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Genome-wide identification of directed gene
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Identification of causal drivers behind regulatory gene networks is crucial in understanding

gene function. Here, we develop a method for the large-scale inference of gene–gene

interactions in observational population genomics data that are both directed (using local

genetic instruments as causal anchors, akin to Mendelian Randomization) and specific (by

controlling for linkage disequilibrium and pleiotropy). Analysis of genotype and whole-blood

RNA-sequencing data from 3072 individuals identified 49 genes as drivers of downstream

transcriptional changes (Wald P < 7 × 10−10), among which transcription factors were over-

represented (Fisher’s P= 3.3 × 10−7). Our analysis suggests new gene functions and targets,

including for SENP7 (zinc-finger genes involved in retroviral repression) and BCL2A1 (target

genes possibly involved in auditory dysfunction). Our work highlights the utility of population

genomics data in deriving directed gene expression networks. A resource of trans-effects for

all 6600 genes with a genetic instrument can be explored individually using a web-based

browser.
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Identification of the causal drivers underlying regulatory gene
networks may yield new insights into gene function1,2, pos-
sibly leading to the disentanglement of disease mechanisms

characterized by transcriptional dysregulation3. Gene networks
are commonly based on the observed co-expression of genes.
However, such networks show only undirected relationships
between genes which makes it impossible to pinpoint the causal
drivers behind these associations. Adding to this, confounding
(e.g., due to demographic and clinical characteristics, technical
factors, and batch effects4,5) induces spurious correlations
between the expression of genes. Correcting for all confounders
may prove difficult as some may be unknown6. Residual con-
founding then leads to very large, inter-connected co-expression
networks that do not reflect true biological relationships.

To address these issues, we exploited recent developments in
data analysis approaches that enable the inference of causal
relationships through the assignment of directed gene–gene
associations in population-based transcriptome data using genetic
instruments7–9 (GIs). Analogous to Mendelian
Randomization10,11 (MR), the use of genetics provides an anchor
from where directed associations can be identified. Moreover, GIs
are free from any non-genetic confounding. Related efforts have
used similar methods to identify additional genes associated with
different phenotypes, either using individual level data7,8 or using
publicly available eQTL and GWAS catalogues9. However, these
efforts have not systematically taken linkage disequilibrium (LD)
and pleiotropy (a genetic locus affecting multiple genes) into
account. As both may lead to correlations between GIs, we aimed
to improve upon these methods in order to minimize the influ-
ence of LD and pleiotropy, and would detect the actual driver
genes. This possibly induces non-causal relations12, precluding
the identification of the specific causal gene involved when not
accounted for LD and pleiotropy.

Here, we combine genotype and expression data of 3072
unrelated individuals from whole blood samples to establish a
resource of directed gene networks using genetic variation as an
instrument. We use local genetic variation in the population to
capture the portion of expression level variation explained by
nearby genetic variants (local genetic component) of gene
expression levels, successfully identifying a predictive genetic
instrument (GI) for the observed gene expression of 6600
protein-coding genes. These GIs are then tested for an association
with potential target genes in trans. Applying a robust genome-
wide approach that corrects for linkage disequilibrium and local
pleiotropy by modelling nearby GIs as covariates, we identify 49
index genes each influencing up to 33 target genes (Bonferroni
correction, Wald P < 7 × 10−10). Closer inspection of examples
reveals that coherent biological processes underlie these associa-
tions, and we suggest new gene functions based on these newly
identified target genes, e.g. for SENP7 and BCL2A1. An interactive
online browser allows researchers to look-up specific genes of
interest (see URLs).

Results
Establishing directed associations in transcriptome data. We
aim to establish a resource of index genes that causally affect the
expression of target genes in trans using large-scale observational
RNA-sequencing data. However, causality cannot be inferred
from the correlation between the observed expression measure-
ments of genes, and therefore is traditionally addressed by
experimental manipulation. Furthermore, both residual and
unknown confounding can induce correlation between genes,
possibly yielding to extensive correlation networks that are not
driven by biology. To establish causal relations between genes, we
assume a structural causal model13 describing the relations

between genes and using their genetic components, the local
genetic variants predicting their expression, as genetic instru-
ments10 (GIs). To be able to conclude the presence of a causal
effect of the index gene on the target gene, the potential influence
of linkage disequilibrium (LD) and pleiotropic effects have to be
taken into account, as they may cause GIs of neighbouring genes
to be correlated (Fig. 1). This is done by blocking the so-called
back-door path13 from the index GI through the genetic GIs of
nearby genes to the target gene by correcting the association
between the GI and target gene expression for these other GIs.
Note that this path cannot be blocked by adjusting for the
observed expression of the nearby genes, as this may introduce
collider bias, resulting in spurious associations.

To assign directed relationships between the expression of
genes and establish putative causality, the first step in our analysis
approach was to identify a GI for the expression of each gene,
reflecting the local genetic component. To this end, we used data
on 3072 individuals with available genotype and gene expression
data (Supplementary Data 1), measured in whole blood, where we
focused on at least moderately expressed (see Methods) protein-
coding genes (10,781 genes, Supplementary Fig. 1). Using the
1021 samples in the training set (see Methods), we obtained a GI
consisting of at least 1 SNP for the expression of 8976 genes by
applying lasso regression to nearby genetic variants while
controlling for known (cohort, sex, age, white, and red blood
cell counts) and unknown covariates14 (see Methods). Adding
distant genetic variants to the prediction model has been shown
to add very little predictive power7 and would have induced the
risk of including long-range pleiotropic effects.

The strength of the GIs was evaluated using the 2051 samples in
the test set (see Methods). Taking LD and local pleiotropy into
account by including the GIs of neighbouring genes (<1Mb,
Fig. 1), we identified 6600 sufficiently strong GIs having at least
partly specific predictive ability (Supplementary Fig. 2a) for the

Confounders

Target
gene

Nearby
gene

Index
genetic

instrument

Nearby
genetic

instrument

Index
gene

LD/pleiotropy

Fig. 1 Diagram showing the presumed relations between each variable. A
directed arrow indicates the possibility of a causal effect. For instance, the
index genetic instrument represents nearby SNPs with a possible effect on
the nearby gene (analogous to cis-eQTLs). A double arrow means the
possibility of a causal effect in either direction. The index gene, for example,
could have a causal effect on the target gene, or vice versa. We aim to
assess the presence of a causal effect of the index gene on the target gene
using genetic instruments (GIs) that are free of non-genetic confounding.
To do this, we must block the back-door path from the index GI through the
GIs of nearby genes to the target gene. This back-door path represents
linkage disequilibrium and local pleiotropy and is precluded by correcting
for the GIs of nearby genes. Correction for observed gene expression
(either of the index gene or of nearby genes) does not block this back-door
path, but instead possibly leads to a collider bias, falsely introducing a
correlation between the index GI and the target gene

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05452-6

2 NATURE COMMUNICATIONS |  (2018) 9:3097 | DOI: 10.1038/s41467-018-05452-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


expression its corresponding index gene (F-statistic > 10, Supple-
mentary Fig. 1, Supplementary Data 2). To evaluate the effects of
these 6600 GIs on target gene expression, we tested for an
association of each of 6600 GIs with all of 10,781 expressed,
protein-coding genes in trans (>10Mb, Supplementary Fig. 2b). To
have maximum statistical power we used all 3072 samples, as
opposed to only using the 2051 samples from the test set, as the
results from both analyses showed very similar results (Supple-
mentary Fig. 3). First, this analysis was done without accounting
for LD and local pleiotropy (i.e., correcting for neighbouring LD,
Fig. 1). This genome-wide analysis resulted in 401 directed
associations between 134 index genes and 276 target genes after
adjustment for multiple testing using the Bonferroni correction
(Wald P < 7 × 10−10, Fig. 2, Supplementary Data 3). Among them
were 134 index genes affecting the expression of 1 to 33 target
genes in trans (3.2 genes on average, median of 1 gene), totalling
276 identified target genes. As expected, the resulting networks
contained many instances where the same target gene was
influenced by multiple neighbouring index genes, hindering the
identification of the causal gene (65 such instances). Repeating the
analysis for the 134 identified index genes, but corrected for LD
and local pleiotropy by including the GIs of neighbouring genes
(<1Mb) resulted in the identification of specific directed effects for
49 index genes on 144 target genes, totalling 156 directed
associations (Wald P < 7 × 10−10, Fig. 2), where the number of
target genes affected by an index gene varied from 1 to 33
(Supplementary Data 8, 3.2 genes on average, median of 1 gene).
The number of target genes associated with multiple neighbouring
index genes drops from 65 to 2, underscoring the importance of
correction for LD and pleiotropy. As this set of 156 directed
associations is free from LD and local pleiotropy, and possibly
reflect truly causal relations, we use these in further analyses.

Validity and stability of the analyses. To ensure the validity and
stability of the analyses, we compared out methodology to earlier
work and performed several checks regarding common challenges
inherent to these analyses and the assumptions underlying them.
First, we compared our approach to previously described
approaches7,8 by applying these to our data. Each approach

consists of a method to create GIs, and a model used to test for
trans-effects. First, we used all methods to create GIs (lasso,
elastic net, BLUP, and BSLMM), and investigated their predictive
power of the index gene (see Methods). The methods that used
feature selection (our method, lasso, and elastic net) showed
similar predictive ability. Less predictive power was observed for
methods using all nearby genetic variants (BLUP, BSLMM,
Supplementary Fig. 4). Identifying trans-effects showed a lower
number of trans-effects identified for the BLUP and BSLMM
methods (Supplementary Fig. 5), possibly as a result of their less
predictive GIs (Supplementary Fig. 4). In addition, as this trans-
model does not take LD into account, a large number of target
genes are associated with the GIs of many neighbouring index
genes (Supplementary Fig. 5).

To investigate how well our proposed trans-model is able to
control for LD, and to evaluate the statistical power of this model,
we performed a simulation study investigating several scenarios
(Supplementary Fig. 6, see Supplementary Methods for details on
the simulation of the data). Overall, the simulations show high
power to detect a true causal effect of the GI of the index gene on
the target gene, where the correlation between GI and index gene,
and between index gene and target gene contribute most to an
increased power. The presence of correlated GIs of nearby genes
plays a smaller role. Under the null hypothesis (i.e., when a
neighbouring gene influences the target gene, and not the tested
index gene, see blue and purple lines), the uncorrected analysis
will indeed lead to false positives (indicated by higher power),
while the corrected analysis will indeed lead to false positives in
5% of the tests performed, indicating LD is indeed corrected for.
The simulation confirms that our approach is more specific in
identifying the causal gene than its competitors.

By design, the GIs should be independent of most confounding
factors, but confounding may still occur if genetic variants
directly affect blood composition, leading to spurious associa-
tions. While we have already explicitly corrected for known white
and red blood cell counts, we also evaluated the association of the
49 GIs with these cell counts, and found that none of the 49 GIs
were significantly related to any observed cell counts (Supple-
mentary Fig. 7a). In addition, all 156 directed associations

Transcription factor
DNA binding

Other
Target gene

ba Transcription factor
DNA binding

Other
Target gene

Fig. 2 Gene networks showing the directed gene–gene association between genes. Panels show the associations when not taking LD and local pleiotropy
into account (a) and when these are corrected for (b). Index genes identified as a transcription factor are indicated by red circles. Blue circles indicate index
genes with DNA binding properties, but are not a known transcription factor22. Green circles indicate other index genes. Light grey circles indicate target
genes. The uncorrected analysis shows 134 index genes (coloured circles) influencing 276 target genes, where several neighbouring index genes seemingly
influencing the same target gene, which is reflective of a shared genetic component of those index genes. Specifically, 65 target genes are associated with
multiple index genes which lie in close proximity to one another. The number of index genes drop sharply from 134 to 49 (2.7-fold decrease) when do
taking LD and local pleiotropy into account. The number of target genes also drops, from 276 to 144 (1.9-fold decrease)
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remained significant after further adjustment for nearby genetic
variants (<1Mb) reported to influence blood composition15,16

(Supplementary Fig. 7b).
To combat any unknown residual confounding and possibly

gain statistical power, we added five latent factors to our models,
estimated from the observed expression data using cate14 (see
Methods). We re-tested the 156 identified associations without
these factors to evaluate the model sensitivity, showing similar
results with slightly attenuated test statistics (Supplementary
Fig. 7c). This indicates that our analysis was not influenced by
unknown confounding and confirmed the independence of GIs
from non-genetic confounding, but did help in reducing the noise
in the data, leading to increased statistical power.

Next, to validate the GIs of the 49 index genes, we compared
the SNPs constituting the GIs of the 49 index genes associated
with target gene expression with previous cis-eQTL mapping
efforts. While similar sets of genes may be identified using a cis-
eQTL approach, the utility of using multi-SNP GIs over single-
SNP GIs (akin to cis-eQTLs) is shown in the increased predictive
ability of multi-SNP GIs (Supplementary Fig. 7d), and thus in the
number of predictive GIs. Only 4910 single-SNP GIs were
predictive of its corresponding index gene (F-statistic > 10),
compared to 6600 multi-SNP instrumental variables. Of the 49
index genes corresponding to the 49 GIs, 47 genes (96.1%) were
previously identified as harbouring a cis-eQTL in large subset of
the whole blood transcriptome data we analysed here (2116
overlapping samples), using an independent analysis strategy17.
Almost all of the corresponding GIs (98%, 46 GIs) were strongly
correlated with the corresponding eQTL SNPs (R2 > 0.8).
Similarly, 26 of the 49 index genes (53%) were also reported as
having a cis-eQTL effect in a much smaller set of whole blood
samples (NGTEx= 338) part of GTEx18, 23 of which also
correlated strongly with the corresponding eQTL-SNPs (R2 >
0.8). When considering all tissues in the GTEx project, we found
48 of 49 index genes were identified as harbouring a cis-eQTL in
any of the 44 tissues measured.

Next, we compared our identified effects with trans-eQTLs
identified earlier in whole-blood samples19. First, we found 97
target genes identified here (67%) overlapped with those found by
Joehanes et al., 19 of which had their corresponding GI and lead
SNP in close proximity (<1Mb, Supplementary Fig. 8), suggesting
that the effects are indeed mediated by the index gene assigned
using our approach. Testing for a cis-eQTL of those SNPs
identified by Joehanes et al. on the nearby index genes, we found all
19 index genes indeed had at least one nearby lead SNP that
influenced its expression (Wald P < 6 × 10−4, Supplementary
Data 4).

As a last check, we investigated potential mediation effects of
each of the 49 GIs by observed index gene expression using the
Sobel test20 (Fig. 1). This method is based on the notion that the
effect of a GI on target gene expression should diminish when
correcting for the mediator observed index gene expression.
However, small effect sizes and considerable noise in both
mediator and outcome lead to low statistical power to detect
mediated effects21. Nevertheless, we found 105 of 156 significant
directed associations (67%) to show evidence for mediation
(Bonferroni correction for 156 tests: Wald P < 3.1 × 10−4;
Supplementary Data 5).

Exploration of directed networks. To gain insight in the molecular
function of 49 index genes affecting target gene expression, we used Gene
Ontology (GO) to annotate our findings. The set of 49 index genes was
overrepresented in the GO terms DNA Binding (Fisher’s P= 5×10−8)
and Nucleic Acid Binding (Fisher’s P= 2.8× 10−5, Supplementary
Data 6), with 43.8% (21 genes) and 47.9% (23 genes) of genes

overlapping with those gene sets, respectively. In line with this finding, we
found a significant overrepresentation of transcription factors (17 genes;
odds ratio= 5.7, Fisher’s P= 3.3× 10−7) using a manually curated
database of transcription factors22. We note that such enrichments are
expected a priori and hence indirectly validate our approach. Of interest,
several target genes of two transcription factors overlapped with those
identified in previous studies23,24 (IKZF1: 27% of its target genes, 4 genes;
PLAGL1: 15% of its target genes, 5 genes).

Finally, we explore the biological processes that are revealed by
our analysis for several index genes that either are known
transcription factors22 or affect many genes in trans. While these
results are limited to Bonferroni-significant directed associations
(Wald P < 7 × 10−10, correcting for all possible combinations of
the 6600 index genes and 10,781 target genes), researchers can
interactively explore the whole resource using a dedicated
browser (see URLs).

We identified 25 target genes to be affected in trans by sentrin/
small ubiquitin-like modifier (SUMO)-specific proteases 7
(SENP7, Figs. 3 and 4, Supplementary Data 8), significantly
expanding on the five previously suspected target genes resulting
from an earlier expression QTL approach25. Increased SENP7
expression resulted in the upregulation of all but one of the target
genes (96%). Remarkably, 23 of the 25 target genes affected by
SENP7 are zinc finger protein (ZFP) genes located on chromo-
some 19. More specifically, 18 target genes are located in a 1.5 Mb
ZFP cluster mapping to 19q13.43 (Fig. 3). ZFPs in this cluster are
known transcriptional repressors, particularly involved in the
repression of endogenous retroviruses26. Parallel to this, SENP7
has also been identified to promote chromatin relaxation for
homologous recombination DNA repair, specifically through
interaction with chromatin repressive KRAB-Association Protein
(KAP1, also known as TRIM28). KAP1 had already been
implicated in transcriptional repression, especially in epigenetic
repression and retroviral silencing27,28, although KAP1 had no
predictive GI (F-statistic= 4.9). Therefore, it has been speculated
SENP7 may also play a role in retroviral silencing29. Given the
widespread effects of SENP7 on the transcription of chromosome
19-linked ZFPs involved in retroviral repression26, it corroborates
a role of SENP7 in the repression of retroviruses, specifically
through regulation of this ZFP cluster. SENP7 is not a TF and
does not bind DNA, but considering it is a SUMOylation enzyme,
it possibly has its effect on the ZFP cluster through deSUMOyla-
tion of KAP130.

In our genome-wide analysis, we found that the transcription
factor SP110 nuclear body protein (SP110) influences three zinc
finger proteins (Figs. 3, 4). During viral infections in humans,
SP110 has been shown to interact with the Remodelling and
Spacing Factor 1 (RSF1) and Activating Transcription Factor 7
Interacting Protein (ATF7IP), suggesting it is involved in
chromatin remodelling31. Interestingly, all three of the genes
targeted by SP110 are also independently influenced by SENP7,
although SP110 shows opposite effects (Supplementary Fig. 9),
and are located in the same ZFP gene cluster on chromosome
19. This overlap of target genes supports the previous
suggestion that SP110 is involved in the innate antiviral
response32, presumably through regulation of the same ZPF
cluster regulated by SENP7.

The index gene with the most identified target gene effects in
trans is Pleiomorphic Adenoma Gene-Like 1 (PLAGL1, also
known as LOT1, ZAC). PLAGL1 is a transcription factor and
affected 33 genes, 29 of which are positively associated with
PLAGL1 expression (88%, Fig. 4). PLAGL1 is part of the
imprinted HYMAI/ZAC1 locus, which has a crucial role in foetal
development and metabolism33. This locus, and overexpression
of PLAGL1 specifically, has been associated with transient
neonatal diabetes mellitus31,34 (TNDM) possibly by reducing
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insulin secretion35. PLAGL1 is known to be a transcriptional
regulator of PACAP-type I receptor36 (PAC1-R). PACAP, in turn,
is a regulator of insulin secretion37. In line with these findings, we
found several target genes to be involved in metabolic processes.
Most notably, we identified MAPKAPK3 (MK3) and MAP4K2 to
be upregulated by PLAGL1, previously identified as PLAGL1
targets38, and both part of the mitogen-activated protein kinase
(MAPK) pathway. This pathway has been observed to be
upregulated in type II diabetic patients (reviewed in ref.39). In

addition, inhibition of MAPKAP2 and MAPKAP3 in obese,
insulin-resistant mice has been shown to result in improved
metabolism40, in line with the association between upregulation
of PLAGL1 and the development of TNDM. Furthermore,
PLAGL1 may be implicated in lipid metabolism and obesity
through its effect on IDI1, PNPLA1, JAK3, and RAB37
expression41–44. While not previously established as target genes,
they are in line with the proposed role of PLAGL1 in
metabolism33,45.
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Increased expression of Bcl-related protein A1 (BCL2A1)
downregulated all five identified target genes (Fig. 4). BCL2A1
encodes a protein part of the B-cell lymphoma 2 (BCL2) family, an
important family of apoptosis regulators. It has been implicated in
the development of cancer, possibly through the inhibition of
apoptosis (reviewed in ref.46). One target gene, NEURL1, is known
to cause apoptosis47, in line with its strong negative association
with BCL2A1 expression. Similarly, CDKN1C was also down-
regulated by BCL2A1, and implicated in the promotion of cell
death48,49. However, little is known about the strongest associated
target gene, VMO1 (Wald P= 1.5 × 10−8). It has been implicated
in hearing, due to its highly abundant expression in the mouse
inner ear50, where BCL2A1 may have a role in the development of
hearing loss through apoptosis, since cell death is a known
contributor to hearing loss in mice51. In line with its role in the
inhibition of apoptosis, BCL2A1 overexpression has a protective
effect on inner ear mechanosensory hair cell death in mice52.
Lastly, the target gene CKB has also been implicated in hearing
impairment in mice53 and Huntington’s disease54, further
suggesting a role of BCL2A1 in auditory dysfunction.

Discussion
In this work, we report on an approach that uses population
genomics data to generate a resource of directed gene networks.
Our genome-wide analysis of whole-blood transcriptomes yields
strong evidence for 49 index genes to specifically affect the
expression of up to 33 target genes in trans. We suggest pre-
viously unknown functions of several index genes based on the
identification of new target genes. Researchers can fully exploit
the utility of the resource to look up trans-effects of a gene of
interest using an interactive gene network browser (see URLs).

The identified directed associations provide improved
mechanistic insight into gene function. Many of the 49 index
genes affecting target gene expression are established transcription
factors (TFs), or are known for having DNA-binding properties,
an anticipated observation supporting the validity of our analysis.
The identification of non-TFs will in part relate to the fact that the
effect of an index gene may regulate the activity of TFs, for
example by post-translational modification. This is illustrated by
SENP7 that we observed to concertedly affect the expression of
zinc finger protein genes involved in the repression of retroviruses,
likely by deSUMOylation of the transcription factor KAP130.
Other mechanistic insights that can be distilled from these results
include the potential involvement of BCL2A1 in auditory dys-
function, conceivably through the regulation of apoptosis.

While observational gene expression data can be used to con-
struct gene co-expression networks54, which is sometimes com-
plemented with additional experimental information38, such an
approach lacks the ability to assign causal directions. Experimental
approaches using CRISPR-cas9 coupled with single-cell technol-
ogy55–57 are in principle able to demonstrate putative causality at a
large scale, but only in vitro, while the advantage of observational
data is that it reflects in vivo situations. These experimental
approaches currently rely on extensive processing of single-cell
data that is associated with high technical variability55, compli-
cating the construction of specific gene-gene associations. In
addition, off-target effects of CRISPR-cas9 cannot be excluded58,
potentially influencing the interpretation of these experiments.
Finally, such efforts are currently limited in the number of genes
tested55–57, whereas we were able to perform a genome-wide
analysis. Hence, experimental and population genomics approa-
ches are complementary in identifying causal gene networks.

Traditional trans-eQTL studies aim to find specific genetic loci
associated with distal changes in gene expression19,59. The lim-
itation of this approach is that they are not designed to assign the

specific causal gene responsible for the trans-effect because they
do not control for LD and local pleiotropy (a genetic locus
affecting multiple nearby genes). Hence, our approach enriches
trans-eQTL approaches by specifying which index gene induces
changes in target gene expression. However, it does not detect
trans-effects independent of effects on local gene expression. In
addition, identification of the causal path using a trans-eQTL
approach is difficult to establish. Testing for mediation through
local changes in expression60,61 may be limited in statistical
power, as these approaches are designed to only test the media-
tion effect of one lead SNP60. In addition, they too do not correct
for pleiotropy or LD, possibly leading to several identified cis-
genes mediating a trans-eQTL.

Related analysis methods were recently used to infer associa-
tions between gene expression and phenotypic outcomes (instead
of gene expression as we did here). Two studies first constructed
multi-marker GIs in relatively small sample sets to then apply
these GIs in large datasets without gene expression data7,8. A
different, summary-data-based Mendelian randomization (SMR)
approach identifies genes associated with complex traits based on
publicly available GWAS and eQTL catalogues9. However, nei-
ther of these approaches take LD or pleiotropic effects into
account, led to many neighbouring, non-specific effects7–9. We
show that correcting for LD and local pleiotropy will aid in the
identification of the causal gene, as opposed to the identification
of multiple, neighbouring genes, analogous to fine mapping in
GWAS. Furthermore, the use of eQTL and GWAS catalogues are
usually the result of genome-wide analyses, where only statisti-
cally significant variants are taken into account. Here, we use the
full genetic landscape surrounding a gene, thereby maximizing
the predictive ability of expression measurements by our GIs7.
While we have used our genome-wide approach to identify
directed gene networks, we note this method may also be used to
annotate trait-associated variants with potential target genes,
either by using individual level data7,8, or by using SMR9.

The analysis approach presented here relies on using GIs of
expression of an index gene as a causal anchor, an approach akin
to Mendelian randomization10. While GIs could provide direc-
tionality to bi-directional associations in observational data,
genetic variation generally explains a relatively small proportion
of the variation in expression (Supplementary Fig. 2a). The GIs
for index gene expression identified here are no exception, sig-
nificantly limiting statistical power of similar approaches62,63.
Increased sample sizes and improvement on the prediction of
index gene expression will help in identifying more target genes.

Our current analysis strategy aims for causal inference,
obviating LD and pleiotropic effect by correcting for the GIs of
nearby genes. However, we only corrected for GIs of genes within
1Mb of the current index gene, leaving the possibility of pleio-
tropic effects beyond this threshold. For example, the GI of an
index gene may influence both the expression of the index gene
and another gene, located outside of the 1Mb window, where the
induced changes in that genes’ expression are the causal factor of
the identified target genes. A related problem arises when a
shared genetic component between neighbouring index genes
causes all of them to associate with a single distant target gene,
hindering the identification of the index gene responsible for the
induced trans-effect. By correcting for the GI of nearby genes,
these potentially biologically relevant effects are lost (Fig. 1).

In conclusion, we present a genome-wide approach that
identifies causal effects of gene expression on distal transcrip-
tional activity in population genomics data and showcase several
examples providing new biological insights. The resulting
resource is available as an interactive network browser that can be
utilized by researchers for look-ups of specific genes of interest
(see URLs).
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Methods
Cohorts. The Biobank-based Integrative Omics Study (BIOS, Additional SI1)
Consortium comprises six Dutch biobanks: Cohort on Diabetes and Athero-
sclerosis Maastricht64 (CODAM), LifeLines-DEEP65 (LLD), Leiden Longevity
Study66 (LLS), Netherlands Twin Registry67 (NTR), Rotterdam Study68 (RS),
Prospective ALS Study Netherlands69 (PAN). The data that were analysed in this
study came from 3072 unrelated individuals (Supplementary Data 1). Genotype
data and gene expression data were measured in whole blood for all samples. In
addition, sex, age, and cell counts were obtained from the contributing cohorts. The
Human Genotyping facility (HugeF, Erasmus MC, Rotterdam, The Netherlands,
http://www.blimdna.org) generated the RNA-sequencing data.

Genotype data. Genotype data were generated within each cohort (LLD: Tig-
chelaar et al.65; LLS: Deelen et al.70; NTR: Lin et al.71; RS: Hofman et al.68; PAN:
Huisman et al.69).

For each cohort, the genotype data were harmonized toward the Genome of the
Netherlands72 (GoNL) using Genotype Harmonizer73 and subsequently imputed
per cohort using Impute274 and the GoNL reference panel72 (v5). We removed
SNPs with an imputation info-score below 0.5, a HWE P < 10−4, a call rate below
95% or a minor allele frequency smaller than 0.01. These imputation and filtering
steps resulted in 7,545,443 SNPs that passed quality control in each of the datasets.

Gene expression data. Total RNA from whole blood was deprived of globin using
Ambion’s GLOBIN clear kit and subsequently processed for sequencing using
Illumina’s Truseq version 2 library preparation kit. Paired-end sequencing of 2 ×
50 bp was performed using Illumina’s Hiseq2000, pooling 10 samples per lane.
Finally, read sets per sample were generated using CASAVA, retaining only reads
passing Illumina’s Chastity Filter for further processing. Data were generated by
the Human Genotyping facility (HugeF) of ErasmusMC (The Netherlands, see
URLs). Initial QC was performed using FastQC (v0.10.1), removal of adaptors was
performed using cutadapt75 (v1.1), and Sickle76 (v1.2) was used to trim low quality
ends of the reads (minimum length 25, minimum quality 20). The sequencing
reads were mapped to human genome (HG19) using STAR77 (v2.3.0e).

To avoid reference mapping bias, all GoNL SNPs (http://www.nlgenome.nl/?
page_id=9) with MAF > 0.01 in the reference genome were masked with N. Read
pairs with at most 8 mismatches, mapping to as most 5 positions, were used.

Gene expression quantification was determined using base counts17. The gene
definitions used for quantification were based on Ensembl version 71, with the
extension that regions with overlapping exons were treated as separate genes and
reads mapping within these overlapping parts did not count towards expression of
the normal genes.

For data analysis, we used counts per million (CPM), and only used protein
coding genes with sufficient expression levels (median log(CPM) > 0), resulting in a
set of 10,781 genes. To limit the influence of any outliers still present in the data,
the data were transformed using a rank-based inverse normal transformation
within each cohort.

Constructing a local genetic instrument for gene expression. We started by
constructing genetic instruments (GIs) for the expression of each gene in our data.
We first split up the genotype and RNA-sequencing data in a training set (one-
third of all samples, Ntrain= 1021) and a test set (two-thirds of all samples, Ntest=
2051), making sure all cohorts and both sexes were evenly distributed over the train
and test sets (57% female), as well as an even distribution of age (mean= 56, sd=
14.8). Using the training set only, we built a GI for each gene j separately that best
predicts its expression levels using lasso, using nearby genetic variants only (either
within the gene or within 100 kb of a gene’s TSS or TES), while correcting for both
known (cohort, sex, age, cell counts) and unknown covariates:

yj ¼ DTβþ CTγþ ϵ ð1Þ

where yj is the gene expression for gene j, D the scaled matrix with dosage values
for the nearby genetic variants with its corresponding regression coefficients β, C
the matrix of scaled known and unknown covariates and their corresponding
regression coefficients γ, and the vector or residuals ϵ. Estimation of the unknown
covariates was done by applying cate14 to the observed expression data, leading to
five unknown latent factors used. Those factors, together with the known covari-
ates, were left unpenalized. To estimate the optimal penalization parameter λ, we
used five-fold cross-validation as implemented in the R package glmnet78. The
obtained GI for index gene j consisted of a weighted linear combination of the
dosage values of the selected nearby genetic variants, weighted by the obtained
regression coefficients β, to obtain GIj for index gene j:

GIj ¼ DTβ ð2Þ

where GIj is a vector of values. We then evaluated its predictive ability in the test set
by employing Analysis of Variance (ANOVA) to evaluate the added predictive
power of the GI over the covariates and neighbouring GIs (within 1Mb), as
reflected by the F-statistic (F > 10).

Earlier work related to establishing putative causal relations between gene
expression and phenotypic traits7,8 shows overlap with our proposed method, but

also some distinct differences. First, none of them attempt to account for
pleiotropy. Furthermore, two earlier studies7,8 have both used a single top eQTL
SNP as a GI, or have used all nearby genetic variants, without feature selection8.
While not performing feature selection at all may improve the predictive ability
over our method, it may also induce pleiotropy or LD. This may especially be the
case since the authors have used a 1 Mb window around a gene, and have not
corrected for pleiotropy or LD. The other study7 has indeed used feature selection
using elastic net, which also leads to sparse models, albeit slightly less sparse than
our proposed method.

Testing for trans-effects. Using linear regression, we tested for an association
between each GI j and the expression of potential target genes k in trans (>10Mb),
while correcting for known (cohort, sex, age, red, and white blood cell counts) and
unknown covariates, as well as GIs of nearby genes (<1Mb):

yk ¼ GIjφj þ CTγþ GT
j þ ϵ ð3Þ

where we test for the significance of the regression coefficient φj, and Gj represents
the GIs of index genes near the current index gene j. Missing observations in the
measured red blood cell count (RBC) and white blood cell counts (WBC) were
imputed using the R package pls, as described earlier5. Any inflation or bias in the
test-statistics was estimated and corrected for using the R package bacon5. Cor-
rection for multiple testing was done using Bonferroni (Wald P < 7 × 10−10). The
resulting networks were visualized using the R packages network and ndtv.

Enrichment analyses. Functional analysis of gene sets was performed for GO
Molecular Function annotations using DAVID79, providing a custom background
consisting of all genes with a predictive GI (F > 10). Fisher’s exact test was
employed to specifically test for an enrichment of transcription factors using
manually curated database of transcription factors22.

Simulation study. Simulating data of genetic instruments (GIs), their corre-
sponding gene expression measurements, and a target gene was done as follows:

● Generate two normally distributed, correlated genetic instruments, where the
correlation between the different GIs represents LD/pleiotropy. We used five
different values for the correlation rGI as estimated in our data, corresponding
to the minimum absolute correlation in our identified effects, the 25th, 50th,
75th percentile, and the maximum value.

● Generate the index gene expression by creating a new normally distributed
variable correlated to the index GI. Again, we used 5 different values for the
correlation rGI, index, using estimations from our data, corresponding to the
minimum absolute correlation in our identified effects, the 25th, 50th, 75th
percentile, and the maximum value.

● Similarly, generate the nearby gene expression by creating a new normally
distributed variable correlated to the nearby GI. Here, we also used 5 values for
the correlation rGI, nearby corresponding to the minimum absolute correlation
in our identified effects, the 25th, 50th, 75th percentile, and the maximum
value.

● Lastly, generate the target gene by creating a new normally distributed variable
correlated to either the index gene (rindex, target), or the nearby gene (rnearby,
target), depending on the hypothesis tested (Supplementary Fig. 6). We again
used different values for these correlations.

We have simulated two scenarios (see Supplementary Fig. 6), corresponding to
the alternative and null hypotheses:

● The GI of the index gene causally influences its corresponding index gene,
which influences the target gene (Supplementary Fig. 6a).

● The GI of a nearby gene causally influences its corresponding gene, which
influences the target gene (Supplementary Fig. 6b).

For both scenarios, we have tested the effect of the index GI (βindex) on the
target gene y, both corrected for LD by including the GI of the nearby gene GInearby,

y ¼ βindexGIindex þ GInearby þ ε ð4Þ

and without correcting for LD.

y ¼ βindexGIindex þ ε ð5Þ

For each set of different settings (i.e., different correlations among the different
variables), this lead to the testing of four models, two for each scenario
(Supplementary Fig. 6). Repeating this analysis 500 times for each unique set of
settings, we then were able to estimate the power of each model by calculating the
proportion of times the P-value was smaller than 0.05:

power ¼ 1=500
X500

i¼1
I Pi<0:05ð Þ ð6Þ
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URLs. Look-ups can be performed using our interactive gene network browser at
http://bbmri.researchlumc.nl/NetworkBrowser/. Data were generated by the
Human Genotyping facility (HugeF) of ErasmusMC, the Netherlands (http://www.
glimDNA.org). Webpages of participating cohorts: LifeLines, http://lifelines.nl/
lifelines-research/general; Leiden Longevity Study, http://www.healthy-ageing.nl/
and http://www.leidenlangleven.nl/; Netherlands Twin Registry, http://www.
tweelingenregister.org/; Rotterdam Studies, http://www.erasmusmc.nl/epi/research/
The-Rotterdam-Study/; Genetic Research in Isolated Populations program, http://
www.epib.nl/research/geneticepi/research.html#gip; CODAM study, http://www.
carimmaastricht.nl/; PAN study, http://www.alsonderzoek.nl/.

Code availability. R code is available from https://git.lumc.nl/r.luijk/
DirectedGeneNetworks. This repository describes the main analyses done.

Data availability. Raw data were submitted to the European Genome-phenome
Archive (EGA) under accession EGAS00001001077.
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