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Spin pumping during the antiferromagnetic–
ferromagnetic phase transition of iron–rhodium
Yuyan Wang 1,2,3*, Martin M. Decker2,3, Thomas N.G. Meier2,3, Xianzhe Chen4, Cheng Song 4,

Tobias Grünbaum3, Weisheng Zhao 5, Junying Zhang 1, Lin Chen 2,3* & Christian H. Back2,3,6

FeRh attracts intensive interest in antiferromagnetic (AFM) spintronics due to its first-order

phase transition between the AFM and ferromagnetic (FM) phase, which is unique for

exploring spin dynamics in coexisting phases. Here, we report lateral spin pumping by which

angular momentum is transferred from FM domains into the AFM matrix during the phase

transition of ultrathin FeRh films. In addition, FeRh is verified to be both an efficient spin

generator and an efficient spin sink, by electrically probing vertical spin pumping from FM-

FeRh into Pt and from Py into FeRh, respectively. A dramatic enhancement of damping related

to AFM-FeRh is observed during the phase transition, which we prove to be dominated by

lateral spin pumping across the FM/AFM interface. The discovery of lateral spin pumping

provides insight into the spin dynamics of magnetic thin films with mixed-phases, and the

significantly modulated damping advances its potential applications, such as ultrafast

spintronics.
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The B2-ordered material FeRh undergoes a first-order phase
transition from the antiferromagnetic (AFM) to the ferro-
magnetic (FM) phase in the vicinity of room temperature

accompanied by a lattice expansion of about 1% (ref. 1). FeRh has
stood out as a highly intriguing material for applications in heat-
assisted magnetic recording2,3. Nowadays, with the rapid devel-
opment of AFM spintronics aimed at low power and ultrafast logic
devices4–9, FeRh attracts renewed interest as a unique AFM due to
its particular physical properties during the phase transition.
Benefiting from the ability to grow thin films of high quality,
intensified functional devices based on the phase transition of FeRh
have been proposed10–15. Fundamentally, a closer insight into
spin-dependent transport in its AFM state and the related spin
dynamics during the phase transition are crucial issues. Although
X-ray magnetic circular dichroism (XMCD)13,16–18, ferromagnetic
resonance (FMR)19–21, and time-resolved methods13,14 have been
adopted to study magnetization dynamics, direct experimental
observation of spin generation and detection in FeRh is highly
desired.

AFM metals with large spin–orbit coupling (SOC) can act as
spin current detectors via the inverse spin Hall effect (ISHE),
where a detectable transverse charge current is converted from a
pure spin current22, demonstrating that AFM metals act similarly
as heavy metals such as Pt, Ta, or W6–8. Spin pumping from FM
across/into AFM has been reported23–26, where enhanced spin
pumping efficiency around the AFM magnetic phase transition
temperature TNéel has been observed24. In comparison with FM/
AFM heterostructures with explicit vertical spin pumping, FeRh
is unique concerning its magnetic structure, since AFM and FM
matrixes/domains embed in the bulk during the first-order phase
transition3,17,27, making it an ideal candidate to investigate spin
dynamics at the interface of FM and AFM domains in a single
material. In this intriguing case, a landscape of lateral spin
pumping accompanied by the transfer of angular momentum
from FM domains into AFM surroundings is presented. In
addition to the previously reported non-equilibrium non-local
transfer of angular momentum by optically excited electrons
within the ferrimagnetic GdFeCo alloy28, lateral spin pumping
within the equilibrium magnetization precession regime29, e.g.,
excited by FMR, has remained unexplored.

In this work, besides vertical spin pumping from FeRh into the
adjacent normal metal (Pt) which is detected by ISHE voltages,
we mainly report the experimental observation of lateral spin
pumping from FM- into AFM-FeRh across its phase transition,
evidenced by an enhanced linewidth and damping. The crucial
role of AFM-FeRh as a spin detector is further confirmed by
vertical spin pumping experiments from Py into FeRh. In addi-
tion to the low damping of ~0.0023 in the FM state which makes
it competitive for magnonic and spin-orbitronic applications30,
the greatly enhanced damping related to the AFM phase during
the phase transition opens prospects towards ultrafast logic
devices. The observation of lateral spin pumping and modulated
damping are fundamentally significant for understanding the spin
dynamics in FeRh and might advance its practical application in
AFM spintronics.

Results
Magnetization properties of FeRh during phase transition. The
bilayers studied here consist of FeRh(t)/Pt and FeRh(t)/Al, where
t= 5 or 10 nm. α′-FeRh thin films were grown epitaxially on
MgO (001) substrates by magnetron sputtering15,31. As capping
materials we use either a 4-nm-thick Pt layer with strong SOC or
an Al layer with weak SOC. As shown in Fig. 1, bilayers are
fabricated into 6 µm wide and 300 µm long stripes which are
placed in the gap between the signal line and ground planes of a

coplanar waveguide (CPW). This configuration leads to out-of-
plane rf-field excitation of the FeRh stripes32. The devices are
placed in an external magnetic field which can be rotated both in
the in-plane (φH) and out-of-plane (θH) directions. To provide an
overview of the magneto-structural transition in FeRh, Fig. 1c
presents the magnetization of full films measured by SQUID and
the four-point resistance of corresponding stripes (10 µm × 60
µm) etched out of the same films (see Supplementary Note 1 for
FeRh/Al). The T-dependent magnetization loops clearly demon-
strate the phase transition between AFM and FM-FeRh, where
the transition temperatures locate between 300 and 380 K for
different samples. Since the AFM and FM states of FeRh con-
tribute differently to the transport properties, an abrupt change in
resistance is observed during the phase transition30,33.

Vertical spin pumping in FeRh/Pt across phase transition. In
order to investigate the ISHE due to spin pumping and separate
parasitic anisotropic magnetoresistance (AMR) from pure ISHE,
spin pumping voltages as a function of in-plane rotation angle φH
are studied. The device configuration with the stripe located in
the gap of the CPW (out-of-plane excitation) has great advan-
tages for easy separation of AMR and ISHE signals through
analyzing the angle-dependent signals32,34. Note that finite
inductive currents induced in the conductive Pt (Al) layers can
lead to an additional in-plane magnetic driving field, which can
be accurately determined by analyzing the dc voltages. A typical
voltage trace (offset voltage Voffset is subtracted) for an excitation
frequency of 11 GHz measured at 400 K and φH= 45° is shown in
Fig. 2a. To fit the lineshape of the spectra, symmetric voltage
components VsymLsym (red line) and antisymmetric ones Vasym-

Lasym (blue line) are introduced. The antisymmetric part is solely
a consequence of AMR following Lasym=−4ΔH(H−HR)/[4(H
−HR)2+ ΔH2], where HR is the resonance field and ΔH is the
linewidth (full-width at half-maximum, FWHM). In turn, the
symmetric part contains both AMR and ISHE signals, and the
lineshape can be described by Lsym= ΔH2/[4(H−HR)2+ ΔH2]
(ref. 34). The antisymmetric and symmetric d.c. voltage ampli-
tudes at FMR as a function of angle φH are shown in Fig. 2c, d,
which can be fitted by (for a detailed derivation see Supple-
mentary Note 2).

Va�sym ¼ V I
AMR þ VO

AMR ¼ CI sin2 φ cosφþ CO sin 2φ; ð1Þ

Vsym ¼ V I
AMR=ISHE þ VO

AMR þ VO
ISHE ¼ DI sin2 φ cosφ

þDO sin 2φþ EO cosφ:
ð2Þ

Here CI (CO) is the coefficient of Va-sym due to in-plane (out-of-
plane) excitation, DI (DO) the coefficient of Vsym due to in-plane
(out-of-plane) excitation, and EO the magnitude of VISHE. Note
that φ is the angle of the magnetization with respect to the axis of
FeRh [110], which is assumed to be equal to φH due to the fact
that the magnitude of in-plane magnetic anisotropic fields are
much smaller than HR. From the fitting, sizeable VISHE can be
obtained, which shows opposite polarities at φH= 0° and 180°
(Fig. 2b). This clearly verifies spin pumping from FeRh into Pt. In
contrast to FeRh/Pt, no ISHE signals are detected for FeRh cap-
ped with Al (Supplementary Note 2) due to the much smaller
spin Hall angle of Al (ref. 32).

We now turn towards vertical spin pumping during the
AFM–FM phase transition. Figure 3a shows the ISHE voltages of
FeRh (10)/Pt during heating and cooling at 11 GHz, φH= 0°. The
voltages decrease continuously during the transition into the
AFM state from 320 to 300 K. The traces of VISHE and linewidth
(Fig. 3b) upon cooling and heating show an open window, which
are consistent with the hysteretic magnetization/resistance traces
shown in Fig. 1c. Similar tendencies have also been detected for
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thinner FeRh (5) films (see Supplementary Note 3). To have a
better understanding of this phenomenon, a schematic diagram
of the spin pumping scenario for FeRh/Pt during the phase
transition is illustrated in Fig. 1a. Upon heating, FM domains
nucleate in the AFM matrix and grow, until the whole sample is
FM17,27. Conversely, cooling down from the FM state reverses the

phase transition process and AFM domains nucleate in an FM
matrix. It is known that, during the first-order phase transition of
FeRh, the microscopic magnetization of separate FM-FeRh
domains remain in the same magnetic state as the fully FM
phase; it has been verified by XMCD that the orbital to spin
moment ratio for Fe/Rh remains constant during the phase
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Fig. 1 Illustration of spin pumping and the magnetic phase transition of FeRh. a Illustration of vertical spin pumping by magnetization dynamics from FM-
FeRh into Pt, and lateral spin pumping from FM-FeRh into AFM-FeRh during the phase transition. Due to the ultrathin thickness (10 nm) and relatively large
in-plane domain size (the diameter ranges from hundreds of nm to μm) of FeRh, the FM domains can be simply treated as flat pillars and the magnetic easy
axis lies in-plane. b Schematic of the measurement configuration for spin pumping. The FeRh/Pt bilayers were patterned into long stripes and integrated
into the gap of a CPW. c Temperature-dependent normalized magnetization (black squares) and four-point resistance (red circles) of FeRh (10)/Pt.
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transition16. Thus, the reduction of the proportion of FM
domains, together with the decreasing interfacial contact area
between FM-FeRh pillars and the Pt film, will directly lead to a
decrease of the vertically injected pure spin current and
consequently the detectable voltages in Pt. Quantitatively, the
measured data can be well reproduced by calculation results
(solid lines in Fig. 3a) based on the dynamic magnetic
susceptibility33, clarifying the process of the first-order phase
transition in FeRh.

Magnetic anisotropy. To explicate the change of magnetic sus-
ceptibility during the phase transition, which is the basis for
exploring the spin dynamics of FeRh, we investigate the T
dependence of the magnetic anisotropies. Figure 4a depicts the
in-plane angular (φH) dependence of the resonance field μ0HR for
FeRh (10)/Pt at 11 GHz and 400 K. The data can be well
explained by considering the effective demagnetization field
μ0Meff ¼ μ0MS � μ0H? ¼ μ0MS � 2K?

U =MS of 1.37 T (with H⊥
the perpendicular magnetic anisotropy field and K?

U the corre-
sponding uniaxial out-of-plane anisotropy energy constant), a
cubic in-plane biaxial anisotropy field μ0HB (along [100] or [010]
directions) of 6.03 mT and a uniaxial anisotropy field μ0HU

(along [�110]) of 5.23 mT (see Supplementary Note 4). When T
decreases to 310 K in the phase transition region (Fig. 4b), the
values of μ0Meff, μ0HB, and μ0HU increase due to the increase of
magnetization. The T dependences of μ0Meff(T) and K?

U ðTÞ
obtained from the frequency-dependent μ0HR along the in-plane
easy axis (φH= 45°) are summarized in Fig. 4c. The increase of
μ0Meff(T) during cooling is simply related to the increase of the
saturation magnetization μ0MS(T) of FM-FeRh, which increases
with decreasing temperature. Accordingly, the T dependence of
K?
U ðTÞ can be obtained from the experimental data for μ0Meff(T)

in combination with μ0MS(T), which also exhibits an increase
towards lower T. Below 320 K when FeRh goes into the phase
transition region (as indicated by the arrows in Fig. 4c), no abrupt
change of μ0Meff and K?

U is observed, indicating again that the
magnetic anisotropy of FeRh pillars remain, basically, unaffected
during the phase transition. Similar behavior is observed for the
heating up process (Supplementary Note 4).

Detection of spin pumping voltages in FeRh. To confirm the
role of AFM-FeRh as an efficient spin sink and spin detector,
we also investigate vertical spin pumping in an FeRh (10)/Py
(15) bilayer capped with Al. FeRh in this bilayer also exhibits a
reversible phase transition (Supplementary Note 5). As shown
in Fig. 5a, b, clear VISHE features, i.e., symmetric spectra with
opposite polarities at φH= 0°/180°, have been observed at 300
and 400 K. This unambiguously proves that the spin current is
pumped from Py into FeRh, either into the FM or the AFM
state, and transforms into a charge current due to the ISHE of
FeRh. Moreover, a clear signal induced by spin pumping from
FM-FeRh into Py has also been observed (400 K). Since this is
not in the focus for the present discussion, we ignore it here.
The crucial role of FeRh as a spin sink is further evidenced by
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the enhanced linewidth and damping compared to that of pure
Py (see Supplementary Note 5). The spin Hall angle θSHE of
FeRh can be quantified by

VISHE ¼ RIC ¼ R
2e
�h
θSHEJSwλ tanh

d
2λ

; ð3Þ

where R is the resistance of the FeRh/Py bilayer, IC the charge
current induced by the ISHE, e the electronic charge, ħ the
Dirac constant, w the width of the stripe, λ the spin diffusion
length of FeRh, d the thickness of FeRh, and JS the magnitude of
spin current at the interface. Instead of θSHE, we use the product
of θSHE and λ, θSHEλ in unit of nm, to determine the spin-to-
charge efficiency35. This is based on the condition that λ of
FeRh is assumed to be much smaller than d, which holds also
for other AFMs23. Based on the temperature-dependent VISHE

shown in Fig. 5c, the magnitude of θSHEλ of FeRh as a function
of temperature is plotted in Fig. 5d (for details see Supple-
mentary Note 5). Note that the data of FeRh around 320 K have
been excluded due to the scattering of the linewidth, probably
related to inhomogeneities at the FeRh/Py interface. The
magnitude of θSHEλ is comparable to heavy metals22, due to the
strong SOC arising from the 4d electrons of Rh in FeRh. A ~2
times larger θSHEλ is found in the AFM phase, indicating that
ΑFM-FeRh can be an efficient spin sink. This result, in turn,
supports the crucial idea of the lateral spin pumping in single
FeRh layer during its phase transition.

Lateral spin pumping from FM-FeRh domains into AFM
matrix. Apart from vertical spin pumping from FeRh into the Pt

capping layer, lateral spin pumping from FM-FeRh into the
AFM-FeRh surroundings during the phase transition can be
expected. As illustrated in Fig. 1a, the side walls of the pillars
provide channels for lateral spin pumping from the FM domains
into the AFM matrix. Even though in this configuration injection
of a spin current can be expected, it cannot be detected through a
voltage across the FeRh/Pt layer: for the case of in-plane mag-
netization, a voltage due to the ISHE can only be expected in the
out-of-plane direction22,36, which will average out due to the
symmetric distribution of the injected spin current. However, a
pronounced increase of linewidth is observed during the phase
transition (Fig. 3b), indicating possible lateral spin pumping from
FM-FeRh to AFM-FeRh.

It is known that both intrinsic and extrinsic effects can
contribute to the T dependence of the linewidth. In addition to
spin pumping, other extrinsic factors, including two-magnon
scattering, inhomogeneity, and mosaicity broadening, could also
enhance the experimental linewidth. Particularly along the in-
plane easy axis (φH= 45°), mosaicity broadening is negligible and
two-magnon scattering is minimized (see Supplementary Note 6).
However, before we can conclude that the increase in μ0ΔHmainly
arises from lateral spin pumping, other extrinsic effects contribut-
ing to the FMR linewidth must be excluded, which will be
discussed below by analyzing the frequency dependence of μ0ΔH.

Through investigating the frequency-dependent linewidth of
the spin pumping voltage spectra at different T, we are able to
quantitatively study spin dynamics—here the effective damping—
of FeRh during the phase transition. In the case of uniform
magnetization, the FMR linewidth as a function of microwave
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frequency f for Gilbert damping (α) is given by37,38

μ0ΔH ¼ μ0ΔH0 þ 2α
2πf
γ

: ð4Þ

The damping calculated by linear fitting of the frequency-
dependent μ0ΔH is called effective damping (αeff, since two-
magnon scattering is included here37,39), which gives the upper
limit for intrinsic damping. μ0ΔH0 represents the inhomogeneous
term which is independent of f (also called zero frequency
intercept). As plotted in Fig. 6a, linear fitting of f vs. μ0ΔH is
adopted to allow a comparison between different T. Figure 6c
summarizes the value of the calculated αeff at different T during
heating (solid spheres) and cooling (solid squares). It is
interesting to note that αeff is greatly enhanced during the phase
transition, indicating a different dynamic behavior for FM/AFM
domains coexisting in FeRh compared to the pure FM-FeRh. For
all of the five samples with different thicknesses of FeRh and
different capping metals, dramatic enhancement of αeff is
observed in the temperature region of the FM–AFM phase
transition (see Supplementary Note 7).

To exclude the influence of two-magnon scattering which
widely exists in FM films due to, e.g., misfit dislocations or
defects, the out-of-plane FMR configuration is used where two-
magnon scattering is switched off37,39. Since the spin pumping
voltages cannot be detected when the external field is perpendi-
cular to the interface, we conduct a control experiment by
measuring standard full film-FMR. A wide stripe sized 18 µm ×
400 µm directly beneath the signal line of the waveguide is
measured. From linear fitting of the f-dependent μ0ΔH in the out-
of-plane FMR measurements (φH= 45°, θH= 90°) at five typical

temperatures (Fig. 6b), the calculated damping values α⊥,Pt(T)
during cooling are compared to those obtained in the in-plane
configuration in Fig. 6c. A larger value of αeff is obtained for in-
plane spin pumping compared with α⊥,Pt(T) for the out-of-plane
FMR, and this difference is attributed to two-magnon scatter-
ing37. This is further confirmed by FMR measurements during
out-of-plane rotation where φH is fixed to 45° (see Supplementary
Note 8). The linewidth for the out-of-plane direction (θH= 90°) is
smaller than that for the in-plane direction (θH= 0°), which
clearly verifies the contribution of two-magnon scattering in the
in-plane configuration37–39. It is worth emphasizing that by
ruling out two-magnon scattering in the out-of-plane FMR
measurements, α⊥,Pt(T) still increases from 0.0035 to 0.0147 by a
factor of 4 (open rhombus in Fig. 6c) when cooling from the FM
to the FM–AFM coexisting states. The enhanced damping
indicates the experimental observation of lateral spin pumping,
through careful separation of different contributions in the
following discussion.

Discussion
For FeRh/Pt bilayers, the total effective damping αeff(T) obtained
from in-plane spin pumping measurements is composed of four
parts:

αeff Tð Þ ¼ αGilbert Tð Þ þ αVertical SP Tð Þ þ αLateral SP Tð Þ þ α2M Tð Þ;
ð5Þ

where αGilbert(T) is the intrinsic Gilbert damping, αVertical SP(T)
the vertical spin pumping from FeRh into Pt, αLateral SP(T) the
damping contribution by lateral spin pumping from FM-FeRh
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into AFM-FeRh, and α2M(T) the damping contribution by two-
magnon scattering. In comparison, the obtained damping from
out-of-plane FMR (α⊥(T), open rhombus in Fig. 6c) excludes
α2M(T): α⊥,Pt(T)= αGilbert(T)+ αVertical SP(T)+ αLateral SP(T), but
also increases dramatically during the phase transition. For FeRh/
Al at 400 K, α⊥,Al (0.0023) is smaller than α⊥,Pt (0.0035) due to the
lack of vertical spin pumping (αVertical SP). Thus the value of
αVertical SP is estimated to be 0.0012 and is basically a constant
during the whole temperature range (see Supplementary Note 8),
as shown by the dashed line in Fig. 6d. This is as expected
because the interface properties between FeRh and Pt remain
essentially unchanged during the phase transition, in spite of the
reduced contacting areas. The effective spin mixing conductance
g"#eff is estimated to be 9.20(±0.53) × 1018 m–2, which is compar-
able to the magnitude of other FM/heavy metal bilayer
structures29,32,38.

To highlight the crucial role of lateral spin pumping for the
enhancement of damping, the intrinsic Gilbert-like damping
αGilbert(T) as a function of T is discussed first. Based on the
microscopic theory of Gilbert damping which originates from
spin–orbit scattering of band electrons in FM metals, αGilbert(T) is
expected to be quantitatively related to the out-of-plane magnetic
anisotropy, which is also a second-order effect of the spin–orbit
interaction40,41. When the whole FeRh film is in the FM state
where lateral spin pumping is absent, αGilbert(T= 350 ~ 400 K) is
experimentally obtained according to α⊥,Pt(T)= αGilbert(T)+
αVertical SP(T). It scales linearly with the uniaxial out-of-plane
anisotropy K?

U ðTÞ (see Supplementary Note 4), as already
demonstrated in many FM systems41. Then, αGilbert(T) in the
whole temperature range across the transition temperature can be
extrapolated based on the experimentally determined K?

U ðTÞ
(Fig. 4c), as shown by the empty squares in Fig. 6d. As calculated,
the intrinsic damping αGilbert increases from 0.0024 to 0.0031 by
~29.2%, in good agreement with the values reported previously30.

It is worth emphasizing that the slight increase of αGilbert is
consistent with the experimental resistance change during the phase
transition. For a common FM, the damping will increase towards
high (low) temperature as a consequence of interband (intraband)
scattering, which is called resistivity-like (conductivity-like) beha-
vior30. Specifically, for the case of FeRh where the phase transition
occurs above 300 K, interband scattering is expected to dominate
and the Gilbert damping αGilbert(T) is generally proportional to the
electrical resistivity ρ (ref. 30). So αGilbert(T) is expected to increase
by 28.9% during the phase transition, which is consistent with the
derived result based on K?

U . In addition to the different resistance
contributions from FM- and AFM-FeRh, the resistance change
during the phase transition also reflects scattering at the FM/AFM
interface and lattice expansion induced electron–phonon scattering.
Consequently, compared to the total increase of more than 400%
for α⊥,Pt(T) or αeff(T), the increase of αGilbert(T) during the phase
transition can be ignored. Thus the T dependence of Gilbert
damping and electron–phonon scattering cannot explain the sharp
increase of the effective damping during the phase transition.

Importantly, the T-dependent αLateral SP(T) due to lateral spin
pumping can be obtained by subtracting αGilbert(T) and αVertical
SP(T) from α⊥,Pt(T), as plotted by the red spheres in Fig. 6d. From
the sharp increase of αLateral SP(T) below 320 K, it can be con-
cluded that the lateral spin pumping plays a crucial role in
enhancing the total effective damping. The lateral spin pumping
in FM-FeRh/AFM-FeRh, where AFM-FeRh acts as a spin sink, is
also supported by the electrically detected ISHE voltages in Py/
FeRh bilayers caused by spin pumping from Py into AFM-FeRh
(Fig. 5). In addition, we also demonstrate the contribution from
two-magnon scattering, where α2M(T) is estimated by subtracting
α⊥,Pt(T) from αeff(T), according to Eq. (5). As expected, α2M(T)
(blue triangles in Fig. 6d) exhibits a clear increase during the

phase transition, due to the increased inhomogeneity and scat-
tering at the interface between FM and AFM domains. Although
two-magnon scattering adds to the value of the total effective
damping, it does not dominate compared with the dramatic
enhancement of αLateral SP(T) arising from lateral spin pumping.
In analogy to FeRh/Pt, a dramatic increase of damping attributed
to lateral spin pumping is also observed in FeRh/Al (see Sup-
plementary Note 8), verifying that the detection of lateral spin
pumping is independent of the capping material. In summary,
during the phase transition of FeRh from FM into AFM, the FMR
linewidth and effective damping are crucially enhanced, indicat-
ing distinct spin dynamics related to lateral spin pumping from
the FM domains into the AFM surroundings, where the interface
between FM and AFM-FeRh acts as the channel. In addition,
other non-local contributions including two-magnon scattering,
lattice expansion induced electron–phonon scattering, and
interfacial exchange coupling are also verified to be not the
dominant mechanisms for the greatly enhanced damping. Thus
we conclude that lateral spin pumping is the main mechanism at
work and significant angular momentum is transferred from the
FM domains to AFM matrix. According to the greatly enhanced
damping during the phase transition of FeRh and the high effi-
ciency of spin sinking in AFM-FeRh, the lateral spin pumping
between FM- and AFM-FeRh in this case could be more efficient
than in traditional FM/NM bilayers. This study provides the
scientific basis for understanding spin dynamics during a first-
order phase transition.

Methods
Sample preparation. FeRh (t= 5 nm, 10 nm)/(Pt, Al) and FeRh (10)/Py (15)/Al
are deposited on MgO (001) substrates by magnetron sputtering. α′-FeRh is grown
at 300 °C and then annealed at 750 °C for 1.5 h. After cooling down to room
temperature, either 4 nm Pt or 4 nm Al capping layers are deposited at a base
pressure of 4 × 10−7 Pa.

Device. The film stacks are patterned into wires of 6 µm width and 300 µm length
and integrated into a CPW structure, using electron beam lithography combined
with Ar ion milling and lift-off process. The CPW consists of a 50 µm wide signal
line and 30 µm wide gap corresponding to an impedance of 50Ω in the GHz
frequency range. The bilayers are placed in the gap between the signal line and
ground planes.

Measurements. For spin pumping measurements, microwave currents with a
frequency ranging from 6 to 30 GHz are used and the input microwave power is 25
dBm. The measurements are carried out in vacuum with a base pressure of 5 ×
10−5 Pa and at varied temperatures from 300 to 400 K. For full film-FMR mea-
surements, a modulation field of 1 mT together with lock-in amplification is used
to increase the signal-to-noise ratio. Note that the four-point resistance measure-
ment on the Hall bar and the spin pumping measurements are carried out
simultaneously and on the same substrate to provide a precise temperature
reference.

Data availability
The data that support the findings of this study are available from the corresponding
author on request.
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