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Strong optical response and light emission
from a monolayer molecular crystal
Huijuan Zhao1,11, Yingbo Zhao2,11, Yinxuan Song3,11, Ming Zhou 4, Wei Lv1, Liu Tao1, Yuzhang Feng5,

Biying Song5, Yue Ma1, Junqing Zhang1, Jun Xiao6, Ying Wang6, Der-Hsien Lien2, Matin Amani2, Hyungjin Kim2,

Xiaoqing Chen1,7, Zhangting Wu8, Zhenhua Ni8, Peng Wang 5, Yi Shi 1, Haibo Ma3*, Xiang Zhang6,

Jian-Bin Xu9, Alessandro Troisi10, Ali Javey 2* & Xinran Wang 1*

Excitons in two-dimensional (2D) materials are tightly bound and exhibit rich physics. So far,

the optical excitations in 2D semiconductors are dominated by Wannier-Mott excitons, but

molecular systems can host Frenkel excitons (FE) with unique properties. Here, we report

a strong optical response in a class of monolayer molecular J-aggregates. The exciton exhibits

giant oscillator strength and absorption (over 30% for monolayer) at resonance, as well as

photoluminescence quantum yield in the range of 60–100%. We observe evidence of

superradiance (including increased oscillator strength, bathochromic shift, reduced linewidth

and lifetime) at room-temperature and more progressively towards low temperature. These

unique properties only exist in monolayer owing to the large unscreened dipole interactions

and suppression of charge-transfer processes. Finally, we demonstrate light-emitting devices

with the monolayer J-aggregate. The intrinsic device speed could be beyond 30 GHz, which is

promising for next-generation ultrafast on-chip optical communications.
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The reduced Coulomb screening at low dimensions has led
to many fascinating phenomena in two-dimensional (2D)
materials1. The exciton binding energy can exceed hun-

dreds of meV, more than one order of magnitude larger than bulk
semiconductors and quantum-well structures2,3. In addition, the
large charge-dipole and dipole-dipole interaction (~tens of meV)
can stabilize many-body complexes such as trions and bi-excitons
even at room temperature4,5. While most studies have focused on
atomic crystals, many molecular semiconductors also have 2D
layered form6–10. Compared to popular 2D semiconductors such
as transition metal dichalcogenides (TMDs), the dipole-dipole
interaction is even stronger in molecular systems given the
localized nature of excitation (e.g., Frenkel excitons (FE) is
localized on a single molecule) and low dielectric constant.
Therefore, it is expected that dimensionality control of molecular
semiconductors would substantially modify the excitonic cou-
pling and lead to new optoelectronic functions.

A particularly interesting system to study exciton interaction is
molecular J-aggregate. First observed in 1930s11, it is character-
ized by red-shift and narrowing of spectral lines due to con-
structive quantum superposition of monomer excitations12.
These delocalized states are less perturbed by disorders (analogy
of Bloch wave in crystalline solids) and therefore highly desirable
for improving device functions13. However, in most cases the
extent of coherence is rather limited because the energy relaxation
is dominated by inter-molecular CT (also called self-trapping) in
ultrafast sub-picosecond time scale, among other processes14. To
this end, 2D assembly is extremely appealing due to enhanced
Coulomb interaction between local Frenkel dipoles and complete
suppression of interlayer CT. In fact, the most efficient light-
harvesting complexes found in nature, the chlorosome, contains
dye molecules organized into 2D lamellar form15.

Recently, we have developed vapor-transport-based means to
precisely assembled molecules on 2D surfaces, opening the pos-
sibility to investigate their electrical and optical properties16,17. In
this work, we study the optical properties of monolayer (ML)
perylene derivatives, namely dimethyl-3,4,9,10-perylenete-
tracarboxilic diimide (Me-PTCDI), 3,4,9,10-perylene-tetra-
carboxylic diimide (PTCDI) and 3,4,9,10-perylene-tetracarboxylic
dianhydride (PTCDA), where the molecular packing ensures
strong dipole interaction but weak electronic coupling, an ideal
condition for long-range J-aggregation. We find that the exciton
has giant oscillator strength, leading to strong absorption (over 15
and 30% at room temperature and 4 K, respectively) and bright
emission (more than two orders of magnitude brighter than
semiconducting TMDs). Combined temperature-dependent
experiments and density functional theory (DFT) calculations
suggest that the size of exciton wavefunction (Nc) gradually builds
up and could reach the order of hundred molecules at low tem-
perature, which is similar to Wannier excitons in inorganic
semiconductors. We further fabricate transient light-emitting
devices on ML perylene derivatives and show that the excitonic
state is robust under electrical excitation. The observed near-
100% photoluminescence quantum yield (PLQY), sub-30 ps
radiative lifetime and electrical injection pave the way for high
efficiency, high speed light-emitting devices enabled by coherent
dipole interactions.

Characterization and room-temperature optical properties of
ML Me-PTCDI crystals
To grow macroscopically high-quality perylene derivatives, we
carried out physical vapor transport in a tube furnace using
mechanically exfoliated hexagonal boron nitride (h-BN) as sub-
strate18 (see “Methods” section). Layered morphology of all three
molecular crystals with step height of ~3.3 Å down to ML was

revealed by atomic force microscopy (AFM) (Fig. 1b, c, Supple-
mentary Fig. 1), indicating face-on molecular packing. We did
not observe any evidence of polymorphism between ML and
multi-layer samples. Figure 1a shows the in-plane herringbone
lattice structure of Me-PTCDI (a= 21.8 Å, b= 13.6 Å) deter-
mined from selected-area electron diffraction (SAED) and con-
firmed by high-resolution AFM (Supplementary Fig. 2). Our
structural characterizations were consistent with previous
experiments and molecular dynamics simulations on 2D
surfaces19,20, but with slightly different lattice parameters from
bulk (102) plane21 likely due to the interaction with h-BN sub-
strate. Since the three molecules show qualitatively the same
behavior, below we focus our discussion on Me-PTCDI (see
Supplementary Note 1 for the discussion on PTCDA and
PTCDI).

The lack of π-π stacking in ML results in minimal in-plane
electronic coupling and CT (Supplementary Fig. 3, Supplemen-
tary Table 1). On the other hand, reduced screening gives strong
attractive dipole-dipole coupling J ~−23 meV and forms J-
aggregation. The large J means that many-body interaction
should be significant even at room temperature, leading to
interesting layer-dependent optical properties. Figure 1e shows
the PL image of a Me-PTCDI sample with both ML and multi-
layer regions, taken by a color CCD camera under 450 nm LED
illumination (Fig. 1d is the microscope image of the sample).
While the multi-layer regions showed bulk-like red luminescence,
the ML regions showed distinct green luminescence (this phe-
nomenon was reproduced in all samples). The change of color
was not gradual but occurred abruptly at ML (Supplementary
Fig. 4). Furthermore, the PL was anisotropic with 180° period as
shown by polarization-resolved PL imaging (Fig. 1g, h). The
uniform change of intensity across the whole ML region sug-
gested that it was single crystalline and that the green lumines-
cence was an intrinsic property of ML crystal rather than from
defects or impurities. The change of luminescent color was also
reflected in PL spectrum, where ML and multi-layer samples
peaked near 2.22 and 1.80 eV, respectively (Fig. 1f). We also
compared the static and time-resolved PL with monomers spin
cast on h-BN from very dilute dimethyl sulfoxide solution. We
observed simultaneous red shift from monomer 0-0 Frenkel
transition (by ~50 meV, Fig. 1f), reduced linewidth and vibronic
progressions, as well as lifetime shortening by more than one
order of magnitude (27 ps vs. 556 ps, Fig. 2), which were typical
signs of superradiance in J-aggregate12. These experimental evi-
dences suggested exciton delocalization over Nc ~10 molecules at
room temperature, as expected from the large J and further
corroborated by DFT calculations (Supplementary Fig. 10).

We measured the room temperature PLQY of ML Me-PTCDI
under 2.41 eV excitation22, where the absorption was ~2.4 ± 0.2%
(see “Methods” section). Remarkably, a significant portion of
samples showed near-100% PLQY (Fig. 2a, see Supplementary
Fig. 5b for statistics of 19 samples). As reference, the PLQY of
multi-layer Me-PTCDI was only ~4.8% (Fig. 2a), due to the
dominant inter-layer CT and H-aggregation effects23,24. The low
PLQY for multi-layer samples is consistent with thin films23.
Although single-molecule Me-PTCDI in solution can exhibit 93%
quantum efficiency23, the near-100% PLQY in solid-state aggre-
gate is unprecedented. Importantly, the PLQY of ML was main-
tained throughout the entire range of pump power without any
decay, indicating that higher order non-radiative decay processes
such as Auger and biexitonic recombination did not play
important roles as in TMDs22. This is a huge advantage in device
applications. Currently, even direct-gap TMDs and black phos-
phorous have low PLQY on the order of 10% or less22,25,26, which
posts fundamental limit on the efficiency of light-emitting
devices3,27. Although chemical treatment can improve the PLQY
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Fig. 1 Structural characterization and thickness-dependent optical properties of 2D Me-PTCDI crystals. a In-plane molecular packing of ML Me-PTCDI
on h-BN. b AFM image of a multi-layer Me-PTCDI sample showing the layered morphology. Scale bar: 2 μm. c The height profile of Me-PTCDI steps
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of metal-sulfides to near unity, it rolls off below 1% at high
excitation density that is most relevant to devices22,26. To
demonstrate the bright PL from ML Me-PTCDI, we directly
compared with several TMDs (MoS2, WS2, MoSe2, WSe2) under
450 nm and 532 nm excitations. In Fig. 2c, while we observed
bright luminescence from Me-PTCDI, the MoSe2 was nearly
invisible. Quantitatively, the PL of ML Me-PTCDI was 2–5 orders
of magnitude brighter than these TMDs under the same experi-
mental conditions (Supplementary Fig. 6). We note that under
non-resonant 450 nm and 532 nm excitations, the absorption of
ML Me-PTCDI is lower than the TMDs26 (Fig. 3). Therefore, the
much brighter PL from ML Me-PTCDI is due to enhanced PLQY.

Temperature-dependent optical properties
To further study the exciton properties in ML perylene derivatives,
we performed temperature-dependent optical measurements.
Figure 3a shows the PL and differential reflectance (ΔR/R) spec-
trum of ML Me-PTCDI at 4 K (the same sample, on quartz
substrate). The PL showed drastically reduced linewidth of 8.5
meV, little vibronic progression and nearly perfect linear polar-

ization P ¼ Imax�Imin
ImaxþImin

¼ 94:1%
� �

, due to increased Nc at low tem-

perature. The PL could be fitted with two Gaussians (separated by
5.2 meV, attributed to Davydov doublet from the two molecules in
the unit cell28, Fig. 3b inset), indicating that the linewidth was
inhomogeneously broadened due to the large number of mole-
cules under laser spot. Interestingly, the absorption was also
dominated by the same peak without Stokes shift (Fig. 3a). This
means that the exciton gains very large oscillators strength such
that it also dominates the absorption process. Aside from the main
resonance peak, single-molecule FE also contributed to a small
part of absorption as shown by the small peak on the high-energy
shoulder (gray arrows in Fig. 3c, d) and its vibronic peak near
2.4 eV (arrow in Fig. 3a, Supplementary Fig. 7).

Quantitative absorption and oscillator strength of ML Me-
PTCDI was obtained by analyzing the temperature-dependent
differential reflectance on both quartz (Fig. 3c) and 275 nm

SiO2/Si substrates (Fig. 3d) using transfer matrix method29 (see
“Methods” section). We also obtained the absorption by mea-
suring transmittance and reflectance of ML Me-PTCDI on quartz
substrate at room temperature (supplementary Fig. 7). Strong
light-matter interaction is evidenced by the large ΔR/R amplitude
at resonance. Our modeling using two oscillators (corresponding
to the superradient and single-molecule state, respectively) was in
excellent agreement with experimental data. The derived peak
absorption at the main resonance consistently exceeds 30% at 4 K
(Fig. 3e, the variation is due to different as-grown sample quality),
which is among the highest of any ML materials30. Importantly,
the absorption is not constant but became progressively stronger
at low temperature, which is a direct proof of enhanced oscillator
strength f (Fig. 3e). Since we did not observe any sign of CT states
from absorption31, it could only be explained by increasing exci-
ton size in the J-aggregate. On the other hand, the single-molecule
oscillator strength was much smaller than that of the main reso-
nance (Supplementary Table 2). Further modeling on ΔR/R of
multi-layer Me-PTCDI showed that the oscillator strength of the
FE was about one order of magnitude smaller than ML (Supple-
mentary Fig. 7, Supplementary Table 2). This is not surprising
because the FE in multi-layers is heavily mixed with interlayer CT,
leading to spatial separation of electrons and holes28,32.

We observed several other spectral changes to qualitatively
support superradiance in ML. First, the exciton energy showed
bathochromic shift on the order of J and saturated at low tem-
perature (Fig. 3b–d). This behavior is consistent with the theory
of 1D J-aggregate33, where energy shift is described by 2J·cos(π/
(Nc+ 1)) and approaches asymptotically to 2J for large Nc. We
can rule out thermally induced strain or screening effects because
the shift was not observed in multi-layers or monomers. Second,
the PL exhibited strong increase of intensity and decrease of
linewidth at low temperature (Fig. 3b), which was typical for
superradiance34. The enhanced PL was also in line with the
exciton oscillator strength from differential reflectance measure-
ments. The brightening of PL was not observed in isolated
monomers (Supplementary Fig. 8), indicating that coherent
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dipole interaction was responsible. We note that near-unity
PLQY at room temperature is expected to maintain at low
temperature, because the increased coherent length would lead
to even shorter radiative lifetime. To validate this hypothesis,
we plot integrated PL and absorption at 532/514 nm as a function
of temperature (Supplementary Fig. 5c, d). As expected, they
show the same scaling trend with temperature, indicating
that the PLQY remains relatively constant in the whole
temperature range.

Theoretical modeling
We rationalized our experimental results theoretically using a
Hamiltonian including Frenkel, CT and their coupling with
parameters derived from first-principle calculations35,36 (see
Methods). As illustrated in Fig. 4a, the excitations in multi-layer
perylene derivatives are mixtures of Frenkel and CT states due to
the large interlayer electronic coupling (De for electrons, Dh for
holes, Supplementary Table 1). The percentage of CT config-
urations is over 40% in bi-layer and quickly increased to the bulk
value of ~75% at 6-layer (Supplementary Fig. 9c). On the other
hand, the CT percentage in ML was negligible because the
intralayer De and Dh were 1–2 orders of magnitude smaller, and
the intralayer CT processes were 2 orders of magnitude slower
(Supplementary Table 1, Supplementary Table 3). Indeed, we
did not observe any evidence of CT states in ML absorption
(Fig. 3a)31. As a result, the excitations in ML form a pure Frenkel
J-band co mpletely separated from CT (Fig. 4a), which is a rare
occasion in molecular systems36. Figure 4b plots the spatial
distribution of the lowest excitation in ML Me-PTCDI, showing
a delocalized envelop wavefunction. The coherent interaction of
many Frenkel dipoles forms a giant superradiant transition
dipole. The ellipsoidal shape of the wavefunction also explains
the linear PL anisotropy in experiment (Fig. 3a).

Within above theoretical framework, the calculated PL spectra
successfully reproduced all the main experimental features
(Fig. 4c, Supplementary Fig. 9). The narrow PL emission and
supressed vibronic progressions in ML were only possible to

reproduce with extended coherence and without CT (Supple-
mentary Fig. 9d–f). The coherent length could be estimated by
fitting the temperature-dependent PL intensity, which is widely
adopted in the community37. We find that a lattice size of 10–20
(Nc ~50–200) gives reasonably good agreement with experimental
data (Fig. 4d, Supplementary Note 2), suggesting that Nc could
reach the order of 100 at zero temperature. Compared to most
biological aggregates and molecular crystals13, the coherence in
ML Me-PTCDI is much extended both spatially and temporally
(~30 ps versus sub-picosecond). This unique property is only
accessible at 2D limit owing to reduced screening and
suppression of CT.

Light-emitting devices
The fact that J is comparable to kBT at room temperature has
important implications on device applications. To demonstrate
this aspect, we fabricated electrically injected light-emitting
devices on ML perylene derivatives (in this case PTCDA). To
get carrier injection into ML PTCDA on insulating h-BN, a one-
terminal, alternating current (AC) driven vertical device structure
was employed (Fig. 5a)38. In this device, ML PTCDA/h-BN on 90
nm SiO2/Si p++ substrate was covered with few-layer CVD
graphene as transparent source contact by micro-transferring,
which was grounded through a metal bond pad (Fig. 5a). A ML
CVD h-BN was inserted between graphene and PTCDA to pre-
vent quenching of the EL. By applying an AC voltage to the Si
backgate, alternating electrons and holes were injected into the
ML both from the source contact and give transient electro-
luminescence (t-EL)38. Figure 5b shows the room-temperature t-
EL spectrum under 20 V peak-to-peak square wave driving vol-
tage. The peak at 2.224 eV can be clearly identified, which over-
laps with the PL of ML. The EL peak shows ~50 meV red shift
and reduced linewidth by a factor of 2 compared to single-
molecule 0-0 Frenkel transition (at 2.274 eV). This suggests that
the excitonic state can be excited electrically, which is an
important step towards coherence-enabled device functions13.
The EL intensity showed linear relationship with frequency as
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expected for AC driven devices (Fig. 5c)38. The linear trend
persisted up to 20MHz without intensity drop (limited by the
loss in our measurement circuit), indicating that our EL devices
could operate at much higher frequency. Considering the room-
temperature PL lifetime ~27 ps (Fig. 2b), the intrinsic frequency
limit should be above 30 GHz. Although the transient light-
emitting devices are very preliminary, these results clearly
demonstrate the potential of ML perylene derivatives for efficient
and high-speed optoelectronic devices.

Discussion
In conclusion, we report unusual optical properties emerging
from a class of ML molecular J-aggregate of perylene derivatives.
The photo-excitation is dominated by FE with coherently
delocalized wavefunction, due to large unscreened dipole inter-
actions and nearly complete elimination of CT processes. As a
result, ML Me-PTCDI shows resonant absorption over 30%,
bright PL emission (more than 2 orders of magnitude brighter
than TMDs) and PLQY in the range of 60–100%. The tempera-
ture dependence of oscillator strength, exciton energy and line-
width provide evidence of superradiance. In addition, we
demonstrate light-emitting devices on ML perylene derivatives
and show that the superradiance is robust under electrical
injection. These strongly emitting ML molecular crystals can be
integrated with other 2D materials to form van der Waals het-
erostructures on-demand39,40, opening many new opportunities
in high-performance optoelectronics.

Methods
vdW expitaxy growth of Me-PTCDI crystals on BN. We used mechanically
exfoliated BN (hq graphene) on 275 nm SiO2/Si as the growth substrate without
further cleaning. Before growth, the BN sheets were characterized by optical
microscope and AFM to obtain the topological information. The growth of Me-
PTCDI was carried out in a home-built tube furnace. The Me-PTCDI powder
(Sigma Aldrich, 97% without further purification) and substrates were placed at the
center and downstream in the furnace, respectively. After evacuating the chamber
to ~3 × 10−3 Pa, the furnace was heated to 210–260 °C to start growing Me-PTCDI
crystals. The number of layers can be controlled by the heating temperature,
growth duration and substrate position.

AFM and Raman spectroscopy. AFM (both regular and high-resolution) was
performed by Asylum Cypher under ambient condition. We used Asylum
TR400PB tips for high-resolution AFM. Raman spectroscopy was performed by
Princeton Instruments SP-2560 spectrometer coupled to a silicon CCD camera
(Princeton Instruments PYL-1300BXD). We used a 488 nm laser as excitation.

TEM measurement. The selected-area electron diffraction (SAED) pattern was
collected on a 200 kV FEI Tecnai F20 transmission electron microscope (TEM).
The TEM samples were prepared by transferring few-layer BN sheets exfoliated on
SiO2/Si substrate onto Cu TEM grid with carbon film, using the process described
in reference41 and growing organic films on transferred BN. As this organic crystal

sample is highly electron beam sensitive, the SAED pattern was acquired with a
short exposure time of 0.01 s to prevent from the beam damage. The SAED
simulations were calculated using the multislice method with the Kirkland code42.

Optical spectroscopies. The PL images were collected using an optical micro-
scope (Olympus BX51M). The samples were illuminated by a 450 nm LED and the
PL images were collected by a colored CCD camera. The excitation light was
filtered by a long-pass filter in front of the CCD.

Temperature-dependent PL measurements were done inside an optical cryostat
(Montana Cryostation S50) coupled to Horiba LabRAM HR800 system. We used
532 nm laser as excitation. The base temperature of the cryostat was 4 K. The PL
were collected by a 50 × objective (NA= 0.45). Polarization-dependent PL was
tested by rotating a linear polarizer between the sample and detector, while keeping
the incident laser polarization.

For TRPL measurement, the excitation light is generated by a mode-locked Ti:
sapphire laser with an optical parametric oscillator. The laser pulse width is on the
order of 200 fs. The light is focused onto the sample by a Zeiss 50× objective. The
emission signal, detected in the reflection configuration, is passed through a
bandpass filter with a bandwidth of 20 nm and collected by a synchroscan
Hamamatsu streak camera (C10910-02), whose overall time resolution is 2 ps.

For absorption measurements, the sample was placed in cryostat chamber
(OXFORD INSTRUMENTS_MicrostatHires) cooled by liquid helium. The
broadband radiation from a halogen lamp covering the spectral range from 450 to
900 nm was radiated on the sample without focus. The transmission signal was
collected by 50× objective (NA= 0.7) and analyzed by a liquid nitrogen cooled
silicon CCD detector with a spectrograph. Absorption signal was determined by
measured normalizing the transmission signal from the sample on BN/fused silica
to that from the bare fused silica.

PLQY measurement. We use a dedicated setup at UC Berkeley to measure PLQY.
The same instruments and procedures were used as in several previously
papers22,43. Below we describe the details of the measurement (Supplementary
Fig. 5a). As excitation source, an Ar+ laser (Lexel 95) with 514 nm line was utilized
in steady-state PL and the power density was adjusted by neutral density filters and
simultaneously monitored by photodiode power sensor (ThorLabs S120C). The
ratio of laser power on the diode to incident power onto sample was around 50 so
that the low laser power can be accurately measured. A Si CCD detector (Andor
iDus BEX2-DD) on an f= 340 mm spectrometer with a 150 g mm−1 grating was
used to collect the steady-state PL spectra and the dark background of CCD was
measured and subtracted each time from the acquired signal (Supplementary
Fig. 5a, left). A 50 ×MD Plan (Olympus) objective lens (numerical aperture, 0.55)
was used for all measurements. For PLQY and room temperature quantitative
absorption measurements, we used quartz substrates to avoid optical interference
from Si/SiO2 substrates. Calibration for the external sample PL efficiency was
performed using the wavelength-dependent instrument function which char-
acterized the collection efficiency of the instrument. This calibration process was
previously described in our work and have below 15% error when cross calibrated
with a Si photodiode or using a dye solution of unity quantum yield22. In brief, the
instrument function is measured using a near ideal diffuse reflector as the source of
calibration. The internal PLQY was extracted from the measured external quantum
efficiency using the quantitative absorption at the pump wavelength and by the
fraction of light within escape cone (1/4n2, where n is the refractive index of the
medium).

To quantitatively calculate PLQY, we need to measure the absolute absorption
of ML Me-PTCDI at 514 nm. Here the absorption is measured by 100%-T-R,
where the transmittance and reflectance are individually determined using lock-in
detection (Supplementary Fig. 5a, right). The laser was focused on the sample using
a 50× objective, the reflected light was collected via the same objective and the
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transmitted light was collected by a 20× objective. The system was calibrated using
quartz and silver as reference transmission and reflectance standards. The reported
generation rates (steady-state measurements) and initial carrier densities (time-
resolved measurements) are calculated from the number of incident photons per
unit area and the absorption.

ACEL device. The ACEL device of PTCDA is fabricated by multiple transfer steps,
where one layer of graphene and one layer of h-BN is put on top of the ML
molecular crystal. Specifically, the device was fabricated by two methods and gave
similar result, indicating the molecular monolayer can survive the transfer process.

Method 1: An array of Au pads (75 μm× 75 μm square) is fabricated on 90 nm
SiO2/Si p++ substrates by photolithography. Using PMMA pad (~400 × 400 μm)
to sequentially pick up CVD multi-layer graphene (on Si/SiO2 substrate), CVD
monolayer h-BN (on Si/SiO2 substrate), and the ML on BN, and put down the
stack on pre-patterned substrate (metal electrode on Si/SiO2) so that the top
graphene layer overlap with both the metal pad electrode and the ML. In a typical
pick up process, the PMMA is first put on top of the target layer (graphene, BN, or
ML on BN) by a micro-tip, and the substrate is heated at 180 °C for 90 s so that the
PMMA would pass the glass transition temperature and bound to the target layer.
Then an engraver and a micro-tip is used to decouple the PMMA from the
substrate with the target layer and transfer the PMMA stack to another target layer.
In this process the ML layer survived 180 °C heating during the dry transfer.

Method 2: To reduce sequential dry transfers and increase device fabrication
yield, the same dry transfer processed was used to first pick up a monolayer CVD
h-BN, put down on ML-BN, then pick up this stack and transfer to the patterned
substrate. Then dichloromethane is used to dissolve the PMMA of this stack, and
another PMMA is used to pick up the graphene contact and put down on this
substrate so that the graphene covers the electrode and the CVD BN-ML-BN stack.
The device fabricated in this method behave similarly to method 1, and in this
process the heterostructure survives the dichloromethane solvent treatment.

In this device, the graphene on top bridge the Au pad and the PTCDA and
allows carrier injection into the PTCDA ML. The CVD monolayer h-BN and CVD
multilayer graphene was purchased from Graphene Supermarket.

Theoretical model and derivation of the Hamiltonian parameters. To qualita-
tively describe the nature of the excitonic states in Me-PTCDI, we employ the
widely used electronic-vibrational model for molecular excitonic systems35, in
which the electronic part is

Hel ¼
P
m
ωFE mj i mh j þ P

mnh i
J mj i nh j þ P

nþ ;n�
ωCTjnþ; n�ihnþ; n�j

þ P
nþ ;hn� ;n0�i

tejnþ; n�ihnþ; n0�j þ
P

hnþ ;n0þ ;n�i
thjnþ; n�ihn0þ; n�j

þ P
hmni

De nj i n;mh j þ h:c:ð Þ þ P
hmni

Dh nj i m;mh j þ h:c:ð Þ;
ð1Þ

where the first two terms represent Frenkel states, the next three terms represent
CT states, and the last two terms are the coupling between them. The excited
eigenstates are linear combinations of the FE and CT configurations, and the
coefficients depends on their energy difference ðΔFE�CT ¼ ωFE � ωCTj jÞ as well as
the off-diagonal coupling terms (J for interaction between FE ones, te and th for
charge hopping integral among CT ones, and De and Dh for coupling between FE
and CT states).

The vibrational part is

Hvib ¼ ωvib

P
n
bynbn þ ωvib

P
n
fλðbyn þ bnÞ þ λ2gjnihnj

þ ωvib

P
nþ ;n�

fλþðbynþ þ bnþ Þ þ λ�ðbyn� þ bn� Þ þ λ2þ þ λ2�gjnþ; n�ihnþ; n�j

ð2Þ

The first term is the pure vibrational energy. And byn creates a vibrational
excitation with energy ωvib on site n, whereas bn annihilates the same. The last two
terms are the electron-phonon coupling, and λ2, λ2þ and λ2� represent Huang-Rhys
factors44 for exciton, cation and anion respectively.

The Hamiltonian parameters shown in Supplementary Table 1 are derived from
DFT and time-dependent density functional theory (TDDFT) calculations of
molecular monomers or dimers at M06-2×/6-31G level by using GAUSSIAN 09
program45.

ω0−0 and ωvib are extracted from the vibronic spectra calculations by using the
Franck-Condon method after a TDDFT calculation for the pure electronic
excitation for the molecular monomer. λ2, λ2þ and λ2� are calculated by using
Duschinsky rotation method with DUSHIN program46. The excitonic couplings J
are calculated using the Generalized Mulliken-Hush (GMH) method47. The
charge-transfer integrals (De and Dh) are computed as the Fock matrix elements
between frontier molecular orbitals of the neighboring molecules.

For computing the calculated time scale for inter-molecular electron/hole
charge transfer in Me-PTCDI crystals, we use the Marcus theory to calculate the

intermolecular CT rate (k)

1
t
¼ k ¼ 2π

�h
Habj j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλkBT

p exp � λþ ΔGð Þ2
4λkBT

� �
: ð3Þ

Here T is the temperature, kB is the Boltzmann constant, Hab is the electronic
coupling (De and Dh for electron and hole respectively), λ is the reorganization
energy and ΔG is free energy (in this case, we use ΔG= 0). We calculated the
reorganization energy values for the electron (λ−) and hole (λ+) carriers using the
following equation:

λ�=þ ¼ E�
�=þ � E�=þ

� �
þ E��

�=þ � E0
� �

ð4Þ
where E�

�=þ is the vertical energy of negatively/positively charged molecule at the
geometry of the optimized neutral molecules, E�=þ is the optimized energy of
negatively/positively charged molecules, E��

�=þ is the neutral energy of molecules at
the geometry of optimized negatively/positively charged species, and E0 is the
ground-state energy at the optimized geometry of the neutral molecule.

Transfer matrix method of calculating absorption. We model the dielectric
function of Me-PTCDI by the Lorentz model. The dielectric function is given by

ϵ Eð Þ ¼ ϵ1 þ
XN
i¼1

fiE
2
i

E2
i � E2 þ iγiE

ð5Þ

where Ei, γi and fi are the resonance energy, damping rate and oscillator strength of
the ith exciton, respectively. ϵ1 is the background dielectric constant that accounts
for the contributions from resonances at higher energies.

Given the dielectric function of Me-PTCDI, the differential reflectance spectra
then can be directly calculated using the transfer matrix method. Here we use the
BN/quartz substrate as an example. In general, the transfer matrix at a dielectric
boundary between two media of refractive indices n1 and n2 are given by

M12 ¼
1

n1 þ n2

n2 þ n1 n2 � n1
n2 � n1 n2 þ n1

� �
ð6Þ

And the propagation matrix within a uniform layer of refractive index nl and
thickness dl is given by

Pl ¼
einlkdl 0

0 e�inlkdl

 !
ð7Þ

where k is the wave vector in free space.
The transfer matrices for the Me-PTCDI layer on the substrate, and the pure

substrate then can be written as

MP ¼ Mair;pPPTCDIMp;BNPBNMBN;q ¼
1=tp r�p=t

�
p

rp=tp 1=t�p

 !
ð8Þ

Msub ¼ Mair;BNPBNMBN;q ¼
1=tsub r�sub=t

�
sub

rsub=tsub 1=t�sub

� �
ð9Þ

The differential spectrum ΔR/R then is given by

ΔR
R

¼
rp

			 			2� rsubj j2

rsubj j2
ð10Þ

The dielectric function of Me-PTCDI then can be obtained by fitting the
differential reflectance spectrum.

For all the samples, the thickness of the h-BN was measured by AFM and
accounted for in the modeling. In addition, the reference point was measured on
the same BN. This was achieved by covering part of the BN by Au pad and peeling
it off after Me-PTCDI.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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