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Nuclei multiplexing with barcoded antibodies
for single-nucleus genomics
Jellert T. Gaublomme1,6,9, Bo Li 1,7,9, Cristin McCabe1, Abigail Knecht1, Yiming Yang 2,

Eugene Drokhlyansky1, Nicholas Van Wittenberghe1, Julia Waldman1, Danielle Dionne 1, Lan Nguyen1,

Philip L. De Jager 3, Bertrand Yeung4, Xinfang Zhao4, Naomi Habib1,8, Orit Rozenblatt-Rosen1 & Aviv Regev1,5

Single-nucleus RNA-seq (snRNA-seq) enables the interrogation of cellular states in complex

tissues that are challenging to dissociate or are frozen, and opens the way to human genetics

studies, clinical trials, and precise cell atlases of large organs. However, such applications are

currently limited by batch effects, processing, and costs. Here, we present an approach for

multiplexing snRNA-seq, using sample-barcoded antibodies to uniquely label nuclei from

distinct samples. Comparing human brain cortex samples profiled with or without hashing

antibodies, we demonstrate that nucleus hashing does not significantly alter recovered

profiles. We develop DemuxEM, a computational tool that detects inter-sample multiplets

and assigns singlets to their sample of origin, and validate its accuracy using sex-specific gene

expression, species-mixing and natural genetic variation. Our approach will facilitate tissue

atlases of isogenic model organisms or from multiple biopsies or longitudinal samples of one

donor, and large-scale perturbation screens.
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S ingle-nucleus RNA-seq (snRNA-seq) has become an
instrumental method for interrogating cell types, states, and
function in complex tissues that cannot easily be dis-

sociated1–3. This includes tissues rich in cell types, such as neu-
rons, adipocytes and skeletal muscle cells, archived frozen clinical
materials, and tissues that must be frozen to register into specific
coordinates. Moreover, the ability to handle minute frozen spe-
cimens4 has made snRNA-seq a compelling option for large-scale
studies from tissue atlases5,6 to longitudinal clinical trials and
human genetics. However, to maximize the success of such stu-
dies, there is a crucial need to minimize batch effects, reduce
costs, and streamline the preparation of large numbers of
samples.

For single-cell analysis, these goals have recently been elegantly
achieved by multiplexing samples prior to processing, which are
barcoded either through natural genetic variation7, chemical
labeling8,9 or DNA-tagged antibodies (cell hashing)10. These
methods have improved technical inter-sample variability by
early pooling, lowered the cost per sample by overloading cells
per microfluidic run—due to an increased ability to detect and
discard co-encapsulated cell multiplets sharing the same bead
barcode—and reduced the number of parallel processing steps in
large studies. However, such approaches have not been reported
for nuclei, which may be more challenging to handle due to the
different procedures for tagging, and the possibility of more
cross-contamination in preparations in the absence of a cell
membrane. While one can apply methods leveraging natural
genetic variation7 for multiplexing nuclei of non-isogenic sam-
ples, isogenic samples would require an additional tag.

Here, we follow on these studies by developing a sample
multiplexing method for nuclei (nucleus hashing), using DNA-
barcoded antibodies targeting the nuclear pore complex. We
show that nucleus hashing does not significantly alter the
recovered transcriptome profiles, and develop DemuxEM, a
computational tool using the Expectation–Maximalization (EM)
algorithm to remove multiplets from analysis and assign singlets
to their sample of origin. Nucleus-hashing allows us to increase
the number of nuclei loaded onto the microfluidic channel, and
thus both reduces the cost per nucleus profiled and allows pooling
of isogenic samples, such as from isogenic mouse models, mul-
tiple specimens from the same human donor, or tissues sampled
and preserved from a single individual over time.

Results
Nucleus hashing yields faithful expression profiles. We isolated
nuclei from fresh-frozen murine or human cortex, stained them
with antibodies, which target the nuclear pore complex, and
which are conjugated to a single-stranded DNA oligo that
encodes a sample-specific barcode. We pooled samples prior to
droplet encapsulation for single-nucleus RNA-seq (snRNA-seq)
(Fig. 1a). The DNA barcodes on the antibodies contain a polyA
tail, thus acting as artificial transcripts that register the same bead
barcode as nuclear transcripts, coupling the transcription profile
to the sample of origin.

The additional antibody labeling and washing steps in our
protocol typically introduce some loss of nuclei (average yield
~33%, Supplementary Data 1), but did not alter the quality of
transcriptional profiling compared with non-hashed snRNA-seq,
in a side-by-side comparison of a hashed (antibody labeled) vs.
non-hashed pool of the cortex nuclei derived from eight human
donors (Supplementary Data 1). We combined the expression
profiles from both hashed and non-hashed data sets, followed by
clustering and post hoc annotation with legacy cell-type-specific
signatures (Fig. 1b), recovering the cell types previously reported
for such samples1 (see the Methods section). Both hashed and

non-hashed nuclei were similarly represented across the recov-
ered cell types (Fig. 1c), with an adjusted mutual information
score of 0.0048 between cell types and experimental conditions
(Fig. 1d, Methods), with only slight differences, such as a weak
enrichment of glutamatergic neurons in the hashed sample, and
similar cell-type-specific numbers of recovered genes (Fig. 1e).
Moreover, hashed and non-hashed nuclei were similarly
represented across GABAergic neuron subtypes (Supplementary
Fig. 1 and Methods). There were very few significantly
differentially expressed genes between control and hashed nuclei
within a cell type (Supplementary Data 4, Methods; typically 2–3
orders of magnitude less than between cell types, Supplementary
Data 4). In most cases, the few genes differentially expressed
between hashed and non-hashed nuclei were not enriched for any
functional categories (Supplementary Data 5, Methods). For
GABAergic neurons, glutamatergic neurons, and oligodendro-
cytes, mitochondrial genes were significantly downregulated in
the hashed nuclei, suggesting that the additional washing steps for
the hashing reduced cytosolic debris. For microglia, genes related
to synapse organization, nervous system development, cell
adhesion, and neurogenesis are significantly upregulated in the
hashed nuclei, suggesting this cell type may be more sensitive to
manipulation. Each cell type had nuclei from all eight donors
(Fig. 1f) with only slightly differing frequencies (Fig. 1g), as
expected for a diverse donor cohort1 (Supplementary Data 1).

Modifying the staining and washing buffers for nucleus
hashing (Methods) compared with those used in cell hashing10,
improved the transcriptional similarity with the non-hashed
control (Supplementary Fig. 2a), and achieved a similar number
of genes expressed per nucleus as the non-hashed control
(Supplementary Fig. 2b), whereas a PBS-based buffer (used in
cell hashing10) generally had poorer performance (Supplementary
Fig. 2c). We thus performed all experiments with these optimized
staining and washing buffers, except those with mouse samples,
which were performed prior to buffer optimization. Collectively,
these findings indicate that hashing preserves library quality and
cell-type distributions.

DemuxEM computationally demultiplexes hashed nuclei. To
probabilistically assign each nucleus to its sample barcode, we
developed DemuxEM, an EM-based tool (Fig. 2a). For each
nucleus, DemuxEM takes as input a vector of hashtag Unique
Molecular Identifier (UMI) counts from that nucleus (Fig. 2a,
left). A hashtag UMI is a uniquely sequenced combination of
the sample-specific DNA barcode from the oligonucleotide
conjugated to the antibody, and the cellular barcode and ran-
dom UMI sequence from the oligonucleotide that was originally
bound to the hydrogel bead. The input vector is a mixture of
signal hashtag UMIs, which reflect the nucleus’ sample of ori-
gin, and background hashtag UMIs, which likely reflect ambi-
ent sample barcodes. Hashtag UMIs from the background have
different probabilities of matching each of the sample barcodes.
DemuxEM estimates this background distribution of sample
barcodes based on hashtag UMIs in empty droplets, which are
likely to only contain background hashtag UMIs. With this
background distribution as a reference, DemuxEM uses an EM
algorithm to estimate the fraction of hashtag UMIs from the
background in the given droplet and then infer the signal
hashtag UMIs by deducting the estimated background UMIs
from the input vector. Once the signal has been identified,
DemuxEM determines if this droplet encapsulated a single
nucleus or a multiplet. For bead barcodes with low-signal
hashtag UMIs (e.g., <10 hashtag UMIs), DemuxEM cannot
determine the origin of the nucleus and marks it as “unas-
signed” (Methods).
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Accurate demultiplexing by sex- and individual-mixing. To
assess our confidence in calling the sample origin of hashed nuclei
by their sample barcodes, we next applied DemuxEM to pooled
nuclei of male and female isogenic mice or of human and mouse,
such that the single-nucleus transcriptomes provided an ortho-
gonal measure of the sample of origin. First, we multiplexed
nuclei isolated from two isogenic C57BL/6J mouse cortices, four
technical replicates from each of a female and male mouse

(Methods). For DemuxEM-identified singlets, there was a 94.8%
agreement between DemuxEM-assigned sample hashtag iden-
tities and the expression level of Xist, a transcript predominantly
expressed in females (Fig. 2b).

Next, we multiplexed eight cortex samples, four from mouse
and four from human (Supplementary Data 1), comparing
DemuxEM assignments as human or mouse singlets to their
positions in a species-mixing plot based on their number of RNA
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Fig. 1 Nuclei multiplexing using DNA-barcoded antibodies targeting the nuclear pore complex. a Experimental workflow. Nuclei are isolated from frozen tissues
and stained with DNA-barcoded antibodies targeting the nuclear pore complex (MAb414, Biolegend). The DNA barcode encodes a unique sequence
representing each tissue sample, enabling sequence-based identification of each nucleus after pooling and profiling the different samples. b–e Hashed and non-
hashed samples of the human cortex from eight postmortem donors yield comparable results. b t-stochastic neighborhood embedding (tSNE) of single-nucleus
profiles (dots) colored by cell type. c tSNE as in b colored by type of protocol. Non-hashed control sample (blue) and hashed sample (orange) show similar
patterns. d Cell-type frequencies observed for hashed (orange) and non-hashed control (blue) samples. The adjusted mutual information (AMI) is shown at the
top left. e Distributions of the number of expressed genes (y- axis, left) in each cell type (x-axis) in b, for nuclei from hashed (orange) and non-hashed control
(blue) samples. f, g Hashed single nuclei from all donors are similarly represented across cell-type clusters. f tSNE as in b colored by donor. g Observed
frequencies (y-axis) of each cell type (x-axis) per donor (color). The adjusted mutual information (AMI) is shown at the top left. Please follow the
Supplementary Note in the Supplementary Information to reproduce this figure. Availability of source data is indicated in the Data Availability statement
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UMIs mapping to the human or mouse transcriptome (Methods,
Fig. 2c). Overall, nuclei assigned by DemuxEM as human or
mouse singlets (Fig. 2c, red and blue, respectively) express
predominantly human or mouse reads, respectively (Fig. 2c,
alignment along the y- and x-axis). DemuxEM-predicted multi-
plets occur both on the species-specific axes for intra-species

multiplets (Fig. 2c, green (mouse) and purple (human)) and off-
axes for inter-species multiplets (Fig. 2c, fuchsia). Notably,
DemuxEM’s assignments were robust to changes in the definition
of background distribution, Dirichlet prior concentration para-
meter on the samples, and sequencing depth (Supplementary
Fig. 3 and Methods).
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We further leveraged the hashtags to address the sources of
ambient hashtags in a pool of samples. In general, nuclei
dissociated from tissue samples may be at risk of having higher
levels of ambient hashtags compared with single-cell hashing,
because the cytoplasm is disrupted during lysis and nonspecific
antibody binding to the cytosolic content or tissue-derived debris
could contribute to the background. Inspection of sample-specific
contribution to the hashtag background distribution showed that
one of the human samples (S24, Supplementary Data 1)
contributed disproportionally to the background (Fig. 2d),
suggesting that this sample might have been of lower quality.
This donor sample (S24) indeed had the lowest RNA integrity
number (RIN) and the highest postmortem interval (PMI) of all
subjects in the study (Supplementary Data 1). The ability to
identify which samples contribute to the background is an
additional benefit of sample hashing, and can help determine
quality parameters for sample inclusion.

Next, we validated our hashtag-based demultiplexing with
Demuxlet7, an approach based on natural genetic variation. We
observed excellent agreement between the two methods for the
eight human cortex samples (Fig. 2e): 96% of nuclei were
predicted with the same identity by both DemuxEM and
Demuxlet. Similarly, for Seurat, a package that includes single-
cell hashing analysis11, 92% of nuclei were predicted with the
same identity by both Seurat and Demuxlet (Fig. 2f; Supplemen-
tary Data 2).

DemuxEM also offers an improved estimation of the multiplet
rate. The multiplet rate per 10x microfluidic channel when loading
7000 cells is expected to be ~3.1%12. When pooling eight samples
with equal proportions, there are 56 possible inter-sample doublet
configurations and 8 possible intra-sample ones (the proportion of
higher order multiplets is much lower), such that 87.5% (56/64) of
the doublets are expected to contain nuclei from multiple samples,
which can be identified by our hashing strategy. Since we loaded
7000 nuclei, we expect a detectable multiplet rate of around 2.7%
(3.1 * 87.5%). DemuxEM, Demuxlet, and Seurat predicted
multiplet rates of 2.8%, 2.1%, and 6.5%, respectively (Supple-
mentary Data 2).

Hashing-enabled overloading lowers cost per nucleus.
DemuxEM’s ability to more accurately detect droplets that
encapsulated multiple inter-sample nuclei allowed us to load a
higher concentration of nuclei for a given undetectable multiplet
rate, thereby significantly lowering the cost per nucleus. To assess
how “overloading” a higher concentration of nuclei affects library
quality and cell-type distributions, we hashed and pooled another
eight human cortex samples (Supplementary Data 1) and loaded

a 10x channel with 14 μl of either ~500 nuclei/μl, 1500 nuclei/μl,
3000 nuclei/μl, or 4500 nuclei/μl. When sequencing these libraries
at similar depth per nucleus, we recovered similar numbers of
expressed genes per nucleus for the different cell types (Fig. 2g, h).
Moreover, nuclei from each loading concentration had similar
transcriptional states (Fig. 2i) and maintained the same relative
cell-type frequencies (Fig. 2j). As expected, the proportion of
multiplets increases with increased loading density (Supplemen-
tary Fig. 4). Notably, nucleus multiplets do not typically show
higher numbers of RNA UMIs compared with singlets (Supple-
mentary Fig. 4), in contrast to cell hashing10. The lowest overall
cost per nucleus (including nucleus-hashing antibodies, 10x
library preparation and sequencing) was achieved for loading 14
μl of 3000 nuclei/μl, resulting in the detection of 13,578 single
nuclei in a single 10x channel with an overall ~56% cost per
nucleus reduction in our pricing structure, compared with the
non-hashed loading density of 500 nuclei/μl (Methods; Supple-
mentary Data 3), albeit with some increase in background signal.
Notably, these cost savings can also be achieved by splitting an
individual sample into multiple hashed samples, when a larger
number of nuclei per sample is required, while still benefitting
from the reduced cost and reduced batch effects.

Discussion
Nucleus hashing is a principled method for multiplexing single
nuclei. It reduces batch effects and costs, and helps streamline
large experimental studies. DemuxEM is a computational tool we
developed that enables accurate multiplet detection, nucleus
identity assignment, and identification of the sources of ambient
hashtag contamination. As nuclei, rather than cells, become the
starting point of many additional methods—especially in epige-
nomics—it is likely that hashing can be extended to other single-
nucleus genomics assays. Together, nucleus hashing and
DemuxEM allow us to reliably interrogate cell types, cellular
states, and functional processes in complex and archived tissues
at a much larger scale than previously possible.

Methods
Human samples. The studies were conducted under Rush University IRB
approvals L91020181 and L86121802. We have complied with all relevant ethical
regulations and informed consent was obtained. We used frozen brain tissue
banked by two prospective studies of aging: the Religious Order Study (ROS) and
the Memory and Aging Project (MAP), which recruit non-demented older indi-
viduals (age > 65)13. For the species-mixing experiment, we used four posterior
cingulate cortex samples from ROS (Supplementary Data 1). For the human
nucleus hashing and overloading experiments, we used 16 dorsolateral prefrontal
cortex samples from ROS and MAP (Supplementary Data 1). We selected samples
with balanced sex ratio and whole-genome sequencing (WGS) data available14

(except for sample S24, for which WGS data are not available).

Fig. 2 Sample assignment by DemuxEM allows overloading of hashed samples. a DemuxEM takes as input for each nucleus a count vector of hashtag UMIs
(left) and estimates it as the sum of a background count vector (right, gray histograms) and a signal sample assignment count vector (right, color
histograms). Schematic examples: singlet (top), multiplet (middle), and unassigned (bottom). b Validation by sex mixing in isogenic mice. Distribution of
Xist expression (y-axis, log(TP100K+ 1)) from eight (1–4 females, 5–8 males) cortex samples that were pooled. There is 94.8% agreement between
DemuxEM-assigned sample identities of singlets and Xist expression. c, d Species mixing of the human and mouse cortex nuclei. c Species-mixing plot.
Each nucleus (dot) is plotted by the number of RNA UMIs aligned to pre-mRNA mouse mm10 (x-axis) and human GRCh38 (y-axis) references (Methods),
and colored by its DemuxEM-predicted identity for singlet human (red), singlet mouse (blue), or different multiplets (intra-species: green (mouse) and
purple (human); inter-species: fuchsia). S24 singlets (chartreuse) and multiplets (any multiplet that includes a nucleus from sample S24, orange) are
colored separately due to its large contribution to ambient hashtags. d Distribution of ambient hashtags matching the sample DNA barcode (x-axis)
identified S24 as a disproportionate contributor. e, f Validation of hashtag-based assignment by natural genetic variation. Shown is the number of nuclei
classified as singlet, multiplet or unassigned (rows, columns) by either natural genetic variation (columns) with Demuxlet7, or hashtag UMIs (rows), with
(e) DemuxEM or (f) Seurat11. The agreement between Demuxlet and DemuxEM or Seurat is 96 and 92%, respectively. g–j Nucleus hashing enables
overloading. g tSNE of combined singlets of eight hashed human cortex samples profiled at loading concentrations of 500, 1500, 3000, or 4500 nuclei/μl.
Each nucleus (dot) is colored by its cell type. h Comparable distributions of the number of expressed genes (y-axis) in each cell type (x-axis) in g. i tSNE as
in g, colored by loading concentration. j Comparable frequencies (y-axis) across cell types in g (x-axis). Please follow the Supplementary Note in the
Supplementary Information to reproduce this figure. Availability of source data is indicated in the Data Availability statement
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Mice. All mouse work was performed in accordance with and received ethical
approval from the Institutional Animal Care and Use Committees (IACUC) and
relevant guidelines at the Broad Institute and MIT, with protocol 0122–10–16. We
have complied with all relevant ethical regulations for animal testing and research.
Adult female and male C57BL/6J mice, obtained from the Jackson Laboratory (Bar
Harbor, ME), were housed under specific-pathogen-free (SPF) conditions at the
Broad Institute, MIT animal facilities.

Mouse tissue collection. Brains from C57BL/6J mice were obtained and split
vertically along the sagittal midline. The cerebral cortices were separated, and
excess white matter was removed. Cortices were separated into microcentrifuge
tubes and frozen on dry ice. Frozen tissue was stored at −80 °C.

Nuclei isolation, antibody tagging, and snRNA-seq. A fully detailed, step-by-
step protocol is described in Supplementary Methods. Briefly, we thawed and
minced tissue, dounced it in lysis buffer, filtered the lysate, and resuspended it in
staining buffer. A brief incubation with Fc receptor-blocking solution is followed by
incubation with the TotalSeq Hashtag antibodies against the nuclear pore complex
(MAb414, catalogue numbers listed in Supplementary Data 1) at 1 μg/100 μl and
three washes in ST-SB. Next, nuclei were counted and their concentration nor-
malized to the desired loading concentration and pooled right before running the
10x Genomics single-cell 3’ v2 assay (with minor adjustments listed in Supple-
mentary Methods), followed by library preparation and Illumina sequencing.

Buffer optimization. In cell-hashing experiments10, staining is performed with a
PBS-based staining buffer (SB: 2% BSA, 0.02% Tween-20 in PBS). We initially used
this buffer during staining for nucleus hashing as well (gender-specific expression
and species-mixing experiments)10. To further optimize our protocol, we compared
both a PBS-based staining buffer and a Tris-based staining buffer (ST-SB, see
Supplementary Methods, 2% BSA, 0.02% Tween-20, 10 mM Tris, 146 mM NaCl,
1 mM CaCl2, 21 mM MgCl2) to a non-hashed control observing better perfor-
mance in ST-SB, in terms of overall agreement with non-hashed controls and in the
number of genes recovered per nucleus (Supplementary Fig. 2). Going forward, we
thus performed experiments with these optimized buffers, except for the initial
experiments with mouse samples, and recommend to perform the staining and
washing steps of nucleus hashing in ST-SB (see Supplementary Methods).

Nuclei yields. We initially observed significant loss of nuclei during spins and
washes, and have mitigated this in part by a combination of the following mea-
sures: (1) use of Lo-Bind Eppendorf vials, (2) 2% BSA and 0.02% Tween-20
concentration of the staining and washing buffer, and (3) swing-bucket cen-
trifugation of 1.5 -ml vials to better center the nuclei pellet (compared to cen-
trifugation with fixed angle rotators). Our nuclei counting based on DAPI-staining
and transmitted light microscopy before and after hashing shows that we retain on
average 33% of the input nuclei (Supplementary Data 1).

SnRNA-seq data analysis. Starting from BCL files obtained from Illumina
sequencing, we ran cellranger mkfastq to extract sequence reads in FASTQ format,
followed by cellranger count to generate gene-count matrices from the FASTQ files.
Since our data are from single nuclei, we built and aligned reads to genome
references with pre-mRNA annotations, which account for both exons and introns.
Pre-mRNA annotations improve the number of detected genes significantly
compared to a reference with only exon annotations15. For human and mouse data,
we used the GRCh38 and mm10 genome references, respectively. To compare
samples of interest (e.g., different loading concentrations), we pooled their gene-
count matrices together, and filtered out low-quality nuclei identified based on any
one of the following criteria: (1) a total number of expressed genes <200; (2) a total
number of expressed genes >= 6000; or (3) a percentage of RNA UMIs from
mitochondrial genes >= 10%. We then normalized and transformed the filtered
count matrix to natural log space as follows: (1) selected genes that were expressed
in at least 0.05% of all remaining nuclei; (2) normalized the count vector of each
nucleus such that the total sum of normalized counts from selected genes is equal
to 100,000 (transcripts per 100 K, TP100K); (3) transformed the normalized matrix
into the natural log space by replacing each normalized count c with logðcþ 1Þ (log
(TP100K+1)). We performed dimensionality reduction, clustering and visualiza-
tion on the log-transformed matrix using a standard procedure16,17. Specifically, we
selected highly variable genes18 with a z-score cutoff at 0.5, performed PCA on the
standardized sub-matrix consisting of only highly variable genes and selected the
top 50 principal components (PCs)19, clustered the data based on the 50 selected
PCs using the Louvain community detection algorithm20 with a resolution at 1.3.
We identified cluster-specific gene expression by differential expression analyses
between nuclei within the cluster and outside of the cluster16 using Welch’s t test
and Fisher’s exact test; controlled false discovery rates (FDR) at 5% using the
Benjamini–Hochberg procedure21, and annotated putative cell types based on
legacy signatures of human and mouse brain cells. We visualized the reduced
dimensionality data using tSNE22 with a perplexity at 30. Note that in experiments
1 and 4 (Supplementary Data 1), we identified one cluster that did not express any
known cell-type markers and had the lowest median number of RNA UMIs among

all clusters. We removed it from further analysis, and repeated the above analysis
workflow, except the low-quality nucleus filtration step.

Sub-cluster analysis of GABAergic neurons. We conducted a sub-cluster ana-
lysis on the identified GABAergic neuron nuclei from Fig. 1b. To find the sub-
clusters, we selected highly variable genes using the GABAergic neuron subset,
performed PCA on the highly variable genes, and found sub-clusters based on top
50 PCs using the Louvain algorithm with a resolution at 1.2.

Generation of hashtag UMI count matrix. We implemented gen-
erate_count_matrix_ADTs, a fast C++ program to extract hashtag UMI count
matrix (hashtag by cell barcode) from raw FASTQ files. This program scans each
read pair for the valid sequence structure: read1= 16 nt cell barcode+ 10 nt UMI,
read2= 15 nt hashtag+ BAAAAAAA+ extra bases, and simultaneously records
the number of distinct UMIs for each valid cell barcode and hashtag combination
based on read pairs with a valid sequence structure. To be robust to sequencing
errors, we allowed up to one mismatch for matching cell barcodes, three mis-
matched for matching hashtags, and one mismatch for matching the poly(A) tail
(BAAAAAAA). To speed up the matching process, we encoded each cell barcode,
UMI, or hashtag into an 8-byte unsigned integer (2 bits per nucleotide).

DemuxEM. Suppose we multiplex n samples together. For each droplet, we have a
count vector of hashtag UMIs from each sample, ðc1; � � � ; cnÞ. Each hashtag UMI in
the vector can either originate from a properly stained nuclear pore complex
(signal) or come from ambient hashtag UMIs (background). We define
Θ ¼ ðθ0; θ1; � � � ; θnÞ, where θ0 is the probability that a hashtag UMI is from the
background, and θ1; � � � ; θn are the probabilities that the hashtag UMI is true signal
1; ¼ ; n. If a hashtag UMI is from the background, we denote P ¼ p1; � � � ; pnð Þ as
the probabilities that this hashtag UMI matches the barcode sequence of samples

1; � � � ; n. In addition, we require
Pn
i¼1

pi ¼ 1.

The probability of generating a hashtag UMI that matches sample i’s barcode
sequence is:

P hashtag ¼ ið Þ ¼ θ0 � pi þ θi ð1Þ
And the log-likelihood of generating the hashtag UMI vector is:

L Θð Þ ¼
Xn
i¼1

ci log θ0pi þ θið Þ þ log

Pn
i¼1 ci

� �
!Qn

i¼1 ci!
ð2Þ

DemuxEM estimates two sets of parameters: (1) the background distribution
¼ p1; � � � ; pnð Þ, and (2) Θ ¼ ðθ0; θ1; � � � ; θnÞ.

We estimate the background distribution using empty droplets. To identify
empty droplets, we first collect all bead barcodes with at least one hashtag UMI. We
then calculate the total number of hashtag UMIs each collected bead barcode has
and performed a k-means clustering with k= 2 on the vector of hashtag UMI
numbers. The cluster with a lower mean hashtag UMI number was identified as
empty droplets. If we denote the set of identified empty droplets as B, we can
estimate the background distribution as follows:

pi ¼
P

j2B cjiP
j2B

Pn
i¼1 cji

ð3Þ

where cji is the number of hashtag UMIs matching sample i in bead barcode j.
We estimate Θ using an EM algorithm. First, we impose a sparse Dirichlet prior

on Θ, Θ � Dirð1; 0; � � � ; 0Þ, to encourage the background distribution to explain as
much hashtag UMIs as possible. We then follow the EM procedure below:

E step:

zi ¼ ci �
θi

θ0pi þ θi
; i ¼ 1; � � � ; n ð4Þ

z0 ¼
Xn
i¼1

ci �
θ0pi

θ0pi þ θi
ð5Þ

M step:

θi ¼
maxðzi � 1; 0Þ

z0 þ
Pn

i¼1 maxðzi � 1; 0Þ ; i ¼ 1; � � � ; n ð6Þ

θ0 ¼
z0

z0 þ
Pn

i¼1 maxðzi � 1; 0Þ ð7Þ
Once we have Θ estimated, we first calculate the expected number of signal

hashtag UMIs:

cs ¼ 1� θ0ð Þ �
Xn
i¼1

ci ð8Þ

If cs<10, the hashtag UMI vector contains too little signal and thus we mark this
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droplet as “unassigned”. Otherwise, we count the number of samples that has at

least 10% signal hashtag UMIs, j ij θi
1�θ0

� 0:1
n o

j. If this number is 1, the droplet is

a singlet. Otherwise, it is a multiplet.

DemuxEM robustness analysis. We assessed the robustness of DemuxEM using
the 2509 hashed nuclei of Fig. 1b. By default, DemuxEM uses k-means clustering
with a random state of 0 to identify the background distribution and sets the
Dirichlet prior concentration parameters of the n samples to 0 (i.e.,
α1 ¼ ¼ ¼ αn ¼ 0). We perturbed parameters related to the definition of the
background distribution, the choice of prior, and the sequencing depth, and cal-
culated the consistency between the perturbed and the default DemuxEM results,
where consistency is defined as the percentage of nuclei that are predicted to have
the same singlet/multiplet type and sample identities by DemuxEM with both
default and perturbed settings. (1) Different definition of the background dis-
tribution. (a) k-means’ random_state parameter sets the seed of the random
number generator that is used for centroid initialization. Different random_state
corresponds to different random centroid initialization. We ran DemuxEM with
ten randomly generated random_state parameters. (b) We used a different clus-
tering algorithm, hierarchical agglomerative clustering (HAC), to identify the
background distribution. Since the standard HAC algorithm has a time complexity
of Oðn3Þ and we have over 552,363 cell barcodes with nonzero hashtag UMI
counts, it is computationally infeasible to apply HAC to all cell barcodes. Thus, we
grouped hashtag UMI counts into 500 bins. The first 499 bins contain 1106 counts
each, and the last bin contains the largest 469 counts. We calculated the mean of
each bin to produce a small data set of only 500 data points. We then applied the
HAC algorithm on this data set to get two clusters. We tried HAC with four
different linkage criteria: ward, complete linkage, average linkage, and single
linkage. Once we got the cluster label for each bin, we assigned cell barcodes within
that bin the same cluster label. (c) We tested a simple thresholding strategy to
identify the background distribution. Given a threshold x, the background consists
of all cell barcodes with hashtag UMI counts � x. We tried ten different thresholds:
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. (2) Choice of Dirichlet prior con-
centration parameter on samples. We tested DemuxEM with ten different Dirichlet
concentration parameters for the samples—0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
and 1.0. (3) Sequencing depth. We sub-sampled the hashtag UMI count matrix
using Bernoulli sampling with 9 different p parameters: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,
0.3, 0.2, and 0.1, and ran DemuxEM on each subsampled count matrix.

Cell-type-specific differential gene expression analysis. We conducted differ-
ential expression analysis between 2509 hashed nuclei and 3574 control nuclei of
Fig. 1b for 27,947 genes within each of the seven cell-type clusters: astrocyte,
endothelial cells, GABAergic neurons, glutamatergic neurons, microglia, oligo-
dendrocyte precursor cells (OPC), and oligodendrocytes. We used the
Mann–Whitney U test to calculate the P-value for each gene and controlled the
false discovery rate (FDR) at 0.05 using the Benjamini–Hochberg procedure21. The
differentially expressed (DE) genes for each cell type are listed in Supplementary
Data 4. In addition, we summarized the total number of DE genes for each cell type
in Supplementary Data 4. We applied the same differential expression detection
procedure to the 3574 control nuclei to calculate the number of DE genes between
control nuclei of one cell type and all other control nuclei for each cell type, which
is shown in Supplementary Data 4 as well.

Gene ontology enrichment analysis. We applied Fisher’s exact test in PAN-
THER11 with an FDR correction (FDR= 0.05) on the up and down DE genes
(separately) in Supplementary Data 4 for each cell type. The analysis results are
available in Supplementary Data 5.

Preprocessing of the species-mixing data. The species-mixing cDNA library is
deeply sequenced. According to the Cell Ranger report, this library has a
sequencing saturation of 89.8%, such that on average ten reads correspond to 1
UMI [https://kb.10xgenomics.com/hc/en-us/articles/115003646912-How-is-
sequencing-saturation-calculated-]. In contrast, other libraries in this study have
read-to-UMI ratios of 3 or 4 (Supplementary Data 1). Deeply sequenced libraries
tend to produce more PCR chimeras, which lead to reads with cell barcodes and
mRNA sequences from different nuclei23. Since PCR chimeras are more likely to be
produced at later stages of PCR, they tend to have a smaller read-to-UMI ratio than
normal cDNA molecules23. Thus, in order to remove PCR chimeras, we only kept
UMIs with at least two reads in this data set.

Demuxlet-based demultiplexing. Demuxlet requires a list of SNPs as inputs. We
called germline variants for each human donor from WGS data by following
GATK Best Practices recommendations24,25, with GATK26 v3.4-0-g7e26428. We
then selected 2,385,459 biallelic SNPs that have PASS in the FILTER field,
VQSLOD scores of at least 22, and non-identical genotypes in 8 human donors as
the Demuxlet input. We ran Demuxlet with the following parameters:–field
GT–group-list barcodes.txt. barcodes.txt is a file containing cell barcodes that we
want Demuxlet to demultiplex. We used the following rules to interpret Demuxlet
outputs, which can potentially reduce the number of false positive doublets (Chun

(Jimmie) Ye, personal communication). We first looked at the BEST column of
Demuxlet-produced.best file. For any cell barcode, if its BEST column starts with
(1) SNG-, it is a singlet; (2) DBL- and the PRB.DBL column � 0:99, it is a singlet;
(3) DBL- and the PRB.DBL column >0:99, it is a doublet; (4) AMB, it is an
unassigned droplet.

Seurat-based demultiplexing. We first extracted the hashtag-count matrix from
sequenced hashtag reads using CITE-seq-count v1.3 [https://hoohm.github.io/CITE-
seq-Count/] with the following parameters: -t antibody_index.csv -wl 737K-august-
2016.txt -cbf 1 -cbl 16 -umif 17 -umil 26 -tr “^[ATGC]{15}[TGC][A]{6,}”. In the
parameter list, antibody_index.csv maps sample-specific hashtag barcodes to sample
names and 737K-august-2016.txt is the cell barcode whitelist for 10x Genomics single-
cell 3’ v2 chemistry. We then ran Seurat’s HTODemux with default parameters on the
hashtag-count matrix to demultiplex interested cell barcodes.

Estimation of cost per single nucleus when overloading. We estimate the
reduction in cost per single nucleus for a given pricing structure, assuming X for
loading one 10x channel, Y for sequencing one HiSeq lane, and Z for the TotalSeq
nuclei hashtag cost per hashed sample, to allow readers to determine the costs for
their own pricing structures. We sequenced four HiSeq lanes in total for four
overloading experiments, with proportions roughly as 1:3:6:9 (500 nuc/µl:1500 nuc/
µl:3000 nuc/µl:4500 nuc/µl). Based on these values, the sequencing costs for the
four settings are 4

19Y ,
12
19Y ,

24
19Y , and

36
19Y , respectively. Adding the 10x channel cost

of X, and the TotalSeq nuclei hashtag costs of 8Z, the final cost for each setting is
X þ 4

19Y þ 8Z, X þ 12
19Y þ 8Z, X þ 24

19Y þ 8Z, and X þ 36
19Y þ 8Z, respectively. We

then divide each cost by the total number of singlets we detected (Supplementary
Data 3) to obtain cost per single nucleus in each overloading setting.

Data availability
Raw mouse sequencing data are available from the Sequence Read Archive with accession
numbers SRR8703773 (RNA reads) and SRR8703774 (hashtag reads). Processed and raw
mouse expression data are available from the Single Cell Portal [https://portals.
broadinstitute.org/single_cell/study/SCP377/experiment-2-mouse-pbs]. This is the
source data underlying Fig. 2b. Raw human sequencing data can be accessed at the
Synapse AMP-AD Knowledge Portal [https://www.synapse.org/#!Synapse:syn22213200].
Whole-Genome Sequencing data for the human samples can be obtained through the
National Institute of Aging supported AMP-AD Knowledge Portal [https://www.synapse.
org/#!Synapse:syn2580853/wiki/409840] by searching keyword ROSMAP. Processed
human expression data are available from the Single Cell Portal [https://portals.
broadinstitute.org/single_cell/study/SCP375/experiment-1-stonly, https://portals.
broadinstitute.org/single_cell/study/SCP379/experiment-3-human-mouse-pbs-clust,
https://portals.broadinstitute.org/single_cell/study/SCP381/experiment-4-human-st,
https://portals.broadinstitute.org/single_cell/study/SCP371/experiment-1-all]. This is the
source data underlying Figs. 1, 2c-j, and Supplementary Figs. 1–4.

Code availabilty
DemuxEM is released as part of the scCloud for single cell analysis. Its source codes are
available at: https://github.com/broadinstitute/scRNA-Seq/tree/master/scCloud/scCloud/
demuxEM. We also prepared a docker image that reproduces figures and tables in this
paper, which is available at: https://hub.docker.com/r/regevlab/demuxem. Please follow
the Supplementary Note in the Supplementary Information to run the docker.
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