4a). We also observed that CD4+CD8+ and CD4−CD8+

subsets were present in mature thymocytes from Bcl11bfl/fl:Cd4-
Cre mice (Fig. 4a, b). It is noteworthy that, after positive selection,
levels of Thpok-GFP in CD4+CD8− cells differentiated from
Bcl11bm/m progenitors or in Bcl11bfl/fl:Cd4-Cre mice were lower
than those in control counterparts (Fig. 2c and Fig. 4a middle), a
shift that was also reflected in attenuated P2-Thpok mRNA
(Fig. 3c). Thus, loss of Bcl11b function disrupts not only Thpok
repression, but also distinct mechanisms for its activation. These
results suggests that, in a portion of pre-selection thymocytes in
the Bcl11bfl/fl:Cd4-Cre mice, the kinetics of Thpok de-repression
are delayed compared to Bcl11bm/m progenitors, which is com-
bined later with low Thpok expression levels, allowing the cells to
differentiate into CD4+CD8+ and CD4−CD8+ subsets.

Since previous studies showed release of Runx3 repression in
CD4+ T cells that differentiated under low levels of ThPOK27, 38,
we next examined Runx3 expression using a Runx3-tdTomato
reporter allele that monitors distal P1-promoter activity, which is
CD8-linege specific and serves as a major source for Runx3
protein expression in T cells27. Importantly, we found that most
mature thymocytes from Bcl11bfl/fl:Cd4-Cre mice co-expressed
Runx3-tdTomato and Thpok-GFP, regardless of their CD4/CD8
expression profiles (Fig. 4a), whereas expression of these genes
was mutually exclusive between CD4+CD8− and CD4−CD8+ cells
from control mice. Contrary to a previous report showing Runx3
de-repression in CD4+CD8+ DP thymocytes of Bcl11bfl/fl:Cd4-Cre
mice31, Runx3-tdTomato was not detectably expressed in
CD24hiTCRβlo pre-selection thymocytes (Fig. 4a). Co-
expression of Thpok-GFP and Runx3-tdTomato was observed
also in CD4+CD8− and CD4−CD8+ cells in the peripheral T cell
pool of Bcl11bfl/fl:Cd4-Cre mice (Fig. 4c), as well as in CD4+

T cells differentiated from Bcl11bm/m progenitors (Fig. 4d). Thus,
lineage-specific expression of two major factors, ThPOK and
Runx3, which drive the CD4/CD8 lineage dichotomy, requires
Bcl11b, or more specifically, Bcl11b function mediated by its
C-terminal sequences.

We next examined the MHC specificity of T cells differentiated
in Bcl11bfl/fl:Cd4-Cre mice by crossing with MHC-I or MHC-II
deficient mice. In mature thymocytes and peripheral T cell
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populations, a significant proportion of both MHC-I- and
MHC-II-specific cells in Bcl11bfl/fl:Cd4-Cre mice expressed sur-
face markers for the alternative lineage, CD8 and CD4,
respectively (Fig. 4e, f). We therefore conclude that a substantial
number of both MHC-I and MHC-II selected thymocytes failed
in their specification for the appropriate developmental pathway,
presumably due to spurious expression of ThPOK and Runx3
following positive selection. Ultimately, the chaotic expression of
these factors resulted in “lineage scrambling”, unlinking DP
precursor thymocyte commitment from MHC specificity.

Functions of Bcl11b in Runx3 regulation. To understand how
Bcl11b regulates Runx3 expression, we examined whether genomic
regions around the Runx3 locus were occupied by Bcl11b, Runx,

and ThPOK factors. In addition to the P1-promoter, Bcl11b and
Runx bound at two regions (−39 and −21 kb), which were also
bound by ThPOK (Fig. 5a) that is essential for Runx3 repression in
CD4+ T cells22, 27. To examine potential of these regions as
cis-regulatory elements for Runx3 regulation, we removed the
regions separately or in combination from the Runx3-tdTomato
allele using CRISPR/Cas9 technology39 (Supplementary Fig. 4).
Levels of Runx3-tdTomato expression in CD4−CD8+ SP thymo-
cytes were reduced upon removal of either the −39 or −21 kb
region, but not a control region of similar length positioned at −40
kb region (Fig. 5a). Expression of the Runx3 reporter was further
attenuated following combined deletion of the −39 and −21 kb
regions. These observations indicated essential regulatory functions
for these two regions in driving proper levels of Runx3 expression in
CD8+ T cells. The residual expression when both regions were
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removed also indicated the presence of other enhancer(s) in the
Runx3 locus.

SOCS family proteins were proposed to mediate ThPOK-
dependent repression of Runx3 following thymocyte positive
selection29. However, expression of Socs1 and Socs3 was not
reduced in Bcl11b-deficient CD4+ T cells expressing Runx3
(Fig. 5b). In Bcl11b-deficient cells, ThPOK bindings to −39 and
−21 enhancers were also observed, albeit to a lesser extent,
presumably due to lower ThPOK expression levels (Fig. 5c). We
then tested whether ectopic ThPOK expression restored Runx3
repression in CD4+ T cells. Although transgenic ThPOK
prevented the development of CD8+ T cells in Bcl11bfl/fl:Cd4-
Cre mice, Runx3-tdTomato was not repressed as much in CD4
+CD8− splenic T cells (Fig. 5d). Consistent with this observation,
retroviral ThPOK transduction into peripheral CD8+ T cells
reduced Runx3-tdTomato expression in control cells, but not in
Bcl11b-deficient cells, while CD8 expression was reduced in both
cells, as reported previously40 (Fig. 5e). These results indicated
that full Runx3 repression by ThPOK required Bcl11b after
ThPOK bound to Runx3 enhancers. In contrast, ThPOK could
repress Cd8 expression in the absence of Bcl11b.

Bcl11b regulates Thpok and Runx3 expression. To address at
which developmental stages Bcl11b is necessary for appropriate
Thpok and Runx3 expression, we inactivated the Bcl11b gene
during maturation of MHC-II selected cells using a Thpok-Cre

driver41. While CD4 and CD8 expression on peripheral T cells
remained unchanged in Bcl11bfl/fl:Thpok-Cre mice, the expression
of Thpok-GFP and Runx3-tdTomato in CD4+ T cells was
decreased or increased, respectively (Fig. 6a, b). When Bcl11b was
inactivated in differentiated CD8+ T cells by retroviral Cre
transduction, de-repression of Thpok-GFP was also observed
(Fig. 6c). These findings indicated that Bcl11b was necessary to
maintain lineage-specific expression of both Thpok and Runx3
after primary commitment of post-selection thymocytes to CD4/
CD8 lineages.

We also tested the converse scenario, namely, whether
retroviral Bcl11b transduction restored Runx3-tdTomato repres-
sion in differentiated CD4+ cells of Bcl11bfl/fl:Thpok-Cre mice.
Levels of Runx3-tdTomato was reduced upon Bcl11b transduc-
tion compared with empty vector controls (Fig. 6d); however,
transduction with a vector encoding the Bcl11bHM protein
repressed Runx3-tdTomato to lesser extent than wild-type Bcl11b
(Fig. 6d). To gain more insights into the domainal structure of
Bcl11b, we tested the activities of other mutants generated by
sequential deletion on its C-terminus (Supplementary Fig. 5).
While a Bcl11b mutant retaining the final zinc-finger domain
(Bcl11b-Δ10) and wild-type Bcl11b equally repressed Runx3-
tdTomato expression, other mutants lacking the zinc-finger
structure showed weaker activity (Fig. 6e). These results not only
confirmed that loss of the last zinc-finger motif, rather than
acquisition of aberrant sequences, attenuated Bcl11b function in
the Bcl11bHM protein, but the new data also indicated that the
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last zinc-finger motif is essential for Bcl11b function in preserving
lineage-specific Runx3 expression.

In this regard, we compared structures of Bcl11 family proteins
in other species. There are two zinc-finger clusters in Bcl11b,
double zinc-fingers in its central region and triple zinc-fingers at
its C-terminus. Comparative genomics analyses revealed that
some species, such as the Ascidians (C. intestinalis) and Worm
(C. elegans), lacked the middle zinc-finger motif in Bcl11
orthologues, whereas the triplet zinc-finger structure at the C-
terminal was highly conserved during evolution (Supplementary
Fig. 6), suggesting that C-terminal triplet zinc-fingers could be
involved in ancestral and conserved function of Bcl11 family
proteins.

Stage-specific requirement for Bcl11b in Foxp3 transcription.
Additional analyses of T cell development from Bcl11bm/m pro-
genitors detected a striking defect in the development of Foxp3+

regulatory T cells (Treg) (Fig. 7a). In line with this finding, we
were unable to induce Foxp3 expression in the mutant CD4+

T cells even under potent Treg differentiation conditions in vitro
(Fig. 7b). Contrary to this finding, a previous study reported the
emergence of Foxp3+ Treg cells following Bcl11b inactivation at
the DP stage using a Cd4-Cre driver8. This apparent discrepancy
could result from a direct and stage-specific requirement for
Bcl11b in activating Foxp3, as we observed in Thpok regulation
by Bcl11b. Recent work reported that the CNS3 region in the
Foxp3 gene is essential to initiate Foxp3 activation by poising the
Foxp3 promoter in an active state prior to the DP stage42, 43. Our
ChIP-seq detected Bcl11b binding to CNS3 in total thymocytes
(Fig. 7c) and our ChIP-qPCR detected similar binding of both
Bcl11b and Bcl11bHM proteins to CNS3 (Fig. 7d). Since we
recently observed that binding of the genome organizer, SATB1,
to CNS3 is essential for Foxp3+ Treg development in the thy-
mus41, 44, we examined SATB1 association with CNS3 in Bcl11b
mutant thymocytes. Consistent with development of Foxp3+ cells,
SATB1 binding to CNS3 was unaffected in total thymocytes from
Bcl11bfl/HM:Cd4-Cre mice. On the contrary, SATB1 recruitment
was significantly decreased in those cells from Bcl11bfl/HM:Lck-
Cre mice (Fig. 7e). These results suggested that priming of the
Foxp3 locus by Bcl11b prior to the DP stage is essential for
activation of Foxp3 gene via promoting SATB1 recruitment to the
CNS3 enhancer.

Discussion
In this study, we demonstrate that a hypomorphic Bcl11b protein
(Bcl11bHM), lacking only its final zinc-finger domain, supports
T-lineage commitment and ILC2 development. In contrast, the
hypomorphic Bcl11b mutation fails to control the expression of
transcription factors, including ThPOK, Runx3, and Foxp3,
which are important for specification of mature T lineages
(CD4-helper, CD8-cytotoxic, and Treg, respectively). Impor-
tantly, our findings dissect the functional architecture of Bcll1b,
revealing independent regions that are responsible for early
T-lineage commitment versus transcriptional regulation of
lineage-specifying genes during positive selection.

The distinct effects on expression of Thpok and Foxp3 genes of
the germline hypomorphic mutation when compared with a DP
stage-specific inactivation of its gene indicate that Bcl11b acts on
these two genes at an early developmental stage, presumably at
the DN to DP transition, to control appropriate expression of
these lineage-specifying transcription factors at later stage. For
Thpok, while a half of precursors still repressed Thpok gene after
conditional loss of Bcl11b expression, hypomorphic Bcl11b
mutation caused Thpok expression in all precursors that retains
non-T cells like open chromatin structure around the

P1-promoter. This observation indicates that early Thpok
repression at the DN to DP transition by Bcl11b involves chro-
matin closing. Our results using the Thpokgfp:ΔTESPE mutant
reporter allele lacking Sth silencer revealed that Bcl11b regulates
such chromatin closing independently of the Sth, which is
essential to silence Thpok expression at later stage specifically in
cytotoxic T cells35. Given that the Sth is sufficient to repress
reporter transgenes driven by heterologous enhancer/promoter in
DP thymocytes20 and is essential to prevent expression of the
endogenous gene in Bcl11b-sufficient DP cells19, both Sth-inde-
pendent and Sth-dependent pathways operate to repress Thpok in
precursor DP thymocytes. Considering that ectopic ThPOK
expression in DP precursor thymocytes not only disturbs helper/
cytotoxic lineage choice16 but also increases a risk for lympho-
magenesis45, it might be beneficial to have two independent
mechanisms to secure no leaky ThPOK expression in DP pre-
cursors. It is noteworthy that Sth-independent Thpok repression
was reversible, since Thpok-GFP expression from the Thpokgfp:
ΔTESPE allele was induced in mature T cells, suggesting that
irreversible epigenetic changes such as DNA methylation are
unlikely to be involved in early Sth-independent Thpok repression
by Bcl11b. Given that Sth could stably silence Thpok transcript,
particularly from the P2-promoter, in CD8-lineage cells35,
mechanisms of Sth-dependent and Sth-independent Thpok
repression could be different.

The precise involvement of Bcl11b in Sth-independent Thpok
repression remains elusive. As detected by ChIP-seq, Bcl11b
covers regions around the P1-promoter in an Sth-independent
manner. Along with evolutional conservation in sequences of
intronic region just downstream of the P1-promoter, there might
exist uncharacterized regulatory element(s) that suppresses P1-
promoter activity upon expression of Bcl11b. Binding of mutant
Bcl11bHM protein to such intronic region suggest that the C-
terminal zinc-finger motif in Bcl11b is necessary to close P1-
promoter region after Bcl11b binding to putative regulatory ele-
ment(s). Alternatively, Bcl11b may be involved indirectly in the
Sth-independent Thpok repression through an uncharacterized
intermediate factor, however, the similar gene expression profiles
between wild-type and Bcl11bm/m precursors disfavors this
possibility.

De-repression of Thpok in mature CD8+ populations that
emerge from Bcl11bfl/fl:Cd4-Cre precursors suggests that Bcl11b is
required also for Sth-mediated Thpok repression. Thus, Bcll1b
regulates Thpok repression by both Sth-independent and
Sth-dependent mechanisms. Based on our data, we presume that
Bcl11b acts initially to inhibit P1-promoter activity in an
Sth-independent manner. Either sequentially or simultaneously,
Bcl11b primes three T cell specific regulatory regions, Sth and two
enhancers, TE and PE. Upon such priming, Sth initiates to sup-
press TE and PE activity, thereby removal of Sth results in Thpok
de-repression in Bcl11b-sufficent precursors in which TE/PE
enhancers also becomes functional after Bcl11b-mediated prim-
ing. In this regard, an Sth-independent mechanism alone is likely
to be insufficient for extinguishing TE/PE enhancer activities.
Thus, we assume that pre-conditioning of T cell specific reg-
ulatory regions by Bcl11b is an essential process for dissecting
TCR signals that arise from engagement by distinct MHCs, and
for converting them into establishment of “on” and “off” Thpok
expression status for inducing helper- or cytotoxic-fate via inac-
tivation or maintaining Sth activity, respectively.

Bcl11b similarly primes the Foxp3 locus for later activation
upon exposure to agonistic selection signals46. A recent study
showed that the pioneering enhancer, CNS343, confers a poised
state to the Foxp3 promoter in precursor cells in response to TCR
stimuli42. In the present study, we show that binding of SATB1 to
CNS3 in precursors, an essential process for activation of Foxp3

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00768-1

10 NATURE COMMUNICATIONS | 8:  702 |DOI: 10.1038/s41467-017-00768-1 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


gene in the thymus41, 44, requires Bcl11b-mediated priming
before transition to the DP stage. Whether common Bcl11b-
mediated mechanisms operate to prime the Thpok and Foxp3 loci
remains unclear; however, we establish that the
C-terminal zinc-finger motif of Bcl11b is involved in both pro-
cesses. Collectively, our results reveal a set of novel functions for
the T-lineage commitment factor Bcl11b, which “pre-conditions”
precursors for integration of environmental cues, specifically TCR
signals, into a developmental program that dissects effector
lineages and shapes the primary T cell pool.

Another striking finding from our studies is that the lack of
Bcl11b inhibits both the positive and negative regulatory regions
near Thpok. One possible model to explain how Bcl11b controls
multiple regulatory regions would be its function as a scaffold to
facilitate communication between the distal elements and the
Thpok promoters. Using insertion ChIP technology47, we recently
observed that the Sth and PE regions were positioned in close
proximity during differentiation into CD8-lineage cells
(I.T. manuscript in preparation). Thus, it is possible that Bcl11b is
involved in shaping promoter-regulatory elements communica-
tions on the Thpok locus.

Contrary to Thpok regulation, Bcl11b is merely involved in
repression of Runx3 in CD4+ T cells22, 27. Prior studies invoked
an indirect mechanism for Runx3 repression by ThPOK via the
induction of SOCS family proteins29. However, our finding that
ThPOK associates with functional Runx3 enhancers raises the
possibility that ThPOK directly antagonizes enhancer function.
Indeed, ThPOK bound to the enhancers even in Bcl11b-deficient
cells that were de-repressing Runx3 albeit normal level of
Socs family gene expression. These data suggest that the
antagonistic action of ThPOK against Runx3 expression requires
Bcl11b after its binding to the Runx3 enhancers. It is conceivable
that Bcl11b assists ThPOK in preventing the formation of
looping between the enhancers and the P1-Runx3 promoter.
Nevertheless, it will be important in future studies to examine
whether lineage-specific chromatin structures are formed in
Thpok and Runx3 loci and whether Bcl11b regulates these
topologies.

The C2H2 zinc-finger motif not only serves as a DNA binding
domain that recognizes specific sequences, but also as a docking
module for RNA and proteins48. We found that the Bcl11bHM

protein retains its ability to associate with regulatory regions,
indicating that its final zinc finger is dispensable for DNA
binding. However, it remains possible that the other four
zinc-fingers domains have compensatory functions in this regard.
There are two zinc-fingers clusters in mammalian Bcl11 family
proteins, double zinc-fingers in its central portion and a trio of
zinc-fingers at its C-terminus. Although there are Bcl11-related
proteins in lower species that lacks the central dual zinc-finger
domain, a trio of zinc-fingers at the C-terminus is evolutionally
well conserved. Our results indicate that this domain is
essential for gene regulation, presumably through modulating
topological structures. Bcl11a has been shown to play a key role in
the switch from fetal γ- to adult β-globin in human49. It is
conceivable that common Bcl11 family-dependent mechanisms
play a key role in developmentally programmed switching of
regulatory regions by modulating topological structures through
the C-terminal triplet zinc-finger stretch. Isolation of interacting
molecules with it will further elucidate regulatory mechanism by
Bcl11 family.

Methods
Mice. Runx1Δ446 mice50, Runx3fl mice51, Bcl11b+/− mice36, Thpokgfp mice22,
Thpokgfp:241-401RM mice35 and Thpok transgenic mice19 have been described.
Lck-Cre mice, and Cd4-Cre mice were from Dr J. Takeda, and Dr C. Wilson,
respectively. β2m-deficient mice (stock No:002070), Rag1-deficient mice (Stock

No:002216) were from Jackson laboratory, and I-Aβ deficient mice and Il2rg–/–:
Rag1–/– were from Taconic. In order to generate a Thpokgfp:ΔTESPE allele, TE/Sth
and PE regions were sequentially removed from the Thpokgfp reporter allele by
using homologous recombination in ES cells. In order to construct the target vector
for Bcl11bfl allele, genomic fragment isolated from the phage library (Stratagene)
was used as starting material. The neomycin-resistance gene (neor) flanked with
two loxP sequences was cut out from pL2-Neo(2) vector and thymidine kinase (TK)
gene was isolated from pNT vector. A 5′ short homology region was amplified by
PCR and was ligated with the neor fragment, followed by sequential ligation to add
3′ homology region. The third loxP sequences placed in the 3′ untranslated region
(UTR) were derived from synthetic oligo-nucleotide. The single nucleotide deletion
that causes a frameshift mutation in the Bcl11bm allele was accidentally incorpo-
rated into the target vector at some point during above sequential ligation steps. To
construct a real target vector for Bcl11bfl mutation, correct exon 4 sequences were
replaced in the Bcl11bm target vector. A fragment that harbors the identical
Bcl11bm single nucleotide deletion but lacks the third loxP sequences was used to
construct the target vector for Bcl11bHM allele. In order to generate Runx3tdTomato

reporter allele, we constructed the targeting vector by replacing YFP cDNA frag-
ment with cDNA fragment encoding tdTomato fluorescent protein in pRx31-KIN
cassette vector27, which was used to generate the Runx3YFP allele27. Those targeting
vectors were transfected into M1 ES cells as previously described22. ES clones
underwent homologous recombination were identified by PCR with appropriate
primers sets. In order to delete −39 kb and −21 kb genomic regions from the
Runx3tdTomato reporter allele by CRISPR/Cas9 technology52, 53, we selected two
single guide RNA (sgRNA) target sequences that flanks target genomic regions,
which were shown in Supplementary Fig. 3. Custom sgRNA, in which CRISPR
RNAs was fused to a normally trans-encoded tracrRNA, were transcribed from a
T7 promoter in the pUC18 vector by in vitro transcription with MEGAshortscript
T7 kit (Life Technologies, AM1354) and both the Cas9 mRNA and the sgRNAs
were purified using MEGAclear kit (Life Technologies, AM1908). The sgRNAs and
mRNA encoding Cas9 were co-injected into cytoplasm of fertilized eggs that were
prepared by in vitro fertilization with Runx3tdTomato/tdTomato sperm and wild-type
oocytes. Cas9-mediated double-stranded DNA breaks resolved by non-
homologous end joining (NHEJ) ablated the intervening sequences. Founder off-
spring that had deletion of the target genome region were crossed to wild-type
mice, and F1 founders that harbor both deletion mutation and Runx3tdTomato allele
were selected for establishing mouse line and were analyzed. In order to generate
allele harboring double deletions at −39 kb and −21 kb regions, sgRNA pair used
for generation of Runx3Δ21E mutation were injected into eggs obtained by in vitro
fertilization between Runx3tdTomato:Δ39LD/+ sperm and wild-type oocytes. RNA
injection was performed by the Animal Facility Group at RIKEN, IMS. All mice
were maintained in the specific pathogen free animal facility at the RIKEN IMS,
and all animal procedures were in accordance with institutional guidelines for
animal care and with the protocol (28-017) approved by the safety section in
RIKEN Yokohama Campus.

DNA pull-down assay. In order to analyze binding of Bcl11b to Thpok silencer
(Sth) core sequences in vitro, nuclear extract was prepared from 10 × 107 total
thymocytes and were mixed with 10 μg of biotin-labeled synthetic oligo-nucleotides
probe (Eurofins Genomics) in 400 μl of affinity purification (AP) buffer (20 mM
HEPES-KOH (pH 7.5), 80 mM KCl, 10% Glycerol, 0.1% Triton X, 0.5 mM PMSF,
1× cOmplete protease inhibitor Cocktail tablets (Roche)) on ice for 3 h, followed by
mixture with 100 μl of Dynabeads M-280 Streptavidin (Thermo Fisher Scientific)
for additional 3 h on ice. After one time wash with AP buffer, beads were incubated
with 500 pmol of mutant non-labeled oligo-nucleotide for 30 min at 4 °C, and were
washed with AP buffer three times. Captured protein complexes by beads were
then released into 50 μl of SDS sample buffer and were applied for western blot
analyses. Sequences for oligo-nucleotides probes used were as follows:

Wt:5′-TGGCAGCCACCGCCTCTTCAGGTGGGTTGGGCGGTCG
CGGTAGGGGTTCTGGGGGGCGGCGGGAGGGAGGGGGCTGCGGT
CTGAG-3′

Mutant:5′-TGGCAGCCACCGCCTCTTCAGCACCCATGGGCGCAG
GCGGTAGGGGTTCTGGGGGGCGGCGGGAGGGAGGGGGCACGCC
ACTGAG-3′.

Co-immune precipitation and western blot. Nuclear extract was prepared from
10 × 106 total thymocytes with NE-PER kit (Thermo Fisher Scientific) in the
presence of cOmplete protease inhibitor cocktail tablets (Roche), followed by
incubation with 2 μg of anti-Bc111b (A300-383A, Bethyl Laboratories) antibody,
which was pre-mixed with 50 μl of Dynabeads ProteinA, overnight at 4 °C with
gentle rotation. Antibody bound proteins were released into 20 μl of SDS sample
buffer and was loaded onto SDS-PAGE gel. In western blot, anti-Runx1 serum54

and antibodies that reacts with N-terminal sequences (A300-383A, Bethyl
Laboratories) and C-terminal sequences (A300-385A, Bethyl Laboratories) of
Bcl11b were used to detect protein.

Chromatin immunoprecipitation. For ChIP-seq, 3 × 107 thymocytes that were
freshly prepared from C57BL/6 mice at 4−6 weeks old were washed once with PBS
supplemented with 1% FCS, cOmplete protease inhibitor cocktail (Roche) and 1
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mM 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (Sigma-Aldrich),
and were cross-linked by incubation in a 1% paraformaldehyde solution for 10 min
with gentle rotation at RT. The reaction was stopped by addition of glycine to
0.15M. Cells were then washed with ice-cold PBS containing 1% FCS for 10 min
with gentle rotation at 4 °C, and were lysed in Lysis Buffer 1 (50 mM HEPES pH
7.5, 140 mM NaCl, 1 mM EDTA, 10% Glycerol, 0.5% NP-40, 0.25% Triton
X-100) supplemented with cOmplete protease inhibitor cocktail tablets (Roche) for
10 min at 4 °C with gentle rotation. Nuclei were pelleted and were washed by Lysis
Buffer 2 (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA and 0.5 mM
EGTA) supplemented with cOmplete protease inhibitor (Roche). Pelleted chro-
matin was resuspended in 300 μl of Lysis Buffer 3 (10 mM Tris-HCl pH 8.0, 100
mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Sodium deoxycholate and 0.5% N-
laurylsarcosine sodium salt), and was sonicated using a model XL2000 ultrasonic
cell disruptor (MICROSON) at output level 6 for 15 s for 10 times. After removing
debris by centrifugation, 30 μl of 10% Triton X-100 (Nacalai tesque) was added to
270 μl of supernatant (final 1%) and sonicated chromatin was incubated overnight
at 4 °C with 5 μg of anti-Bcl11b rabbit polyclonal antibody (A300-383A, Bethyl
Laboratories) that was pre-conjugated with 50 μl of Dynabeads M-280 Sheep
anti-Rabbit IgG (Thermo Fisher Scientific). After washing beads with ChIP-RIPA
(50 mM HEPES (pH 7.6), 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% sodium
deoxycholate) and TE buffer supplemented with 50 mM NaCl, immunoprecipitates
were eluted from beads into 100 μl of elution buffer (50 mM Tris-HCl pH 8.0,
10 mM EDTA, 1% SDS) by incubation for 15 min at 65 °C with vigorous shaking.
Eluted immunoprecipitates were then incubated at 65 °C overnight for reverse-
crosslinking. Input DNA and ChIP DNA were treated with RNAse A (Thermo
Fisher Scientific) at 37 °C for 1 h, followed by incubation with Proteinase K
(Thermo Fisher Scientific) at 55 °C in the presence of 6 mM CaCl2 for one hour.
DNA was purified by Phenol/Chloroform extraction for ChIP-seq or ChIP DNA
Clean and Concentrator kit (ZYMO RESEARCH) for ChIP-qPCR. For ChIP-seq
analysis, purified DNA was subjected to re-sonication with a Covaris S220 to
produce DNA fragments with an average size of 200 bp, and was used for library
construction with NEBNext ChIP-seq Library Prep Master Mix set for Illumina Kit
(NEB). Sequencing was performed by the RIKEN IMS sequence facility with
Illumina HiSeq 1500 or at Hiroshima University using a GAIIx (illumina). To
detect ThPOK binding regions in the murine Runx3 locus, we performed ChIP-on-
chip experiment. Chromatin DNA isolated from 10 × 106 CD4+ SP thymocytes
from FH-ThPOK mice22 was immunoprecipitated with anti-Flag (M2; Sigma-
Aldrich), and were hybridized against custom microarrays generated by Agilent
that tiled through the murine Runx3 locus up to ~ 565 kb upstream and ~ 66 kb
downstream by means of 60-nucleotide probes. Probe hybridization and scanning
of oligo-nucleotide array data were done according to manufacturer’s protocol
(Agilent). For analytical ChIP, we used 5 μg of rabbit anti-Bcl11b antibody (A300-
383A, Bethyl Laboratories), 5 μg of rabbit anti-ThPOK polyclonal antibody27 and
5 μg of rabbit anti-SATB1 polyclonal antibody (ab70004, Abcam). Quantitative
PCR was performed using the StepOnePlus Real-Time PCR system (Applied
Biosystems) with SYBR Green detection system. Primers sequences for quantitative
PCR are listed in the Supplementary Table 1.

Flow cytometry analyses. Thymus, spleen, and lymph nodes were removed from
mice at 4−8 weeks of age, and were mashed through a 70 μm cell strainer to make
single-cell suspensions. Cells were stained with following antibodies purchased
from BD-Bioscience: CD4 (RM4-5), CD8 (53-6.7), CD24 (M1/69), CD25 (PC61),
CD154 (MR1), IL1RL1 (DJ8), ScaI (E13-161.7), KLRG1 (2F1), and TCRβ
(H57-597). Foxp3 staining buffer Set (00-5523-00) and anti-mouse FoxP3 antibody
(FJK-16s) from affymetirx eBioscience was used to stain Foxp3. Antibodies were
used at a concentration of 2.5 μg ml−1. Multi-color flow cytometry analysis was
performed using a FACSCANTO II (BD-Bioscience) and data were analyzed using
FlowJo (Tree Star) software. Cell subsets were sorted using a FACSAria II (BD
Biosciences) by cell sorting facility at RIKEN IMS.

In vitro T cell culture. Purified T cells were cultured in custom ordered Dulbecco’s
Modified Eagle Medium (D-MEM, KOHJIN BIO) supplemented with 10% heat
inactivated FBS (Hyclone). 1.0 × 106 cells were stimulated in 24-well plates
pre-coated with 2 μg ml−1anti-CD3e antibody (553058, BD Bioscience) with
2 μg ml−1 soluble anti-CD28 antibody (553295, BD Bioscience) for two days. For
induction of Treg differentiation, 10 ng ml−1 TGFβ1 (7666-MB, R&D systems), 5
μg ml−1 anti-IL4 (554433, BD Biosciences) and 5 μg ml−1 anti-IFNγ (554409, BD
Biosciences) were added throughout the culture.

Reconstitution of T cell development in host mice. Total liver cells with either
Bcl11b+/+ or Bcl11bm/m genotype were prepared from 13.5 to 14.5 dpc embryos,
and were suspended in 400 μl of D-MEM supplemented with 10% heat inactivated
FBS (Hyclone). 200 μl of these fetal liver cells were intravenously injected into
sub-lethally irradiated (6.5 Gy, Gammacell 40 Exactor, MDS Nordion)
Rag1-deficeint or I-Aβ deficient mice that expressing Ly9.1. For ILC2 reconstitu-
tion, Il2rg–/–:Rag1–/– mice were used as recipients. Host mice were supplied with
antibiotics (1 mgml−1 neomycin and 100 unit ml−1 polymyxin B) containing water
for first 2 weeks, and were analyzed 8 weeks after the fetal liver cell injection. In I-

Aβ deficient host mice, donor derived lymphocytes were identified as
Ly9.1-negative cells.

RNA isolation, RT-qPCR and RNA-seq. After total cellular RNA extraction by
using Trizol reagent (Thermo Fisher Scientific), samples were incubated with
RNase-free DNase I (Thermo Fisher Scientific) before cDNA synthesis with the
SuperScriptIII First Strand Synthesis System (Invitrogen). Quantitative RT-PCR
was performed using the StepOnePlus Real-Time PCR system (Applied Biosys-
tems) with an internal fluorescent TaqMan probe, Universal ProbeLibrary (Roche)
or SYBR Green detection system. Primers sequences and probe sequences for
quantitative RT-PCR are listed in the Supplementary Table 2. Primer sequence to
measure total Thpok mRNA was previously described16. For RNA-seq analyses,
purified 1.0 × 106 cells were used to prepare mRNA and 200−300 ng total RNA
were used for the library construction with SureSelect Strand Specific RNA-Seq
LibraryPreparation kit (Agilent Technologies) according to the manufacturer’s
protocol. Sequencing was performed by genomics facility at RIKEN IMS with
Illumina HiSeq 1500.

Assay of transposase-accessible chromatin sequencing. Assay of transposase-
accessible chromatin sequencing (ATAC-seq) samples were prepared from
25,000 sorted cells. The transposase reactions were carried as previously descri-
bed55 with 12 or 13 total PCR cycles. Amplified DNA fragments were purified with
QIAGEN MinElute PCR Purification Kit and size-selected twice with Agencourt
AMPure XP. Libraries were quantified with KAPA Library Quantification Kit for
Illumina Sequencing Platforms (KAPA Biosystems), and size distribution was
checked on a Bioanalyzer (Agilent High Sensitivity DNA chip, Agilent Technol-
ogies). Libraries were sequenced on Illumina HiSeq 2500.

Retroviral transduction into T cells and T cell culture. Retroviral vectors
encoding Cre recombinase or ThPOK in pMSCV-GFP vector was previously
described56. Retroviral vectors encoding mutant Bcl11b proteins were generated by
insertion of corresponding cDNA into pMSCV-GFP vector after conformation of
sequences of PCR amplified fragment. Those vectors were transfected into Plat-E
packaging line (a gift from Dr T. Kitamura at the University of Tokyo) by
FuGENE6 Reagent (Promega, E2691) and supernatant collected two days after
transfection were used for transduction into activated T cells by in vitro TCR
stimulation with immobilized anti-CD3 and soluble anti-CD28 by spin infection at
2400 r.p.m. for 60 min in the presence of 4 μg of polybrene (Sigma-Aldrich).
Transdcuced T cells were identified according to GFP expression for FACS analyses
and RNA extraction.

Data and statistical analyses. Sequences retrieved in ChIP-seq experiments and
ATAC-seq were aligned on the mouse genome (mm9) using the bowtie2 (http://
bowtie-bio.sourceforge.net/index.shtml) with default parameters, and accumulated
reads were normalized using total mapped reads. RNA-seq reads were mapped
using tophat2 (https://ccb.jhu.edu/software/tophat/index.shtml) to the mouse
genome and gene expression was estimated with fragments per mapped reads per
kilobase (FPKM) values calculated using cufflinks (http://cole-trapnell-lab.github.
io/cufflinks/) and gene annotation provided by iGenome. Primary component
analysis (PCA) was carried out using our in-house program with FPKM values of
gene sets whose annotation was provided by Gene Ontology database (http://
geneontology.org/). Statistical analysis was performed by F-test and unpaired t-test
with or without Welch’s correction using using GraphPAd Prism6 (Graphpad
software). Figures display means and SD.

Comparative genomics analyses. Homologous sequences of Bcl11 family were
searched with human Bcl11b protein sequences as a query against sequences listed
at the Ensemble genome browser 85 and Genebank with “TBLASTN” algorithm.
As for the Japanese lamprey search, Bcl11 protein sequences for human, mouse,
and elephant shark were used as queries to search the Japanese lamprey genome
assembly (http://jlampreygenome.imcb.a-star.edu.sg/) with “TBLASTN” algorithm.
Genomic regions that showed high similarity were extracted and searched against
the non-redundant protein database at NCBI to confirm their identity. Alignments
of C-terminal sequences of Bcl11b orthologue of each species were performed by a
computer program Clustal Omega (http://www.clustal.org/omega/) with default
options for amino acid sequences using zinc-finger regions obtained proposed by
BLASTP algorithm and NCBI conserved domain database (https://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi).

Data availability. RNA-seq, ChIP-seq and ATAC-seq data that support the
findings of this study have been deposited with accession GSE90134, GSE90949,
and GSE90989, respectively. All other relevant data are available from the
authors.
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