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Characterizing epigenetic heterogeneity at the cellular level is a critical problem in the

modern genomics era. Assays such as single cell ATAC-seq (scATAC-seq) offer an oppor-

tunity to interrogate cellular level epigenetic heterogeneity through patterns of variability in

open chromatin. However, these assays exhibit technical variability that complicates clear

classification and cell type identification in heterogeneous populations. We present scABC, an

R package for the unsupervised clustering of single-cell epigenetic data, to classify scATAC-

seq data and discover regions of open chromatin specific to cell identity.
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Recent advances in single cell technologies such as scATAC-
seq1,2 and scChIP-seq3 have expanded our understanding
of epigenetic heterogeneity at the single cell level. However,

datasets arising from such technologies are difficult to analyze
due to the inherent sparsity. In particular, consider scATAC-seq,
designed to interrogate open chromatin in single cells. Open sites
in a diploid genome have at most 2 chances to be captured
through the assay and only a few thousand distinct reads are
generated per cells, resulting in a very low chance that a particular
site is captured by the assay. Consequently, it is difficult to
determine whether a region is absent in an individual cell due to
the lack of openness or due to the sparse nature of data. This
creates a challenging task in delineating distinct sub-populations,
as only a few genomic regions will have overlapping reads in a
large number of cells. To avoid this issue, many studies perform
FACS sorting to identify subpopulations, followed by bulk
sequencing to determine genomic regions of interest and guide
the single-cell analysis. If the population is unknown or marker
genes are unavailable, then sub-population specific analysis
becomes impractical with these techniques.

To combat these challenges and allow for the de novo classi-
fication of individual cells by their epigenetic signatures, we
present a statistical method for the unsupervised clustering of
scATAC-seq data, named single cell Accessibility Based Cluster-
ing (scABC). In contrast to previous works2,4 that demand pre-
defined accessible chromatin sites, our procedure relies solely on
the patterns of read counts within genomic regions to cluster
cells. It requires two inputs: the individual single cell mapped read
files and the full set of called peaks (which can be obtained from
the union of all of the individual cells without the need for
additional experiments). We apply our method to publicly
available scATAC-seq data1,2,4, as well as a true biological mix-
ture to show that our approach can cluster cells with similar
epigenetic patterns and identify accessible regions specific to each
cluster. We further demonstrate that the cluster specific accessible
regions determined by scABC have functional meaning and are

capable of determining cellular identity. In particular, we show
that these cluster specific accessible regions are enriched for
transcription factor motifs known to be specific to each sub-
population and that, through association with scRNA-seq data,
they can lead to the identification of subpopulation specific gene
expression.

Results
The scABC algorithm. First, we briefly describe our algorithm
and the intuition behind it (Fig. 1a). To tackle the problem of
sparsity, we noted that cells with higher sequencing coverage
should be more reliable since important open regions are less
likely to be missed by random chance. Therefore, scABC first
weights cells by (a nonlinear transformation of) the number of
distinct reads within peak backgrounds and then applies a
weighted K-medoids clustering5 to partition the cells into distinct
groups (see Methods for details). scABC uses the ranked peaks in
each cell to perform the clustering rather than the raw counts to
prevent bias from highly over-represented regions. We found that
this usually sufficient to cluster most cells, but a few problematic
cells seem to be misclassified. To improve the classification, we
calculate landmarks for each cluster. These landmarks depict
prototypical cells from each cluster and are characterized by the
highest represented peaks in each cluster, which we should trust
more than the noisy low-represented peaks. scABC finally clusters
the cells by assignment to the closest landmark based on the
Spearman correlation (Fig. 1b). With the cluster assignments we
can then test whether each accessible region is specific to a par-
ticular cluster, using an empirical Bayes regression based
hypothesis testing procedure to obtain peaks specific to each
cluster (Fig. 1c, Methods).

Performance evaluation using in silico mixture of cells. To test
our method, we constructed an in silico mixture of 966 cells from
6 established cell lines, previously presented in Buenrostro et al.1
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Fig. 1 The scABC framework for unsupervised clustering of scATAC-seq data. a Overview of scABC pipeline. scABC constructs a matrix of read counts over
peaks, then weights cells by sample depth and applies a weighted K-medoids clustering. The clustering defines a set of K landmarks, which are then used to
reassign cells to clusters. b Assignment of cells to landmarks by Spearman correlation, where each cell is highly correlated with just one landmark. The
similarity measure used above is defined as the Spearman correlation of cells to landmarks, normalized by the mean of the absolute values across all
landmarks for every cell. This allows us to better visualize the relative correlation across all cells. c Accessibility of peaks across all cells. The vast majority
of peaks tend to be either common or cluster specific, allowing us to define cluster specific peaks
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(Supplementary Note, Supplementary Figs. 1 and 2, and Sup-
plementary Table 1). We then applied scABC to this data and
determined that there are K= 6 clusters using a modified gap
statistic (Supplementary Note, Supplementary Fig. 3). We found 6
well separated landmarks with each cell highly correlated with
only one landmark (Fig. 1b). The clustering was highly specific
with only 4 out of 966 cells misclassified, an error rate of ≈0.4%
(Supplementary Table 2).

Three major issues are associated with the in silico mixture that
do not appear in natural mixtures. First, the constructed mixture
is inherently biased by batch effects since each cell type must be
processed separately. To assess the effect of such bias in our
method, we noted that the GM12878 cell line was processed in
four separate batches, each with the same treatment. We applied
scABC on the combined four batches of GM12878 cells and the
results suggested that there is only a single cluster (Supplemen-
tary Fig. 3). To further study batch effects, we intentionally set the
number of clusters equal to the number of batches. We found that
99% of the cells were associated with two clusters that have
similar landmarks and are not dominated by any batches
(Supplementary Fig. 4 and Supplementary Tables 3 and 4). We
will investigate these two clusters in a later section but these
results indicate that scABC is robust to batch effects.

The second major issue is that each distinct cell line makes up
at least 9% of the in silico mixture. We tested how the
representation of each sub-population affects discovery by
reducing the representation of each cell line in the mixture. We
found that some well separated sub-populations, such as BJ and
TF1, can be distinguished at 1% of the total population, while
other sub-populations such as K562 and HL-60 (both of which
are erythroleukemic) may merge when the representation of one
falls below 5% of the total population (Supplementary Fig. 5). The
last issue is that the in silico cell lines are fairly distinct, raising the
question: to what extent scABC can recognize similar cell types.

We designed a test to systematically assess scABC sensitivity. For
each cell line, we equally divided its cells into two groups and
replaced a fraction of peaks in one group using another cell line.
Applying scABC to these two groups, we achieve successful
classifications when at least 50–70% of peaks are identical
between the groups (Supplementary Fig. 6). In later sections, we
will evaluate the sensitivity of scABC on real mixtures that have
similar sub-populations.

We next investigated whether the cluster specific peaks
obtained by scABC are able to define cell identity (Supplementary
Fig. 7). These peaks contain both narrow and broad regions, as
defined by MACS26. In principle, narrow peaks better capture TF
binding sites7. To measure the enrichment of TF motifs in
individual cells, we applied chromVAR8 to narrow peaks with
scABC defined p-value <10−6, named cluster specific narrow
peaks. This cutoff was chosen because it approximately equals the
Bonferroni corrected cutoff for a family wise error rate of 0.05.
The full details to reproduce the chromVAR results are outlined
in scABC vignettes, available online with the software package
(see Code availability for details). chromVAR calculates devia-
tions, essentially z-scores for TF motif enrichment that are
normalized for background accessibility and other biases such as
GC content. We found that the most active TFs are typically
specific to one or two clusters, identifying active TFs in every cell
type (Fig. 2a). Some of these TFs were previously shown to be
context-specific, for instance, NFKB2 in GM12878 cells1,2, SPI1 in
HL-60 cells9, GATA1::TAL1 in K562 cells10, and FOS in BJ cells11.
It is important to note that TFs with similar DNA-binding motifs
show similar motif enrichments. Therefore, POU motifs that are
enriched in H1 can demonstrate the activity of POU5F1, the core
regulator of human embryonic stem cell self-renewal12. We
observe that BJ specific TFs seem to be better distinguished than
other TFs. Because BJ cells are dissimilar to any of the other cell
lines (Fig. 1b) and have by far the highest number of cluster
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Principal Component Analysis (PCA) of 42 K562 and 54 HL-60 cells (right) and compared to PCA of all genes (left)
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specific peaks (Fig. 1c), this is not unexpected. We also applied
chromVAR to the full set of narrow peaks and found comparable
results (Supplementary Fig. 8), indicating that the cluster specific
peaks are responsible for the majority of the variation while
comprising <15% of all narrow peaks.

In contrast to narrow peaks, broad regions are more suited to
demonstrate functional DNA elements such as promoters and
enhancers13. We hypothesized that cluster specific broad peaks
overlapping gene promoters have functional significance and can
help distinguish genes specific to a particular cell type.
Specifically, we expect that genes with cell type specific open
promoters will have, on average, higher expression in that cell
type versus the other cell types in the population14. To evaluate
this hypothesis, we took 42 K562 and 54 HL-60 deeply sequenced
scRNA-seq experiments15 (Supplementary Note). We defined a
gene to have a cell type specific open promoter if any open peak
with an scABC p-value of <10−6 overlapped more than 400 base
pairs in the gene promoter, defined as the region 5 kb upstream of
the primary FANTOM516 TSS.

We first confirmed our hypothesis that genes with cell type
specific open promoters tend to be higher in that cell type,
compared to other genes (Fig. 2b). We next clustered the
corresponding gene expression data (in transcripts per million,
named TPM) using both all genes and only those genes with cell
type specific open promoters in K562 and HL-60 cells (as shown
in Fig. 2c). After normalization for batch effects17, clustering
based on all genes did not clearly separate the two cell types in the
first two principal components. When genes associated with cell-
type specific open promoters were employed, the separation
became extremely obvious. Similar patterns were observed when
using t-SNE plots (Supplementary Fig. 9). This verifies our
hypothesis that cluster specific broad peaks shed light on
functional significance outside of motif enrichment.

Performance evaluation on experimental mixtures. In addition
to the in silico cell line mixture, we examined the capability of
scABC in classifying three heterogeneous populations. We first
applied scABC to experimental mixtures of GM12878 and
HEK293T cells as well as GM12878 and HL-60 cells2. In these
experiments, cells were processed in a single batch for each
mixture. In both cases, clear separation between the two cell lines
were achieved (Supplementary Figs. 10 and 11) that, due to the
experimental design, cannot be explained by batch effects.
Although we correctly classified these cell lines, they are from
fairly distinct origins and easy to separate.

To tackle a more difficult problem, we return to the analysis of
the GM12878 cell line. Recall that when we intentionally set the
number of clusters equal to 4 we found 2 slightly similar clusters.
These results were consistent when we set K= 2 (Supplementary
Fig. 12). We hypothesized that these small variations may suggest
heterogeneity in the GM12878 cell line. We observed that one
cluster is enriched for NF-κB motifs, such as NFKB2, REL, and
RELA, and this may be an indication of transcription factor
heterogeneity. The nuclear localization of NF-κB was previously
shown to dynamically change and cause temporal variations in
transcription factor expression18, which may explain this
heterogeneity. Previous studies1,2 have also suggested that cellular
variability in GM12878 may be driven by NF-κB heterogeneity.
These finding are consistent with our clustering results, but, we
cannot further confirm them due to incomplete biological
knowledge of GM12878 cell heterogeneity.

Application to a heterogeneous biological population. For a
reliable assessment of our method, we generated a heterogeneous
biological population of cells that arise from the same origin.

Specifically, we used the hanging drop technique to form
embryoid bodies (EBs) from mouse embryonic stem cells
(mESCs). We next differentiated EBs using retinoic acid (RA)
treatment and performed scATAC-seq on day 4 of the develop-
ment (Methods). We generated a single 96-well plate and
obtained 95 cells that pass quality control (Supplementary Note).

It is well known that RA-treated mESCs are induced to
differentiate into neuronal cell types19–21. However, when three-
dimensional EBs are treated with RA, previous studies22,23 have
suggested that the outer layer of EBs expresses marker genes that
are characteristic of visceral endoderm cells during early mouse
development. We therefore hypothesized that the RA-treated EBs
are a heterogeneous mixture, consisting of both visceral
endoderm and neural ectoderm cells. To confirm this hetero-
geneity in terms of chromatin accessibility, we applied scABC to
the 95 cells and obtained K= 2 clusters (Supplementary Fig. 3)
with well separated landmarks (Fig. 3a) and cluster specific peaks
(Fig. 3b). We next ran chromVAR on the cluster specific narrow
peaks and found that almost all TFs are specific to one cluster
(Fig. 3c). The majority of TFs active in cluster 1 play key roles in
neural development, including GSX1/224, LBX125, LMX1A26,
MNX127, NEUROG228, NKX6-1/229,30, UNCX31,VAX132, and
POU factors33–35. The high activity of LHX2/9 in cluster 1 may be
related to LHX3/4 (because of their similar motifs), which have
been shown to function in the development of mouse motor
neurons36. In contrast to cluster 1, TFs specific to cluster 2 are
essential for visceral endoderm differentiation, such as GATA
factors37, HNF1A/B38,39, and the AP-1 family40,41 (i.e., JUN and
FOS motifs). The TF enrichment analysis suggests that scABC
clearly distinguishes neuroectoderm (67 cells) from visceral
endoderm (28 cells), two sub-populations with the same origin
(mEB) in early embryonic development.

Since chromVAR only reflects motif enrichment and cannot
distinguish TFs with similar DNA-binding motifs, we next sought
to narrow down the list of TFs using bulk RNA-seq data at day 6
of the development14 (the closest publicly available RNA-seq to
day 4). We first used TOMTOM tool42 to identify TFs
with similar motifs to those enriched in cluster 1 and 2
(q-value ≤ 10−4) and then selected a subset of them that are
highly expressed in bulk RNA-seq data (FPKM ≥ 10). Interest-
ingly, the majority of motifs that were found enriched in cluster 1
and 2 are associated with expressed TFs. Specifically, the
expressed genes BHLHE22, SHOX2, GBX2, HOXB2/3/5, LHX4,
MNX1, NEUROG2, NKX6-1/2, OLIG1/2, and POU3F1 to POU3F4
are active (in terms of motif enrichment) in cluster 1 while FOS,
FOXB1, GATA4, JDP2, JUN, and JUND are active in cluster 2.
These findings indicate that both neuroectoderm and visceral
endoderm sub-populations are active at RNA level.

scABC characterizes the leukemic evolution. To further extend
the evaluation of scABC performance, we tested its ability for
detecting developmental stages of cancer evolution. Corces et al.4

sequenced individual monocytes and lymphoid-primed multi-
potent progenitors (LMPP) from healthy donors and leukemia
stem cells (LSC) and leukemic blast cells (blast) from donors with
acute myeloid leukemia. Notably, this dataset is extremely sparse
compared to the in silico mixture of 6 cell lines (Supplementary
Fig. 1). We applied scABC followed by chromVAR to the com-
bined mixture of the 390 cells that passed quality control (Sup-
plementary Note). Our method detected K= 2 clusters, which
resulted in a clear separation of the cells into a monocyte
dominated cluster and a LMPP dominated cluster with blasts
predominantly clustered with monocytes and LSCs mainly clus-
tered with LMPPs (Supplementary Figs. 3 and 13, and Supple-
mentary Table 5, and Supplementary Note). When using more

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04629-3

4 NATURE COMMUNICATIONS |  (2018) 9:2410 | DOI: 10.1038/s41467-018-04629-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


clusters, for instance four, the monocyte dominated cluster is
stable and well separated from the others but the LMPP is split
into two similar clusters (Supplementary Fig. 14 and Supple-
mentary Table 6). Moreover, one cluster contains only LSCs and
blasts, which may be an indication of intermediate stages between
LMPP and monocyte. Notably, JUN and JUNB are not enriched
in this cluster, and their dysregulation was previously shown to
be essential for leukemic stem cell function43. In both cases,
leukemia cells lie along two major identities on the myeloid
progression, represented by monocytes and LMPPs. Our result
largely agrees with Corces et al.’s study which was based on
separate analysis for each of the 4 cell types4.

Comparison with previous methods. scABC is the first clustering
method specifically designed for scATAC-seq. This required us to
compare against simpler methods designed for other types of
data. We first compared scABC against simple K-mediods with
Spearman dissimilarity measure (without weighting and land-
marks) using read counts in peaks and binned counts over long
intervals (100 kb, binned using the software csaw44), as well as K-
means on the log transcripts per million matrix (with the tran-
script length equal to the peak length), a common scRNA-seq
clustering method.

We applied the above methods to the in silico mixture of six
cell lines. To enable a fair comparison, all methods were applied

to the cells that pass scABC quality control (Supplementary Note).
We found that simple K-mediods had a slightly higher
misclassification rate (1% for K-mediods versus 0.4% for scABC,
Supplementary Tables 2 and 7) while K-means on the log TPM
matrix performed worse (17.3%, Supplementary Table 8) and was
not able to separate GM12878 from H1, two distinct cell lines.
Clustering over long intervals notably increased the number of
misclassifications for both methods (Supplementary Tables 9
and 10), suggesting that peaks better reflect chromatin accessi-
bility. Hence, we used peaks for the remaining method
comparisons.

We next compared scABC to SC345 (a clustering method
designed specifically for scRNA-seq) and a community structure
clustering method based on the infomap algorithm46,47.
Applying these methods to the in silico mixture, SC3 did not
distinguish the BJ cells from HL60 cells, despite our results
indicating that BJ cells are well separated from all other cell types
(Supplementary Table 11). On the other hand, the community
structure clustering method seemed little better than random
assignment (Supplementary Table 12). These results indicate to
us that scRNA-seq clustering methods are unlikely to easily
generalize to scATAC-seq, which we believe is due to the extreme
sparsity of scATAC-seq data.

To clarify the differences between simple K-mediods (with the
best performance among the alternative methods) and scABC, we
downsampled each cell line and found that scABC is able to
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identify smaller subpopulations (Supplementary Fig. 15). We next
applied K-mediods to the RA-treated EB cells and found that the
sub-populations identified were not biologically meaningful when
we examined TF enrichment (Supplementary Fig. 16 and
Table 13, see the previous section for scABC clustering results).

To evaluate the performance of scABC’s method of determin-
ing cluster specific peaks, we used peaks differentially open in the
respective bulk data as a gold standard and compared scABC to
an existing method for identifying differentially expressed genes
in single cell RNA-seq, SCDE48 (Supplementary Note). We found
that the majority of cluster specific peaks identified by scABC are
differentially open in the respective bulk data and the overlap was
much larger than the differentially expressed peaks of SCDE
(Supplementary Figs. 17 and 18). We also observed that SCDE
calculated cluster specific peaks are not well separated (Supple-
mentary Fig. 19), compared to scABC (Supplementary Figs. 10
and 11). We note that since scATAC-seq data tends to be sparser
and have lower read counts than scRNA-seq data, it is not
surprising that methods developed for scRNA-seq data, such as
SCDE, may not easily generalize to scATAC-seq data.

Discussion
In summary, we developed scABC for the unsupervised clustering
and identification of cluster specific peaks for single cell epige-
netic data. We showed that scABC can be applied to scATAC-seq
data of complex mixtures to deconvolve the underlying popula-
tion structure. We should note that in cases where the population
cannot be separated into subpopulations, such as when the
population lies in a continuum, scABC will not be able to separate
the population. In our experience, this is usually indicated by a
continuously increasing gap statistic. In such cases other
tools such as graph embedding49 or k-mer analysis8,50 may be
more appropriate.

We showed that the scABC identifies informative peaks for
downstream analysis. Since scABC only uses the read counts
within peaks to identify informative peaks, further analysis on the
content of the peaks can be done in an unbiased manner while
increasing the signal to noise ratio. For example, we showed that
scABC in conjunction with chromVAR identifies the drivers of
cellular heterogeneity in developmental dynamics in the context
of retinoic acid induction. In another example, we showed that
cell type specific open promoters can better identify cell type
specific expression.

Methods
Unsupervised clustering of scATAC-Seq data. The clustering algorithm of
scABC can be broken down into three steps.

Weighted K-medoids clustering: Cells with low sequencing depth are noisy and
can negatively impact the clustering result. We implement a weighted version of
the K-medoids clustering algorithm, where cells with lower sequencing depth are
given smaller weight. Let hi denote a measure of relative sequencing depth for cell i,
named sample depth (Supplementary Note). The weight for cell i is defined as

wi ¼
1

1þ exp �ðhi � cÞ=ðcλÞf g ;

where c and λ are tuning parameters. As defaults, we use the median of the
background and 0.1, respectively. We found that the performance of the clustering
is robust to a wide range of {c, λ} (Supplementary Table 14).

Let Yi denote the read counts within peaks for cell i (dimension of Yi is equal to
the number of input peaks), K the number of clusters, C the cluster assignment,
and ik the medoid for cluster k, i.e. a cell used as the cluster center. The clustering
assignment is given by the solution to

minimize
C;ik ;k¼1;���;K

XK

k¼1

X

CðiÞ¼k

wid Yi;Yik

� �
;

where d(·) in general represents the dissimilarly between a pair of samples. We use
1–Spearman’s rank correlation as the dissimilarity measure, and refer to the
Spearman rank correlation as the similarity measure. The problem above is solved

by the Partitioning Around Medoids (PAM) algorithm51 as implemented in the R
package WeightedCluster5.

Landmarks: We sum the reads across the cells within a cluster and select the P
peaks with the highest read counts to obtain the landmark for each cluster
identified in the previous step. As a default we set P= 2000.

Re-clustering using landmarks: To refine the clustering results, we re-cluster the
cells by assigning each cell to the landmark with the highest Spearman’s rank
correlation using the union of all landmark peaks.

The weighted K-medoids algorithm requires the number of clusters K in
advance. We determine K through the gap statistic52 with a few modifications to
better capture the data structure of single cell experiments, particularly sparsity and
cell heterogeneity (Supplementary Fig. 3, Supplementary Note).

Identification of cluster specific peaks. To find peaks that tend to be more open
in one cluster than all others, we formulate the problem in a hypothesis testing
framework. We perform the hypothesis testing on all peaks but the procedure is
applicable to any subset of peaks, such as narrow or broad peaks. We first intro-
duce our statistical models and then focus on the strategy.

Model assumption: Let K denote the number of clusters, R the total number of
peaks, yri the read counts for peak r in cell i, and xik the cluster membership for cell
i with xik= 1 if cell i belongs to cluster k and xik= 0 otherwise. We assume that yri
follows a Poisson distribution with mean μri.

yri � Poisson μri
� �

;

μri ¼ hiqri;

logqri ¼ β0 þ
PK

k¼1
xikβrk;

βrk � N 0; σ2k
� �

; fork ¼ 1; � � � ;K:

The coefficient β0 is the intercept and the coefficients βrk exhibits the effect of the
cluster membership on peak r. We assume normal priors on the cluster
membership effects.

Empirical prior estimate: The normal prior enables empirical Bayes shrinkage
on βrk, and stabilizes the noisy estimate when the read counts are low53. To obtain
a robust empirical prior estimate σ̂k , we adopt the quantile matching method
proposed in DESeq253. In particular, we first fit a model without the intercept β0
and without the normal prior to attain the maximum likelihood estimate (MLE)
βmle. Let �βmle

r ¼ PK
k¼1 β

mle
rk =K ; let �βmle

� denote the vector �βmle
r

� �
r¼1;���;R ; let β

mle
�k

indicate the vector βmle
rk

� �
r¼1;���;R; let Φ �; βmle

�k � �βmle
�

�� ��� �
be the empirical cdf of

βmle
�k � �βmle

�
�� ��, with Φ�1 α; βmle

�k � �βmle
�

�� ��� �
equal to the 1−α quantile of the empirical

cdf; and let zα be the 1− α standard normal quantile. The empirical prior estimate
for the standard deviation is calculated as

σ̂k ¼ Φ�1ðq;jβmle
�k ��βmle

� jÞ
zq=2

; fork ¼ 1; � � � ;K:

We set q= 0.05 in practice. Details for computing βmle are described in
the Supplementary Note.

Hypothesis testing: Suppose Γ−k= {1, …, K}−k represent the set {1, …, K}
except for the kth element. To test whether peak r is specific to cluster k, we
consider

The null hypothesisH0 : βrk � βrk′; for some k′ 2 Γ�k

The alternative hypothesisH1 : βrk>βrk′; for all k′ 2 Γ�k:

Following the intersection-union test54, the null hypothesis can be broken into
K− 1 simpler null hypotheses H0k′ : βrk ≤ βrk′, with k′∈ Γ−k. For each null

hypothesis, the Wald test statistics is β̂rk � β̂rk′

� �
=SE βrk � βrk′

� �
, where bβ is the

maximum a posteriori (MAP) estimate for β and SE(·) the MAP estimated
standard error, which depends on both the observed data and prior estimates. The
rejection region for H0k′ with size α is

β̂rk�β̂rk′
SE βrk�βrk′ð Þ > zα;

and the rejection region for H0 with level α is

inf
k′2Γ�k

β̂rk � β̂rk′
SE βrk � βrk′

� � > zα:

Details for computing bβ and the standard errors are illustrated in the
Supplementary Note. We finally compute the p-value for H0 as max{pk′, k′∈ Γ−k},
with pk′ indicating the p-value for H0k′.

Experimental design of RA-treated mESC differentiation. Cell culture: Mouse
ES cell lines R1 were obtained from ATCC. The mESCs were first expanded on an
MEF feeder layer previously irradiated. Then, subculturing was carried out on 0.1%
bovine gelatin-coated tissue culture plates. Cells were propagated in mESC medium
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consisting of Knockout DMEM supplemented with 15% Knockout Serum Repla-
cement, 100 μM nonessential amino acids, 0.5 mM beta-mercaptoethanol, 2 mM
GlutaMax, and 100 U/mL Penicillin-Streptomycin with the addition of 1,000 U/mL
of LIF (ESGRO, Millipore).

Cell differentiation: mESCs were differentiated using the hanging drop
method55. Trypsinized cells were suspended in differentiation medium (mESC
medium without LIF) to a concentration of 37,500 cells/ml. 20 μl drops (750 cells)
were then placed on the lid of a bacterial plate and the lid was upside down. After
48 h incubation, EBs formed at the bottom of the drops were collected and grown
in the well of a 6-well ultra-low attachment plate with fresh differentiation medium
containing 0.5 μM RA for 4 days, with the medium being changed daily.

scATAC-seq: We followed the scATAC-seq protocol published by Buenrostro
et al.1 with the following modifications. The EBs were first treated with StemPro®
Accutase Cell Dissociation Reagent (Thermo Fisher) at 37 °C for 10–15 min,
followed by vigorous pipetting for another 10 min. The cells were passed through
20 μM cell strainer (pluriSelect) to remove un-dissociated EBs. Before loading, the
cells were washed three times in C1 DNA Seq Cell Wash Buffer (Fluidigm). In total
9 μL cells at a concentration of 400 cells/μL were combined with C1 Cell
Suspension Reagent at a ratio of 3:2 and 10 μL of this cell mix was loaded on to the
10–17 μM Fluidigm IFC. Single cells were captured using the “ATACseq: Cell Load
and Stain (1861x/1862x/1863x)” scripts. After cell capture, IFC was transferred to a
Leica CTR 6000 microscope for imaging, followed by Tn5 transposition and
primary 8 cycles of PCR using the “ATACseq: Sample Prep (1861x/1862x/1863x)”
scripts. The entire volume (3.5–5 μL) of the amplified transposed DNA was
transferred to a 96-wll plate containing 10 μL of C1 DNA Dilution Reagent. In the
96-well plate, harvested libraries were further amplified in 50 μL PCR (1.25 μM
custom Nextera dual-index PCR primers in 1x NEBNext High-Fidelity PCR Master
Mix) using the following PCR conditions: 72 °C for 5 min; 98 °C for 30 s; and total
14 cycles of: 98 °C for 10 s, 72 °C for 30 s, and 72 °C for 1 min. The PCR products
were pooled together (4.8 mL) and the pooled library was purified on a single
MinElute PCR purification column (Qiagen) and eluted in 20 μL of Elution Buffer.
Libraries were quantified using qPCR prior to sequencing using Illumina NextSeq
500 (paired-end 75 bps).

Code availability. The scABC package is available as an open source R package at
https://github.com/timydaley/scABC.

Data availability. The scATAC-seq data generated from RA-treated mESCs have
been deposited in the Gene Expression Omnibus (GEO) under the accession
number GSE107651 Other datasets used in this work are cited in the paper, with
the accession codes provided in Supplementary Note.
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