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The Medical Genome Reference Bank
contains whole genome and phenotype
data of 2570 healthy elderly
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Population health research is increasingly focused on the genetic determinants of healthy

ageing, but there is no public resource of whole genome sequences and phenotype data from

healthy elderly individuals. Here we describe the first release of the Medical Genome

Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly

Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB

for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes.

MGRB individuals have fewer disease-associated common and rare germline variants, relative

to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk

depletion. Age-related somatic changes are correlated with grip strength in men, suggesting

blood-derived whole genomes may also provide a biologic measure of age-related functional

deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics

and genomic association studies, and for understanding the genetics of healthy ageing.
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Most developed nations face crises in health care associated
with population ageing. Healthy ageing is a complex
phenotype, influenced by both environmental and genetic

factors. Healthy ageing—the absence of clinically significant, non-
communicable disease or morbidity in old age —is distinct from
longevity, which disregards quality of life. Healthy ageing captures the
critical distinction between a long life with minimal impairment, and
one bearing significant, costly, and potentially prolonged morbidity.

Relatively little is known about the genetic determinants of
ageing that account for the broad spectrum of health states
observed in older people. Genetic variation contributes to healthy
ageing through pleiotropic effects on many diseases, immune
responses, anthropomorphic, and behavioural phenotypes. For
example, alleles associated with behavioural phenotypes that
contribute to a healthy lifestyle, such as avoidance of smoking, or
propensity for regular exercise, might be anticipated to have an
effect on healthy ageing. However, to date, common variation at
only a relatively small number of loci has been consistently
associated with lifespan or parental longevity1–3. Rare pathogenic
variants that hasten the onset of common diseases associated with
age, such as cancer, cardiovascular disease, and neurodegenerative
disorders, might also be expected to be depleted in healthy aged
individuals. While the single study using whole-genome
sequencing (WGS) in 511 healthy aged individuals confirmed
the link with the APOE locus, and suggested depletion of poly-
genic risk for Alzheimer’s disease and coronary artery disease4, no
evidence was found for depletion of rare pathogenic variation.
Limited by sample size, these studies have focussed on single-
nucleotide variants and indels, while large-scale structural varia-
tion remains unexplored. In addition, somatic variation such as
clonal haematopoiesis is known to correlate with both age and
susceptibility to disease5,6. A synthesis of all forms of somatic and
germline genomic variation is needed to inform our under-
standing of healthy ageing and disease susceptibility.

The advent of WGS is driving intense interest in mapping the
genetic basis of disease, less than 50% of which is currently under-
stood7. The missing heritability arguably resides in the total burden
of both common and rare variation, structural variation untagged by
simple polymorphisms, and their interactions8,9. WGS enables more
comprehensive characterisation of common, rare, and complex
variation in human cohorts. The next few years will see the release of
large-scale WGS studies in rare diseases and cancer, such as the
100,000 Genomes Project, and population studies like the UK Bio-
bank. Maximising the analytic power of whole-genome association
studies using these cohorts will require well-phenotyped and high-
quality control data. The concept of extreme phenotype sampling
maximises statistical power by comparing the extremes of pheno-
types of interest10. We postulate that an elderly cohort depleted of
the major common diseases constitutes a powerful and broadly
applicable tool for genome-wide association studies of disease.

With this background, we are undertaking WGS of over 4000
elderly individuals with no reported history of cancer, cardio-
vascular disease, or neurodegenerative diseases up to age 70, to
create the Medical Genome Reference Bank (MGRB)11. Here we
describe the first release of this resource, comprising WGS data
and phenotype for 2570 well elderly individuals. For comparison,
we also perform WGS of 344 young subjects, and 273 elderly
individuals with cancer. We subject these cohorts to a broad
spectrum, systematic analysis of germline and somatic variation
within the nuclear and mitochondrial genomes, which we link to
both chronologic age as well as frailty measures.

Results
Cohort characteristics and sequencing. The MGRB consists of
over 4000 individuals from the ASPREE study12, and Sax

Institute’s 45 and Up Study13, who lived to at least 70 years of age
without any history of cancer, cardiovascular disease, or
dementia, confirmed either at baseline entry or study follow-
ups11. We sequenced blood of 2926 MGRB individuals by WGS,
mapping to build 37 of the human reference genome, and calling
variants following GATK best practices. After exclusion of
356 samples that failed quality control and relatedness checks,
2570 samples remained, forming the first release of the MGRB
cohort genomic data (Table 1).

A broad diversity of genetic variation was found in the
MGRB cohort. We identified 69,996,670 small variant loci in
canonical chromosome contigs, with a call rate of 99.5%. Our
small variant detection sensitivity was 99.3% and false-positive
rate 4.84 Mbp, as assessed by comparing an internal RM
8398 sample against a gold standard14. MGRB participants were
primarily of non-Finnish European genetic background
(Table 1, Supplementary Fig. 1). Consistent with previous
studies15,16, 51.8% of small variants were singletons and 4.6% of
loci were multi-allelic.

In addition to small scale variants, an average of 4036 structural
variants (SVs) per individual were observed, most commonly
deletions (Supplementary Table 1, Supplementary Fig. 2). In
contrast to small variants, only 17% of SVs were unique
(Supplementary Table 2). Each individual carried an average of
4264 mobile element insertions (MEI), predominantly of the ALU
and L1 classes, and most MEIs were copy number polymorph-
isms at known loci. However, on average 1535 MEI events per
individual were in regions of the reference genome not currently
described as containing mobile elements. In summary, while
small variants comprise the majority of genetic diversity in the
MGRB, structural and mobile elements constitute a rich and
understudied source of potentially disease-related variation.

Well elderly carry clinically reportable genetic variation.
Population genomic studies are contributing to the substantial
revision of clinical interpretation of genetic variation thought to
drive disease in some cases17. It is therefore clinically important
to understand the frequency of variants currently considered
pathogenic in a clinical context, but which are observed in well
elderly individuals. To this end, we identified pathogenic var-
iants that are considered clinically reportable as incidental
findings under current American College of Medical Genetics

Table 1 Summary metrics for the first release of the MGRB
well elderly cohort.

Measure ASPREE 45 and Up

Individuals (percent
female)

1853 (48.2%) 717 (59.3%)

Age at blood draw
(years)

79 (75–95) 70 (64–91)

Height (m) 1.65 (1.33–1.91) 1.66 (1.37–1.91)
Mass (kg) 74.5 (33.4–127.1) 72.0 (36.0–147.0)
Mean sequencing depth
(genome-wide)

38.0 (26.8–46.0) 39.0 (27.3–45.5)

Genetic background
Non-Finnish European 1805 695
South and Central

American
23 5

South Asian 14 6
Finnish European 10 7
East Asian 1 4

Samples were sourced from the ASPREE or 45 and Up studies. Aggregate statistics are medians,
with ranges in parentheses. Genetic background (ancestry) was determined from genotype data
Although blood was occasionally drawn at younger than 70 years, all individuals lived to at least
70 years without known cancer, cardiovascular disease, or dementia
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(ACMG) guidelines18. Forty pathogenic or likely pathogenic
heterozygous small variants were identified, with 28/2570
(1.1%) individuals carrying dominantly acting variants linked
to disease (Table 2, Supplementary Data 1). We sought further
evidence of disease phenotypes in individuals carrying relevant
pathogenic variants from the ASPREE cohort. We did not
identify personal histories of breast or colorectal cancer in
individuals harbouring BRCA2, MSH2, or PMS2 mutations;
cardiac arrest or strokes in individuals harbouring DSG2, DSP,
KCNH2, KCNQ1, MYBPC3, MYL3, and SCN5A mutations; or
elevated blood lipid levels in APOB carriers. Cancer-associated
genotypes are dependent on stochastic factors which may
account for variable penetrance, while anaesthetic-associated
malignant hyperthermia linked to loss-of-function variation in
RYR1 is contingent on environmental exposure. We specifically
sought, but did not find, evidence of cardiovascular disease
history or related clinical phenotypes in carriers of variants
linked to atrial fibrillation, cardiomyopathy, and hypertension.
Notably, no genotypes predicted to cause severe childhood-
onset diseases were identified19; the single RYR2 variant
detected was a truncation not expected to cause autosomal
dominant catecholaminergic polymorphic ventricular tachy-
cardia. In five individuals, variants were noted in PCSK9 that
are predicted to be protective against high blood cholesterol20.
Four SVs were found that may disrupt the coding sequence of
genes associated with cancer and cardiovascular health (Sup-
plementary Table 3), comprising 10% of potentially pathogenic
variation in genes considered reportable by the ACMG.

Risk variants are depleted in the well elderly. One of the pri-
mary purposes of the MGRB is to serve as a genetic risk-
depleted control cohort for studies of the common causes of
morbidity and mortality. To test its utility, we compared the
rates of pathogenic variants in tumour suppressor genes
between the 717 MGRB individuals from the 45 and Up Study,
with 269 demographically matched cancer cases from the same
study (45 and Up Study; Supplementary Table 4). Considering
all cancers in aggregate, the MGRB samples were significantly
depleted for pathogenic alleles in tumour suppressor genes
relative to cancer cases, with 2 of 717 controls carrying
pathogenic tumour suppressor variants compared to 12 of 269

cancer cases (Fig. 1a, odds ratio 0.060, 95% confidence interval
0.0065–0.27, two-sided p < 0.001, n= 986, Fisher’s exact test).
In addition to all cancers, we specifically examined colorectal
cancer due to its high incidence in our case set, and well-
defined genetic risk. The MGRB samples were significantly
depleted for rare pathogenic variation in the APC, MLH1,
MSH2, MSH6, PMS2, and SMAD4 genes, relative to colorectal
cancer cases (Fig. 1a, 1 of 717 MGRB with pathogenic variants,
vs 2 of 40 cancer cases, odds ratio 0.027, 95% CI 0.001–0.53,
two-sided p= 0.008, n= 757, Fisher’s exact test).

We next sought evidence for depletion of common disease-
associated variation in the MGRB, relative to the gnomAD and
UKBB datasets. Although SNP allele frequencies were highly
concordant across all three cohorts (Supplementary Fig. 3), the
MGRB cohort was significantly depleted for alleles specifically
associated with risk of cancer, cardiovascular disease, and
neurodegenerative disease (Supplementary Data 2, sheet 3, 698
loci, vs gnomAD odds ratio 0.38, 95% CI 0.27–0.52, p= 2.6 ×
10−9; vs UKBB odds ratio 0.47, 95% CI 0.34–0.64, two-sided
p= 1.1 × 10−6, Fisher’s exact test). This enrichment of protec-
tive alleles was specific to the clinical phenotypes excluded from
MGRB (cancer, cardiovascular disease, and dementia, see
Methods), and was not observed for negative control loci
linked to anthropometric (449 loci, both p > 0.69) or beha-
vioural (575 loci, both p > 0.55) traits.

The aggregate burden of common disease-related variants within
individuals can be summarised in a polygenic score (PS). We
constructed polygenic predictors for a range of phenotypes
measured or depleted in the MGRB, and compared PS between
MGRB, the gnomAD non-Finnish European reference cohort, the
UK Biobank (UKBB), and the 45 and Up Study cancer cohort.
Since the MGRB is an Australian cohort in which allele frequencies
differ slightly from the white British sample represented by the
UKBB, we controlled for expected subtle differences in allele
frequencies genome-wide by simulating the reference population as
a derivative from the UKBB that differs due to drift by an amount
typical of the MGRB-UKBB comparison. Similar comparisons were
made for the gnomAD and 45 and Up comparison cohorts, and
100,000 bootstraps were performed (Supplementary Fig. 4). We
observed significant depletion of PS in MGRB for 7 of the 12 scores
tested (Fig. 1b, Supplementary Data 2, Sheet 9). Notably, a PS
associated with short parental lifespan1 was significantly depleted in
MGRB relative to UKBB, consistent with the MGRB healthy elderly
phenotype (bootstrap test, 0/100,000 rounds with a test statistic
more extreme than observed, p < 0.001 after Holm correction for
multiple tests). MGRB individuals were also depleted for prostate
cancer risk relative to both UKBB (bootstrap test, 146/100,000
rounds more extreme than observed, Holm-corrected p= 0.055)
and prostate cancer cases (two-sample t-test, n= 71 cases, n= 278
MGRB gender- and cohort-matched controls, t= 3.96, df= 126,
two-sided p < 0.001), indicating that MGRB is an extreme depletion
cohort for prostate cancer polygenic risk (Fig. 1c). Critically, for the
extreme phenotype sampling hypothesis, the use of the MGRB as a
control cohort reduced the sample size required to reach a
given target power by approximately 25% by comparison with the
UKBB (Fig. 1d).

In addition to the allele frequency-based comparisons above,
the availability of individual genotypes for the MGRB and 45 and
Up Study cancer cohorts enabled the direct evaluation of the
influence of PS on cancer risk. We first confirmed that our
polygenic scoring method estimated individual height using
published loci21: height PS was significantly predictive of
measured height, with a slope of 4.5 cm per PS unit, complete
model R2= 0.62, PS partial R2= 0.14, n= 2537 (Supplementary
Fig. 5). We then compared the distribution of PS for prostate,
colorectal, and melanoma skin cancer between the 45 and Up

Table 2 Counts of clinically significant small variation in the
MGRB for all genes in the ACMG SF 2.0 set.

Condition Gene Carriers

Cancer BRCA2 4 (2 female)
MSH2 1
MSH6 1
PMS2 3

Neurofibromatosis NF2 1
ARVC DSG2 1

DSP 3
CPVT RYR2 1
HCM, DCM MYBPC3 2

MYL3 1
TNNI3 1

Hypercholesterolaemia APOB 5
Long QT, VA KCNH2 1

SCN5A 1
Marfan syndrome MYH11 1
Malignant hyperthermia RYR1 1
Total 28

ARVC arrhythmogenic right ventricular cardiomyopathy, CPVT catecholaminergic polymorphic
ventricular tachycardia, HCM hypertrophic cardiomyopathy, DCM dilated cardiomyopathy, VA
ventricular arrhythmia
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cancer-free cases in the MGRB, and individuals from the 45 and
Up cohort with these cancers (Supplementary Table 4). Con-
sistent with the relative depletion of rare cancer variants in the
MGRB observed above, MGRB individuals had significantly
lower polygenic risk scores than cases for prostate cancer
(as above, n= 71 cases, n= 278 MGRB gender- and cohort-
matched controls, t= 3.96, df= 126, two-sided p < 0.001, Fig. 2a)

and colorectal cancer (two-sample t-test, n= 41 cases, n= 690
MGRB controls, t= 2.46, df= 44.7, two-sided p= 0.018, Fig. 2b),
but not melanoma. The contribution of PS to cancer-specific risk
was significant: by age 70, individuals with a cancer PS in the top
5% of MGRB had a 7.7-fold increased odds for prostate cancer,
and a 3.6-fold increased odds for colorectal cancer, relative to
individuals with a score in the bottom 5%.

Rare variants: MGRB vs. cancera
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Fig. 1 The MGRB is depleted for genomic risk relative to reference and disease cohorts. a The rate of rare pathogenic variants in tumour suppressor
genes is lower in MGRB than in a cohort of cancer cases (log odds for an individual to carry a pathogenic tumour suppressor variant shown). b The MGRB
also has lower polygenic score (PS) estimates for a range of phenotypes, when compared to the gnomAD non-Finnish European population and the UK
Biobank samples. MGRB is the reference in b, with PS mean set at zero; bootstrap 95% confidence intervals are shown for the difference in PS between
MGRB and the reference cohorts (UKBB or gnomAD); higher values indicate a higher polygenic score in UKBB or gnomAD. q-Values represent false
discovery rate estimates by the Benjamini–Hochberg method70. c The MGRB has lower PS compared to prostate cancer cases, here considering only
samples from the 45 and Up Study. d For any given sample size, the MGRB has greater statistical power to detect PS difference from a case cohort than
UKBB, demonstrated here for prostate cancer. AU arbitrary units.
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Clonal somatic variation is detectable by WGS. In addition to
its use as a surrogate for the germline, peripheral blood DNA
carries somatic variation reflecting the life history and health state
of the donor. Clonal haematopoiesis of Indeterminate Potential
(CHIP) occurs in at least 10% of individuals over the age of 65
years, as evidenced by the presence of detectable somatic SNVs in
blood DNA22. Previous studies have largely used deep whole-
exome or targeted sequencing to identify CHIP, but these
methods lack sensitivity to detect the copy number variation
(CNV) commonly observed in myelodysplasia and leukaemia.
Low-depth WGS is a powerful tool for detecting SVs that has
been applied to the identification of CHIP-associated SNVs23, but
not CNV. Here we estimate the burden of cancer-associated
somatic variation, at both SNV and CNV level, in peripheral
blood DNA using whole-genome data in the MGRB cohort.

In total, 184/2570 (7.2%) of MGRB individuals displayed
evidence of CHIP, with SNVs associated with overgrowth and
neoplasia observed in more than 10% of reads (Supplementary
Data 3). Predominantly nonsense mutations (96%), these variants
were most commonly seen in TET2 (47 individuals), DNMT3A
(23), or ASXL1 (11) (Supplementary Fig. 6). We also observed
known gain-of-function missense variants in JAK2 V617F
(9 individuals), NRAS G12D (1), a dominant-negative allele in
DNMT3A, R882H (1)24, and a putative loss-of-function variant in
TP53, C275Y (1). JAK2 V617F is a recognised driver of
myeloproliferative disorders, which are also associated with

ASXL1 loss25, and TET2 and DNMT3A loss-of-function variants
are frequent in CHIP5. In total, the blood of 91/2570 (3.5%)
cancer-free MGRB individuals carried deleterious small variation
in at least one of these four genes, and 13 individuals had multiple
deleterious mutations in this gene set. We next sought evidence
for subclonal CNV. Of 2570 MGRB individuals, 1975 were
successfully fit to a subclonal CNV model; of these 55 (2.8%)
showed evidence of subclonal CNV, as determined by the
presence of an aneuploid lineage representing more than 10% of
nucleated blood cells (Supplementary Fig. 7). In total, 9.2% (95%
CI 7.9–10.5%) of MGRB samples demonstrated evidence of CHIP
by either SNV or CNV, consistent with results from deep WES6.
In sum, subclonal blood DNA changes are detectable from WGS
at routine read depths used for germli ne purposes, providing a
quantitative fingerprint of age-related somatic events.

Age-related mitochondrial load is linked to grip strength. As
well as CHIP, ageing is associated with telomere shortening,
somatic Y chromosome loss, decreased mitochondrial copy
number, and increased mitochondrial heteroplasmy26–28. We
therefore studied the relationship of age to telomere length,
mitochondrial copy number and variation, Y copy number in
males, a somatic mutation signature linked to ageing29, and
CHIP. Using standard-depth WGS data from multiple cohorts,
consistent patterns of change with age were observed across all six
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somatic metrics (Fig. 3a–f). Compared to a population of younger
individuals (the ASRB cohort, median age 40; Supplementary
Fig. 8), the MGRB, despite being ascertained on the basis of
healthy ageing, was still associated with shorter telomere lengths,
increased somatic mutation burden, and decreased Y chromo-
some and mitochondrial copy number (Table 3). Interestingly,
there were differences between each cohort in the relationship

with age, with apparent stabilisation of telomere length in the
elderly cohorts past approximately 70 years, compared to the
expected progressive shortening with increasing age observed in
the younger ASRB cohort. In addition, while mitochondrial copy
number/nuclear genome was stable up to age 60, significant
declines were observed in the older age groups. The rate of change
was significantly different between the young (ASRB) and aged
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(MGRB) cohorts (5 likelihood ratio tests on linear fits, Holm
correction, all p < 0.003), while the rate of change of the two aged
cohorts was consistent across all measures (5 likelihood ratio
tests, Holm correction, all p > 0.28). Taken together, these results
are suggestive of altered kinetics of age-related somatic mutation
in the elderly compared to younger populations, although we note
longitudinal measurements will be necessary to definitively
establish this relationship.

We next considered whether individual age-related genomic
measures may reflect physical function status, independently of
chronologic age. To address this question, somatic changes in
MGRB samples from the ASPREE cohort were studied in the
context of age, grip strength, and gait speed, all representing key
predictors of age-related morbidity30. As expected, grip strength
and gait speed both consistently decreased with age in both
genders (Fig. 3g, h). To correct for the strong influence of age on
all measures, a conditional analysis was performed to explore
whether any somatic measures were associated with physical
function even when age is taken into account. Intriguingly, we
found that grip strength was positively correlated with the count
of mitochondria per nuclear genome, but only in males (two-
stage bootstrap test, first stage p= 0.051, validation p= 0.036;
Supplementary Table 5).

To illustrate the magnitude of effect of mtDNA copy number
on grip strength in men, we modelled the change in “effective age”
as determined by grip strength, as a function of mtDNA copy
number. This revealed that men with an mtDNA copy number in
the lowest 5% for their age have the same grip strength as men
with average mtDNA levels, but who are 2.5 years older (Fig. 3i).

Discussion
Understanding the genetic underpinnings of healthy ageing is as
important as, and relevant to, understanding the genetic basis of
disease. The next decade will see the fruits of population-scale
sequencing programmes, much of which will be aimed at
understanding the genetic origins of disease. To realise this
mission, we need to understand the spectrum of genetic varia-
bility in the healthy, and whole-genome datasets of healthy
controls will be essential to identify genetic variation unrelated to
disease31. To this end we created the MGRB, a WGS resource of
deeply phenotyped aged individuals11. This report describes the
first data release of the MGRB comprising 2570 individuals; the
MGRB will grow in time to contain sequence and phenotype data
of 4000 healthy elderly Australians.

Although depletion of some common disease-related alleles has
been reported in the healthy aged4,32, the MGRB reveals a general
depletion in disease-associated common and rare variation, rela-
tive to both affected cases, as well as datasets frequently used as

controls in genetic studies, but not specifically depleted for disease
phenotypes. In addition, the MGRB was enriched for protective
alleles linked to healthy ageing. Our data also substantiate the
premise that extreme phenotype enrichment can enhance statis-
tical power in case:control genetic studies10 (Fig. 1c, d).

Despite being healthy, over 1% of the MGRB still carry
pathogenic small variants that are clinically reportable under
current ACMG guidelines (Table 2), consistent with previous
observations in the healthy elderly4. A detailed review of indivi-
dual phenotypes from a subset of mutation carriers excluded even
subclinical manifestations of the expected disorders. These data
suggest that many apparently pathogenic small variants have
variable penetrance, echoing a theme emerging from population
genomic studies. Additionally, several rare SVs were identified
that may abrogate function of clinically reportable genes (Sup-
plementary Table 3). Future studies using whole-genome-based
data will benefit from the MGRB in quantitating the contribution
of structural variation to ageing and disease. These observations
suggest the MGRB may provide a filter for rare variants currently
thought pathogenic in a clinical context.

The rate of pathogenic variation observed in the MGRB
appeared lower than that previously reported in European
cohorts that were not selected on the basis of healthy ageing33–35.
However, the comparison of rare variation rates between cohorts
is affected to a greater extent than common variants by inter-
platform variation and subtle population stratification. Further
study will be required to definitively test whether the well elderly
have a significantly lower burden of pathogenic rare variation to
the general population.

The ageing process is accompanied by the emergence of
somatic mutations in tissues other than blood, mitochondrial
depletion and heteroplasmy, and progressive telomere short-
ening5,6,26–28,36. We developed a suite of methods to detect these
age-related changes using 30X WGS, and applied it to the elderly
MGRB and a younger cohort. Telomere shortening itself may
directly increase the likelihood of neoplasia37, while oncogenic
mutations in genes such as TP53 may rescue the effects of telo-
mere loss38. Telomere dysfunction has been associated with
impaired mitochondrial function39, linking these genomic fea-
tures of ageing. Many of the somatic changes of ageing observed
in the MGRB are consistent with marrow stem cell depletion, as
observed in telomerase-deficient mice40.

Interestingly, we observed a shift in the age trajectory of
multiple somatic metrics in the elderly compared to younger
individuals, coincident with the emergence of clonal hemato-
poiesis. It is paradoxical that, in this and other cohorts, somatic
clonal expansion driven by oncogenic mutations appears com-
patible with normal organ function5,6,36. It is even possible that
neoplastic events, such as telomere stabilisation, loss of tumour

Table 3 The rates of somatic measure change with age are different between middle-aged and old individuals.

Measure ASRB 45 and Up Study ASPREE

Individuals 344 717 1853
Percent female ND 59.3% 48.2%
Median age (range) 40 (18–65) 70 (64–1) 79 (75–95)
Telomere length (AU/decade) −0.115 [−0.157, −0.073] 0.040 [−0.010, 0.090] 0.115 [0.035, 0.196]
Mitochondria count (log10 mt/nucleus/decade) −0.004 [−0.018, 0.010] −0.046 [−0.065, −0.027] −0.038 [−0.059, −0.017]
Y copy number in males (Y chromosomes/nucleus/
decade)

−0.011 [−0.022, 0.001] −0.050 [−0.068, −0.033] −0.043 [−0.065, −0.021]

Somatic variant burden (log10 variants/Mb/decade) 0.038 [−0.002, 0.079] 0.207 [0.167, 0.247] 0.228 [0.173, 0.282]
Mitochondrial variants (mt variants/decade) 0.051 [−0.177, 0.278] 1.665 [1.315, 2.015] 0.893 [0.195, 1.591]

Numbers show the rate of change of each somatic measure with age in the middle-aged ASRB cohort (median age 40), and the older MGRB cohorts (median age 70 or older). Changes are significantly
different between the younger ASRB and older MGRB cohorts, and consistent within the two older MGRB cohorts. Linear model slopes as change per decade are reported for each of five somatic
measures in each cohort, with 95% Wald confidence intervals. Values significantly different from zero are represented in bold. Note that somatic burden and mitochondrial count per nucleus are
reported on the natural logarithm scale. ND, not determined due to data use agreement constraints
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suppressor genes, or acquisition of oncogenic kinase mutations,
might increase clonogenic efficiency of an ageing marrow stem
cell compartment. Some support for this concept, reminiscent of
antagonistic pleiotropy, comes from mice carrying a hyper-
morphic form of Trp53, in which protection from neoplasia was
accompanied by accelerated hematopoietic ageing and dimin-
ished marrow reserve41. If true, these findings suggest that stra-
tegies that suppress tumour formation may accelerate ageing.

We observed an intriguing link between somatic burden and
decline in physical function, providing a potential measure of what
distinguishes individuals sharing the same age, but different
physical function status. The relative depletion of mitochondria
per leucocyte appeared to be associated with reduced grip strength
in males, after adjustment for age. This finding is consistent with
evidence that mitochondrial dynamics are strongly involved in
ageing and function, particularly in males26. We note that our
power to detect such an effect is low when using a well elderly
cohort, but believe there will be great interest in deriving quan-
titative measures of biological ageing from standard-depth WGS.

Although the largest cohort of healthy elderly whole genomes
amassed to date, the MGRB is still subject to limitations as a
research and clinical tool. The investigation of extremely rare
variants is limited by the MGRB’s size, and complicated by
batch effects in rare variant calls. Furthermore, the MGRB
comprises almost exclusively white Australians, and follow-up
studies will be required to assess the spectrum of genetic var-
iation in the healthy elderly from other backgrounds. The
MGRB was recruited on the basis of a restricted definition of
healthy ageing, being depletion of cancer, cardiovascular dis-
ease, and dementia, and MGRB participants do bear other
morbidities. However we note that the deep phenotype which
accompanies the MGRB enables more focussed participant
selection and the construction of for-purpose subset cohorts,
making the MGRB of value as a universal control that can be
depleted of any measured phenotype. Finally, although we
observed associations between somatic measures and age that
are suggestive of changes in ageing kinetics, this cannot be
definitively established using our cross-sectional study design.
Further studies with longitudinal samples will be required to
verify our hypothesis of altered ageing kinetics, for which the
methodology established here will be valuable.

Quantitative biomarkers of age may provide a summative
metric of diverse genetic and environmental effects on health.
Interpreted as endophenotypes, such biomarkers show promise to
increase our ability to detect genetic patterns associated with
ageing rate, but their true utility may be greater still as clinical
tools in their own right. By encoding the aggregate influence of
complex and potentially unmeasurable genetic and environ-
mental effects over the life of an individual, biomarkers of age
may represent health and disease risk with greater fidelity than
external indicators such as calendar age or functional state.

Particularly with respect to cancer, the DNA-based measures of
biological age we have demonstrated here may represent an
individual’s underlying mutation rate, and therefore true cancer
risk, due to combined genetic and environmental factors. This
biomarker-centric perspective on cancer risk represents a synth-
esis and simplification of the traditional genotype- and
environment-centric views, and we believe is a promising lens
through which to consider disease risk, and differentiate normal
compensatory changes associated with ageing, from those that
precede malignancy.

Methods
Experimental model and subjects. Participants of the MGRB were consented
through the biobank programmes of the ASPREE and 45 and Up studies11,13. At
the time of blood collection, each participant was aged 60 years or older.

Samples from the ASPREE study were from individuals aged 75 years or older
at the time of enrolment, with no reported history of any cancer type, no clinical
diagnosis of atrial fibrillation, no serious illness likely to cause death within the next
5 years (as assessed by general practitioner), no current or recurrent condition with
a high risk of major bleeding, no anaemia (haemoglobin > 12 g/dL males, >11 g/dL
females), no current continuous use of other antiplatelet drug or anticoagulant, no
systolic blood pressure ≥180 mm Hg and/or a diastolic blood pressure ≥105 mm
Hg, no history of dementia or a Modified Mini‐Mental State Examination (3MS)
score ≤77, and no severe difficulty or an inability to perform any one of the 6 Katz
basic activities of daily living.

Samples from the 45 and Up Study were from individuals with no self-reported
history of cancer, heart disease, or stroke. Neurological disease was not explicitly
excluded, but participants were required to correctly self-complete a health survey
at enrolment. We confirmed no record of cancer diagnosis in the NSW Central
Cancer Registry, and no record of cancer diagnosis in the NSW Admitted Patient
Data Collection, for all 45 and Up Study individuals in the MGRB.

Participants in the Australian Schizophrenia Research Bank (ASRB) were
recruited through a national media campaign and consented to data and sample
collection and genomic analyses following discussion with a clinical assessment
officer42. UK Biobank samples were sourced from the UK Biobank Resource under
Application Number 17984.

Ethics. The ASPREE Biobank study was approved by the Monash University
Human Research Ethics Committee, and subsequent WGS of Australian ASPREE
participants was approved by the Alfred Hospital Ethics Committee. The use of 45
and Up Study samples in the MGRB is covered by ethics approvals from the
University of New South Wales Human Research Ethics Committee and the NSW
Population & Health Services Research Ethics Committee. The use of the ASRB
data was approved by the University of Newcastle Human Ethics Research
Committee.

Sample collection and processing. For ASPREE participants of the MGRB,
peripheral blood samples were processed to buffy coat within 4 h of collection, then
stored at −80 °C. DNA was later purified from buffy coat via magnetic bead
extraction (Qiagen).

For 45 and Up Study participants of the MGRB, peripheral blood samples were
refrigerated at 4 °C and processed to buffy coat within 48 h of collection. Buffy coat
was stored at −80 °C, and DNA purified via column extraction (Qiagen).

ASRB participant PBMCs were extracted from whole blood by centrifugation in
Lymphoprep (Vital Diagnostics). Genomic DNA (gDNA) was extracted from
PBMCs using salt extraction and quantified by PicoGreen assay (Life
Technologies). The integrity of gDNA was determined by agarose gel
electrophoresis prior to sequencing.

Sequencing. WGS of the MGRB, 45 and Up cancer, and ASRB cohorts was per-
formed on Illumina HiSeq X sequencers at the Kinghorn Centre for Clinical
Genomics (KCCG), Sydney, using paired-end Illumina TruSeq Nano DNA HT
libraries and v2.5 clustering and sequencing reagents. Each sample was sequenced
on one HiSeq X lane.

Sequence alignment and processing. All sequence data generated at the KCCG
were processed following the Genome Analysis Toolkit (GATK) best practices43.
We first defined a custom reference genome tailored to Illumina HiSeq X
sequencers, being the 1000 Genomes Phase 3 decoyed version of build 37 of the
human genome, with an added contig of NC_001422.1 to act as a decoy for the
HiSeq-specific ΦX174 sequence spike-in. Reads were aligned to this reference using
bwa 0.7.15 mem in paired mode, and duplicates marked with biobambam2 2.0.65
bamsormadup, with a minimum optical pixel distance of 2500. All other para-
meters for both bwa and bamsormadup were left at defaults. For high-depth
samples run on multiple sequencing lanes, data merging was performed at this
point using samtools 1.5. Indel realignment and base quality score recalibration of
mapped reads were performed using GATK 3.7-0 and best practices parameters;
unmapped reads were left unmodified. GATK HaplotypeCaller was used to gen-
erate g.vcfs from all single-lane realigned and recalibrated BAMs using recom-
mended parameters. Pipeline steps were accelerated using GNU parallel 20170722
(ref. 44).

Locus confidence tiers. We defined locus confidence tiers for WGS genotyping on
the basis of prior annotations, sequence complexity, and empirical metrics on our
data. Locus tiers ranged from 1 to 3, with 1 indicating the highest confidence in
WGS variant detection performance and 3 the lowest.

To specify the locus confidence tiers, we first identified regions of the genome
which empirically had unusual coverage in the MGRB and 45 and Up cancer
sequencing data. For each sample we defined bounds on the expected sequence
coverage as the 0.001 and 0.999 quantiles of a Poisson distribution, with rate equal
to the modal nonzero coverage observed across all autosomal loci within that
sample. As typically 15 reads are required for high genotyping performance45, the
lower bound was thresholded to always be at least 15. Within each sample, we
defined each autosomal locus as being either in-bound (depth within the sample-
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specific bounds) or out-of-bound. We then calculated across all samples the rate at
which each locus was out-of-bounds, considering the entire MGRB cohort. Regions
for which this rate exceeded 5% (in other words, loci which had unusual coverage
in at least 5% of MGRB+ 45 and Up cancer samples) were marked as problematic.
These problematic regions were smoothed by a morphological closing operation
followed by an open operation, with structuring elements being centred intervals
on the genome of size 131 and 11 bp, respectively, to yield a final definition of
regions of unusual depth in the MGRB cohort. These regions totalled 409Mb,
13.0% of the reference genome, 13.2% of the canonical chromosomes (1–22, X, Y),
and 14.9% of the CCDS coding sequence (accessed 21 Nov 2017).

We then defined a poor-quality subset of the genome as all loci within 5 bp of
the union of: the unusual depth regions, repeat regions identified by RepeatMasker,
low complexity regions of the reference genome detected by mdust with default
parameters, excludable regions from the ENCODE project, and poorly aligned or
non-unique regions from the ENCODE project (Supplementary Data 4). This
poor-quality subset totalled 1832Mb in size, 58.4% of the reference genome, 59.0%
of the canonical chromosomes, and 18.1% of the CCDS coding sequence.

Variants in non-canonical chromosomes, the pseudoautosomal regions (X:
60001–2699520, 154931044–155260560; Y: 10001–2649520, 59034050–59363566),
or within the poor-quality subset of the genome defined above, were assigned to the
lowest confidence tier 3. For the remaining variants in canonical chromosomes, if
the variant overlapped a high-confidence HG001 region identified by the GiaB
consortium v3.3.2 (ref. 14) it was assigned the highest confidence tier 1, else it was
assigned an intermediate confidence tier of 2. In total, 81.9% of the CCDS coding
genome was in confidence tier 1 or 2 (Table 4).

Initial sample quality control. Poor-quality MGRB and 45 and Up cancer samples
were identified on the basis of genotype metrics at a small diagnostic set of loci. All
3033 single-lane samples were genotyped at SNP loci on the Illumina Infinium QC
Array 24 v1.0, using GATK GenotypeGVCFs, and quality metrics calculated within
Hail v0.1 (ref. 46). A total of 2904/3033 (95.7%) samples passed initial quality
thresholds (Table 5). Of these, 14 (0.5%) had a reported sex that did not match
their genetic sex, as determined from the X chromosome inbreeding coefficient;
these sex-discordant samples were not considered further. In total, 2890/3033
(95.3%) MGRB and 45 and Up cancer samples passed initial quality control (QC).

Small variant genotyping and final QC. The 2890 MGRB and 45 and Up cancer
samples passing initial QC were joint called in a single batch using GATK Gen-
otypeGVCFs, and imported to Hail v0.1 for processing. A second round of QC
(Table 5) identified an additional 31 samples with poor-quality metrics not
revealed by the initial QC round; these were dropped. The PCRELATE component
of the GENESIS 2.8.0 package47 was used to determine structure-corrected relat-
edness between the 2859 samples remaining, using autosomal SNPs LD-pruned
with an r2 threshold of 0.1, KING robust relatedness estimates from SNPrelate
1.12.1 (ref. 48), and without a population reference cohort. Fourteen pairs of
individuals related to second degree or closer were identified and excluded from the
cohort. MGRB (cancer-free) and 45 and Up cancer samples were split into separate

cohorts at this point, and four 45 and Up cancer samples excluded on the basis of
incomplete or inconsistent clinical data. In summary 2841 unrelated samples
passed all data quality requirements, comprising 2570 cancer-free MGRB indivi-
duals, 269 45 and Up cancer samples, and the reference materials RM 8391 and
RM 8398.

ASRB processing and quality control. Sequence processing and quality control
for the ASRB cohort proceeded as described for the MGRB. 344/476 ASRB samples
passed all QC thresholds and were used for subsequent analysis.

Cohort population structure. The MGRB cohort population structure was
determined using principal components analysis (PCA), with reference to the 1000
genomes (1000 G) populations. A merged dataset of all MGRB and 45 and Up
cancer genotypes and the 1000G Phase 3 genotypes was generated in Hail. To
ensure high genotype concordance between platforms, merged variants were
restricted to autosomal strand-specific SNPs in Tier 1 regions of the genome (see
Locus confidence tiers), with a 1000G allele frequency in the range of 5–95%, and
no evidence of deviation from Hardy–Weinberg equilibrium within any of 17
homogeneous 1000G populations (PHWE > 0.01/17 for each of population codes
BEB, CDX, CEU, CHB, CHS, FIN, GBR, GWD, IBS, ITU, JPT, KHV, LWK, MSL,
STU, TSI, and YRI). Merged variants were LD-pruned in Hail with an r2 threshold
of 0.1, and PCA performed in Hail on biallelic variants with a combined MGRB
and 1000G allele frequency in the range of 5–95%.

A hierarchical eigenvalue decomposition discriminant analysis classifier was
constructed to assign MGRB samples to 1000G populations on the basis of PCA
scores. The first classifier layer predicted a sample’s 1000G superpopulation (AFR,
AMR, EAS, EUR, or SAS), and the second a sample’s European population (CEU,
FIN, GBR, IBS, or TSI), conditional on EUR being the predicted superpopulation
by the first layer. Models were trained on 1000G sample scores only using PC1–4 as
predictors, and then were applied to predict population source for the MGRB
samples. All models were implemented using mclust v5.3 (ref. 49).

Small variant processing and annotation. Small variant processing and anno-
tation was performed within Hail v0.1. Variant consequences were determined
using Ensembl VEP 90 with default Ensembl release 90 databases. Variants were
further annotated with 1000 genomes Phase 3, Haplotype reference consortium,
GnomAD, and dbSNP allele frequencies, as well as ClinVar, CATO, and Eigen
annotations (see Supplementary Data 4 for resource versions).

Germline SV detection. Germline SVs in the MGRB and 45 and Up cancer
cohorts were detected using GRIDSS v1.4.1 (ref. 50), excluding regions in the
Encode DAC Mappability Consensus Excludable list (Supplementary Data 4).
Where possible, linked sets of breakend calls resulting from a single rearrangement
were merged into higher-level structural events. To eliminate overlap with GATK
indel calls and enable assessment of cohort frequencies, SV events were filtered to
be of length at least 50 bp, and those of the same type within a window of 100 bp
were merged to the one call.

Germline MEIs were identified using Mobster v0.2.2 (ref. 51) without
blacklisting existing mobile element regions. MEI calls were then processed to
remove false-positive events in existing mobile element regions and to estimate
variant zygosity by local realignment to the reference genome. MEIs occurring in
different samples within 100 bp of each other were merged to the one call.

Rare variant burden comparison. To compare rare variant burden between the
platform-matched MGRB and 45 and Up cancer cohorts, missense or nonsense var-
iants (as judged by VEP) in ACMG SF 2.0 cancer-associated genes were joint called
across both cohorts, and each variant scored for pathogenicity by ACMG criteria,
blinded to cohort. The rate of individuals carrying pathogenic variants was then directly
compared by Fisher’s test. To exclude potential confounding due to source cohort, the
45 and Up component of the MGRB only was compared to the 45 and Up cancer cases.

Table 4 Quantity in megabases of genomic regions in each
locus confidence tier.

Locus
confidence tier

Reference genome Canonical
chromosomes

CCDS

1—highest 1212 1212 25.40
2 52 52 1.19
3—lowest 1874 1832 5.88
Total 3137 3096 32.47

Canonical chromosomes are 1–22, X, and Y; CCDS represents the Consensus CDS set

Table 5 Quality metric conditions for samples to pass quality control.

Metric Initial QC (Infinium SNPs) Final QC (full genotypes)

Call rate >0.98 >0.98
Depth standard deviation <10 <10
VAF standard deviation at loci called heterozygous <1 <1
Heterozygous:homozygous variant ratio <2 <2
X chromosome inbreeding coefficient <0.2 or >0.8 Not tested
Singleton rate <0.001 Not tested

Two rounds of quality control (QC) were performed, with different metric cutoffs: a first round based on genotypes at Illumina Infinium QC Array 24 SNPs only and a second round based on genotypes
called across the whole-genome. Only samples passing all cutoffs in both rounds were included in the MGRB Phase 2 release
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Genome-wide common variant frequency comparison. To compare patterns of
common variation between the MGRB and other cohorts, we merged the MGRB
variants with gnomAD v2.0.1 non-Finnish European (NFE) WGS allele fre-
quencies, and allele frequencies from a subset of the UK Biobank genotype set,
consistent of participants who self-identified as white British and who had con-
firmed European ancestry by PCA52. To minimise the influence of technical
artefacts, variants were restricted to strand-specific biallelic SNPs listed in the EBI
GWAS database, that were located in regions of the genome covered by the
Genome in a Bottle standard, and were sequenced to a depth of at least 15 in at
least 98% of samples in both the MGRB and gnomAD WGS cohorts. Further,
variants which were not observed in one or more cohorts, or were genotyped at a
rate of less than 97% in any cohort, were excluded. In total, 21,033 SNPs remained
following this filtering, with very similar allele frequencies across all cohorts
(Supplementary Data 2, sheet 1; Supplementary Fig. 3); these loci and frequencies
were used in the following common variant analyses.

We tested for phenotype-linked bias in allele frequency between the cohorts as
follows. For a given phenotype-associated set of variants, each variant was scored
on two metrics: its variant allele frequency enrichment or depletion in MGRB vs
gnomAD or UKBB, and the positive or negative association of the variant allele
with the trait. A Fisher’s exact test was then used to test for dependence of variant
enriched/depleted status on the trait direction of effect, with deviation from the
null indicating an allele frequency bias between MGRB and gnomAD or UKBB that
is specific to the phenotype considered.

Three sets of variants were tested by this procedure: a test set of variants
reported to be associated with phenotypes depleted in the MGRB (Supplementary
Data 2, sheets 2–3), and two negative control sets of variants linked to
anthropometric traits (Supplementary Data 2, sheets 4–5), or behavioural traits
(Supplementary Data 2, sheets 6-7).

PS estimation and testing. PSs were calculated as Si ¼
P

j βjdij where Si is the PS
for individual i, βj the GWAS-reported coefficient for a single variant allele at locus
j, and dij is the variant allele dosage for individual i at locus j. We considered only
autosomal variants, and if a variant dosage was not available for an individual, it

was imputed as bdij ¼ 2fj , with fj the variant allele frequency reported by the source
publication. To reduce bias due to this imputation, variants with a call rate under
97% were excluded from PS calculation in all individuals.

PS GWAS coefficients were derived from each source publication by the
following procedure. Firstly, all loci that were reported to be genome-wide
significant in replication were selected, along with the effect allele’s association
coefficient in the replication cohort. If replication results were not reported, the
derivation cohort loci and coefficients were used. Regression coefficients for binary
traits were then transformed to a log-odds scale; coefficients for the continuous
traits of height and parental lifespan were used as-is. Loci were converted to
GRCh37-centric coordinates, and where possible any loci falling within tier 3
regions (see section Locus confidence tiers) were imputed to an alternative locus
falling in a tier 1 or 2 region, chosen so that the original and alternative loci had an
R2 of at least 0.9 as assessed in the GBR population of 1000 genomes by NCI
LDlink53. If no alternative loci fulfilled this criterion, the original locus was
dropped from the PS. PSs were derived by this procedure for colorectal cancer54,
melanoma55, breast cancer56, prostate cancer57, blood pressure58, early-onset
coronary artery disease59, atrial fibrillation60, height21, Alzheimer’s disease61, and
parental longevity1. The Alzheimer’s disease PRS as originally reported lacked the
highly significant APOE locus; accordingly this locus was manually added to the
PRS using the tag SNP rs10414043, and an estimated β = 1.34 (ref. 62). rs10414043
was used in preference to the more conventional rs429358 as the latter was not
robustly genotyped on all platforms. All loci, alleles, and coefficients used in the
PRS calculations are detailed in Supplementary Data 2, sheet 8.

An approximate bootstrap procedure was used to test for PS shift between MGRB,
gnomAD, UKBB, and the 45 and Up cancer cohort, accounting for genetic drift
between populations (Supplementary Fig. 9). All cohorts were first collapsed to allele-
frequency data only, with individual genotypes discarded. PS variants were subset to
those called at a rate of at least 97% all cohorts, and with an absolute difference in
alternate allele frequency between MGRB, gnomAD, or UKBB of less than 4%. To
include the effect of genetic drift in the bootstrap, the allele frequency differences
between MGRB, and each of the gnomAD, UKBB, and 45 and Up cancer cohorts

were calculated as d2;i ¼ fMGRB;i � fOther;i
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fOther;i 1� fOther;i

� �r
, where fCohort,i

denotes the variant allele frequency at locus i in cohort Cohort. d2,i was calculated for
all well-genotyped loci (not just those in PSs). d2,i is related to the fixation index FST,
and the distribution of d2,i values between a cohort and MGRB reflects the genetic
distance between these groups of individuals. For a given PS and comparison cohort
Other, testing then proceeded as follows. A bootstrap Australian reference cohort
(ARC) was generated by shifting the Other allele frequencies based on d2:

fARC;i ¼ fOther;i þ dðiÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fOther;i 1� fOther;i

� �r
, where dðiÞ2 has been sampled with

replacement from d2. This simulates an unseen comparison cohort ARC which has
the same mean genetic distance from MGRB as the comparison cohort Other, but
which we would expect has no allelic shift due to the phenotypic depletion that we
hypothesise is present in MGRB. To test this hypothesis we calculate the expected PS

in both MGRB and in ARC, as sCohort ¼ 2
n

Pn
j¼1 fCohort;jβj , where j= 1...n indexes the

PS loci, and estimate the MGRB score depletion as sMGRB−sOther. This depletion
statistic was calculated for each comparator cohort and PS, for 100,000 bootstrap
rounds.

To facilitate comparisons between scores of different scales, bootstrap
distributions for each score were normalised so that the sUKBB score had a mean of
zero and a standard deviation of 1. The 95% bootstrap confidence intervals for each
cohort were then defined as the 0.025 and 0.975 quantiles of the normalised scores.
Approximate two-sided p values for the MGRB score depletion were calculated as

p � 2
Bþ1

1
2 þmin

PB
k¼1 sMGRB;ðkÞ < sOther;ðkÞ

h i
;
PB

k¼1 sMGRB;ðkÞ > sOther;ðkÞ
h i� �� �

where sMGRB,(k) and sOther,(k) are samples from the bootstrap mean values for
cohorts MGRB and Other, respectively, B= 100,000 is the number of bootstrap
rounds, and [] denotes Iverson brackets.

The statistical power improvement from using the MGRB extreme phenotype
cohort as a control vs gnomAD was estimated by asymptotic approximation.
Bootstrap distribution means of the mean prostate cancer score difference between
the 45 and Up cancer cases, and gnomAD and MGRB controls were used as mean
shift values for statistical power calculation. After correcting for varying cohort
sample size, bootstrap distribution variance was highly consistent across all three
cohorts, and pooled variance scaled to a sample size of 1 was used as the dispersion
parameter. Power was then calculated across a range of sample sizes for both the
MGRB vs 45 and Up cancer, and gnomAD vs 45 and Up cancer tests, by direct root
finding of the relevant t distributions. Finally, the power vs sample size relationship
was inverted by piecewise linear interpolation to yield the sample size vs power
curves.

Individual genotypes were available for both MGRB and 45 and Up cancer
cohorts. In these cases, a secondary analysis was performed that directly compared
the distributions of individual PSs between cohorts. Height prediction was
validated by ordinary linear regression of measured individual height against the
polygenic height predictor21 with additional additive linear covariates of sex and
age at measurement; no evidence for model misspecification was observed. The
association between PS and risk of specific cancers was assessed by logistic
regression, with the effect of PS on cancer risk modelled by GCV-penalised thin
plate splines. Comparisons were restricted to the specific cancers of prostate,
colorectal, and melanoma, as other cancers were either poorly sampled in the 45
and Up cancer cases, or did not have PSs defined.

Incidental somatic variant detection. Somatic variants were identified in post-
BQSR BAM files using FreeBayes, with options: --pooled-continuous --standard-
filters --min-alternate-fraction 0 --min-alternate-count 3 --hwe-priors-off --allele-
balance-priors-off --use-mapping-quality. FreeBayes was restricted to detecting
variants within 10 kb of RefSeq genes in the COSMIC Cancer Gene Census
downloaded 11 December 2017. Variant annotation was performed using the
Ensembl VEP63 release 90, with default options, and variants were notated with
COSMIC 83 frequencies.

Annotated variants were filtered to retain only non-synonymous variation
(missense, splice donor or acceptor, start lost, stop gained, frameshift, or inframe
indel) affecting Cancer Gene Census Tier 1 genes, with a maximum population
allele frequency of less than 0.1%, a variant allele fraction (VAF) of at least 10%,
and three or more reads supporting the variant. We then identified likely driver
mutations from these filtered variants by the following criteria: either a variant had
a HIGH consequence in a canonical tumour suppressor gene transcript or the
variant was observed at least 100 times in the COSMIC database. Consequences
and canonical transcripts were as defined by Ensembl VEP; tumour suppressor
genes were Tier 1 genes from the COSMIC Cancer Gene Census with a TSG
annotation.

Telomere length. Telomere lengths were estimated using Telseq v0.0.1 (ref. 64). To
reduce batch effects between the ASRB and MGRB cohorts, ASRB telomere length
estimates were calibrated using Deming regression, fit to 85 ASRB samples
sequenced both in the original ASRB batch, and contemporaneously with
the MGRB.

Telomere length estimation by Telseq was validated by qPCR on a subset of
120 samples from the ASRB and MGRB cohorts (Supplementary Fig. 10)65. Briefly,
qPCR was conducted in triplicate. Reactions included genomic DNA (5 ng), 2×
Rotor-Gene SYBR Green Master Mix (Qiagen), 500 nM Tel forward [5′-CGGTTT
(GTTTGG)5GTT-3′] and 500 nM Tel reverse [5′-GGCTTG(CCTTAC)5CCT-3′] or
300 nM 36B4 forward [5′-CAGCAAGTGGGAAGGTGTAATCC-3′] and 500 nM
36B4 reverse [5′-CCCATTCTATCATCAACGGGTACAA-3′] in a 25 μL reaction.
Amplification was conducted in a Rotor-Gene Q qPCR cycler (Qiagen) at 95 °C for
5 min, followed by 30 cycles of 95 °C for 7 s and 58 °C for 10 s (telomere reaction)
or 35 cycles of 95 °C for 15 s and 58 °C for 30 s (single copy gene reaction).
Telomere content for each sample was determined by the telomere to single copy
gene ratio (T/S ratio) by calculating ΔCt ¼ Cttelomere

� Ctsingle copy gene
. The T/S ratio of

each sample was normalised to the mean T/S ratio of a reference sample, which was
included in each run. The experiment was accepted if the reference sample T/S
ratio ranged within 95% variation interval, and if the standard curve had a high
correlation factor (R2 > 0.95).
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Mitochondria and Y chromosome copy number. Mean mitochondrial genome
copy number in each sample was estimated using read counts, as
2 ´ RMT � SMTð Þ � RA � SAð Þ, where RZ and SZ denote the number of reads
mapping to contig set Z and the total size of contig set Z, and MT and A denote
mitochondrial and autosomal contigs, respectively. Read counts were mapped and
aligned reads reported by samtools idxstats, and were not corrected for read
duplication. Patch contigs were not included in counts. Y copy number in males
was estimated by an analogous procedure, as 2 ´ RY � SYð Þ � RA � SAð Þ.

Mitochondrial variants. Variants in the mitochondrial genome were detected
using FreeBayes, considering only reads with base quality over 24 and mapping
quality over 30; all other parameters were left at defaults. Variants with fewer than
10 alternate reads, or an alternate allele fraction under 0.001, were discarded. For
each variant passing these filters a Phred-like quality score q was calculated as
q ¼ �10log10 1� F n; p;Nð Þð Þ, with n the count of alternate allele reads, N the total
depth at the variant locus, p = 0.0025 a fixed error rate estimate, and F(n; p, N) the
cumulative density function of a binomial distribution with N draws and success
probability p. Variants with q < 30, high-depth variants (n > 15) with an alternate
read strand bias of greater than 0.9, or variants in the highly variable locations
MT:302–319 or MT:3105–3109 were discarded. The final metric of mitochondrial
variant burden for a sample was defined as the number of low-frequency (variant
allele fraction under 0.01) variants passing all above filters in that sample.

Somatic single-nucleotide variants. Somatic SNV burden was estimated using a
combination of statistical filtering and spectral denoising. Putative somatic SNVs
were first identified on the basis of a variant allele frequency that was statistically
inconsistent with either machine error or germline variation. The burden of these
variants in each sample was then dimensionally reduced by spectral factorisation,
and per-sample signature scores used as the final somatic variant estimates.

We first developed a statistical filtering procedure to identify likely somatic
variants that uses dynamic thresholds to optimise sensitivity while controlling
signal to noise ratio. This procedure calls a variant at a given locus as likely somatic
if it satisfies the following criterion:

cE � nA � cH;

where nA is the number of non-reference allele reads at the locus, and cE and cH are
integers which maximise:

pn ¼ rRR
XcH

nA¼cE

n
nA

pnAA 1� pAð Þn�nA

subject to:

rc
1� rc

pn
rRRαE þ rHαH

� gr

with rRR ¼ 1
2 1� rH þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2rH
pð Þ, and pA ¼ 1� 4

3 ε
� �

f þ ε. Here n is the sum of
reference and alternate allele depths at the locus, rH is the expected rate of heterozygous
variant germline loci, rC the expected rate of somatic variant loci, ε the base read error
rate, gr the minimum acceptable ratio of true positive calls to false positive, and f is the
expected somatic variant allele fraction. αE and αH are test sizes corresponding to
thresholds cE and cH: cE � inf nA : PrðerrÞ< αEf g,cH � sup nA : PrðhetÞ< αHf g,
PrðerrÞ ¼ Pn

i¼nA
n
i ε

i 1� εð Þn�i , PrðhetÞ ¼ PnA
i¼0

n
i

1
2 þ 1

3 ε
� �i 1

2 � 1
3 ε

� �n�i
. Informally,

this procedure selects variants with an alternate allele count nA too large to be due to
sequencing error (nA ≥ cE), yet too low to be from a poorly sampled heterozygous
germline locus (nA ≤ cH). The derivation of this procedure and further details are
available in Supplementary Data 5. A notable advantage of this procedure is that it
yields per-locus estimates of variant detection sensitivity, as pn. These estimates are
critical in normalisation of variant detection rates to account for differential coverage
across variable sequencing runs, which is necessary for the accurate estimation of
sample somatic variant burden.

Insufficiencies of the simple error model used above result in incomplete
control of the signal to noise ratio, and further filtering is required to reliably
quantify somatic variant burden. Assuming that true somatic events and false-
positive machine noise exhibit differential sequence context bias, we use a spectral
dimensionality reduction approach to achieve additional denoising and summarise
the total somatic variant burden in each sample. Extending previous cancer somatic
signature work66,67, we calculate per-sample sensitivity-normalised somatic variant
burden for each of 96 single-nucleotide variant classes, as the total number of
detected somatic events of a given class in that sample, divided by the sum of pn in
that sample for all loci corresponding to the given variant class. The resulting 96 ×
n normalised burden matrix is then reduced by non-negative matrix factorisation,
using 100 random optimisation starting points per cardinality. To select the
appropriate factorisation cardinality, we reduce the burden matrix by merging
groups of 16 age-consecutive samples by summing burden for each variant class,
and factorise this reduced matrix with 100 random restarts and cardinality ranging
from 2 to 10. The lowest cardinality that gives an inflection point on the plot of
explained variance vs cardinality is selected, and applied to the full burden matrix.
Per-sample scores are extracted from the best of 100 random runs at this final
selected cardinality.

We applied the above procedure to the MGRB and ASRB samples, with
parameters adapted to maximise sensitivity with low-depth sequencing data: gr = 5,
f = 0.2, ε ¼ 2:0 ´ 10�3, rH ¼ 1:0 ´ 10�4, rC ¼ 5:0 ´ 10�7. Our filtering process
employed SNVs identified by samtools mpileup, with maximum depth 101, mapping
quality adjustment of 50, BAQ recalculation, no indel reporting, and minimum read
and mapping qualities of 30, and employed a blacklist of common SNPs observed in
either MGRB or dbSNP. The factorisation cardinality procedure applied to our data
indicated that three signatures best described the mutation patterns observed
(Supplementary Fig. 11). Signature 3 in this work was quantitatively similar to
COSMIC signature 5 (cosine similarity 0.81), previously reported to be associated
with age at cancer diagnosis29, and the per-sample scores for this signature were
used as the summative somatic burden measure. Signature 1 from this work was very
similar to COSMIC signature 1 (cosine similarity 0.95), which has also been
associated with spontaneous deamination processes and age. However, we observed
substantial inter-cohort differences in score distribution for this signature, suggestive
of high technical variability, and did not examine it further.

Somatic copy number variants. We developed a model-based strategy to identify
subclonal copy number variants (CNVs), assuming a single genetically homo-
geneous subclone present on a background of diploid cells.

We first defined a set of autosomal SNPs with highly stable sequencing
characteristics on our platform. We selected loci containing autosomal biallelic SNPs
in the MGRB cohort, with a variant allele fraction between 5% and 95%, and a mean
GC content in the surrounding 100 bp of between 30% and 55%. These were further
filtered to retain only loci with highly consistent coverage in both the MGRB and
ASRB cohort data, with mean(DPrel)∈ [0.9, 1.1] in both cohorts, var(DPrel)∈ [0.025,
0.033] in the MGRB, and var(DPrel)∈ [0.025, 0.040] in the ASRB cohort. Here DPrel
is locus depth relative to mean sample depth, and statistics are calculated over all
samples in each cohort. In total, 1,862,065 loci passed all filters, with a median inter-
locus distance of 626 bp, and 5th and 95th percentiles of 30 and 4904 bp, respectively.

We individually genotyped MGRB, 45 and Up cancer, and ASRB samples at this
set of highly reliable loci using GATK HaplotypeCaller with default parameters,
except for a variant window size of 100 bp (-ip 100). Within each sample, the
depths of reference and variant alleles at all heterozygous SNV target loci were fit to
the following subclonal CNV model to produce estimates of local ploidy and global
sample subclonal fraction.

Consider a locus i in a single sample which contains fraction f of aneuploid cells,
the remaining 1−f being entirely diploid (gonosomes are not modelled). We denote
the copy number (ploidy) of the aneuploid cells at i with k1,i and k2,i, k�;i 2 @. For
example, k1;i; k2;i ¼ ð1; 1Þ denotes a diploid state (no aneuploidy), k1;i; k2;i ¼ ð1; 0Þ
the deletion of one allele, and k1,i, k2,i= (2,2) duplication of both alleles. Our task is
to estimate k1,i, k2,i for all i, and f globally, given reference and non-reference allele
depths dR,i and dA,i.

The extent to which the aneuploid cell ploidies k1,i and k2,i affect the
representation of alleles in the mixed cell population depends on the aneuploid cell
fraction f. Let p1,i and p2,i represent the mean ploidy of each chromatid in the
mixed cell DNA pool. As the pool is assumed to consist of only two populations,
with 1−f of the cells diploid, p1;i ¼ fk1;i þ ð1� f Þ and p2;i ¼ fk2;i þ ð1� f Þ.

We assume that the sequencer does not exhibit allelic bias. Then, E½d1;i	 ¼ cip1;i ,
E½d2;i	 ¼ cip2;i , with ci a normalising constant to account for the depth at locus i.
Here d1,i and d2,i denote the depths of reads from chromatid 1 and 2, respectively.
Unfortunately we do not have phased genotypes, and so cannot easily determine
the chromatid source of each read. Instead we have unphased reference and non-
reference depths dR,i and dA,i, and must account for the resulting phase uncertainty
with a mixture model.

Disregarding allele phasing we model the depths of reference and non-reference
reads at i using a mixture: dR;i; dA;i 
 Dðcip1;iÞ;Dðcip2;iÞ with probability 1

2, else
dR;i; dA;i 
 Dðcip2;iÞ;Dðcip1;iÞ, D(μ) denoting a distribution function with expected
value μ. In our implementation we employ a negative binomial distribution for D,

with probability mass function fDðx; μ; sÞ � Γðxþ sÞ
Γðxþ 1ÞΓðsÞ q

sð1� qÞx , q � s
sþ μ. The size

term s captures overdispersion relative to the Poisson distribution, and is optimised
per-sample in the model fit.

The normalising constant ci is half the expected depth at locus i, which is itself a
complex function of locus- and sample-specific factors. We model this function at the
locus- and sample-level using empirical cohort depth measurements, and a sample-
specific GC bias correction. Specifically, we define ci � bie

hðgiÞ, where bi is the mean
relative depth of locus i (where relative depth is defined as di � 1

n

P
i di , with di �

dR;i þ dA;i and n the number of target loci, n= 1,862,065), across the sample’s cohort
(either MGRB or ASRB), h is a smooth function, and gi is a vector of GC fraction in
windows of various size around locus i. For this work, gi was a 5-vector of GC fraction
in windows of size 100, 200, 400, 600, and 800 bp, calculated on the reference
sequence centred at locus i. The sample-specific GC correction function h was
implemented using a generalised additive model (GAM) with five smooth terms, and
fit to all heterozygous loci for each sample as lnðci � biÞ 
 sðr1;iÞ þ sðr2;iÞ þ sðr3;iÞþ
sðr4;iÞ þ sðr5;iÞ, with rj,i being the score of the jth principal component of the GC
fraction matrix for locus i, and s denoting a penalised regression spline term. GAMs
were fit using mgcv 1.8–17 (ref. 68) with default parameters.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14079-0 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:435 | https://doi.org/10.1038/s41467-019-14079-0 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


A greedy agglomerative algorithm was used to segment the genome of each
sample into regions of differing ploidy state. Initially the genome was divided into
segments of 100 consecutive heterozygous loci, with segment boundaries enforced
between chromosomes. Adjacent segments were tested for identical distribution of
dR;i � ci; dA;i � ci by a two-sample Kolmogorov–Smirnov test, and the two
segments with the highest p value genome-wide were merged. This process was
repeated until either no segment pairs remained to merge, or all
Kolmogorov–Smirnov test p values were less than 0.01. Segments were never
merged between chromosomes.

The above model was fit to the allele counts within each genome segment by
maximum likelihood. Ploidies of each segment, k1,i and k2,i, as well as the global
aneuploid fraction f and overdispersion s, were optimised by grid search with local
polishing. As very high ploidies coupled with low f result in highly expressive but
likely incorrect models, the maximum allowable ploidy kmax; k1;i; k2;i � kmax was
determined in an outer loop through minimisation of the Bayesian Information
Criterion (BIC). A final polishing step was applied to the BIC-optimal model,
which merged consecutive segments of the genome if they were assigned identical
chromatid ploidies by the model. This final polished model yielded global cell
fraction f, as well as local ploidies across the genome, for the single aneuploid clone
assumed to be present in each sample.

Clonal haematopoiesis. Extending previous work6, clonal haematopoiesis of
indeterminate potential (CHIP) was defined in an individual if either: a somatic
small variant (see section Incidental somatic variant detection) was detected with a
variant allele frequency of at least 10%, or somatic CNV (see section Somatic copy
number variants) indicated the presence of a clone comprising at least 10% of
nucleated blood cells.

Somatic burden statistical analysis. Exploratory analysis indicated that variable
transformation was required for some measures. For the following analyses, telo-
mere length and Y copy number were modelled as-is; somatic variant burden,
mitochondrial load, and mitochondrial variant count were log-transformed prior
to modelling; and grip strength in kg was power transformed with exponent 0.7.

Within-cohort trends in somatic measures were estimated by linear regression,
with 95% Wald confidence intervals. Likelihood ratio tests of nested models were
used to evaluate inter-cohort trend differences, with p values corrected for multiple
testing by Holm’s step-up procedure69.

We used a permutation procedure to test the importance of somatic burden
measures in predicting grip strength and gait speed, conditioned on age. For each of
18 possible frailty measure × somatic measure × sex combinations (frailty measures:
grip strength, gait speed; Somatic measures: Telseq telomere length, nuclear somatic
variant burden, mtDNA copy number, mitochondrial variant count, and Y copy
number in males only), we calculated the deviance of the following generalised
additive model frailty 
 sðageÞ þ sðweightÞ þ sðBMIÞ þ sðabdocircÞ þ sðsomaticÞ,
with age in years, weight in kg, BMI in kg/m2, abdominal circumference (abdocirc)
in cm, and the somatic measure of interest (transformed if relevant following
exploratory analysis). In this model specification, s(x) denotes a GCV-penalised thin
plate spline smooth term in x as implemented in R package mgcv 1.8-17(ref. 68),
with Gaussian error and identity link. This model’s deviance d was compared to the
deviance d(i) of 10,000 models fit in the same manner but with the somatic variable

permuted, and a p value estimated as bp ¼ 1
10;001

P
i dðiÞ � d
h i

þ 0:5
� �

. To address

multiple testing concerns we used a two-stage process. In the first stage p values
were calculated as above for all 18 tests on a randomly selected subset of 25% of the
ASPREE samples. Tests with a p value less than 0.2 in the first stage were tested in
the second validation stage on the remaining 75% of the ASPREE samples, and these
second-stage p values corrected for multiple testing by Holm’s method.

We observed cohort differences in intercepts in plots of somatic measures vs age.
To remove these solely for the purposes of illustration (Fig. 3), for each somatic
measure we fit the generalised additive model measure 
 sðage; by ¼ sexÞ þ cohort,
with Gaussian error and identity link. In this model specification s(age, by= sex)
denotes a GCV-penalised thin plate spline with age as the predictor variable,
stratified by sex. Model fits were performed using the R package mgcv68. After
confirming the suitability of the model fits, cohort-specific effects were removed by
calculating the quantity y0i ¼ yi �bsC þbsASPREE for each individual and measure,
where y0i is the cohort-corrected somatic measure for individual i, to be plotted; yi is
the original measurement for individual i in cohort C; and bsC and bsASPREE are the
model estimates of the cohort intercept term for cohort C and the ASPREE cohort,
respectively. In this manner, somatic measurements were transformed to have an
intercept matching that fitted to the ASPREE cohort.

We used the following procedure to illustrate the effect of mtDNA copy number
on grip strength in males. For each male individual i in the ASPREE cohort, an age-
local quantile of mitochondrial DNA copy number ci was defined as qi � bFi cið Þ,
where bFi is the empirical cumulative distribution function of c in the neighbourhood
of individual i, with the neighbourhood of an individual i defined as all male
ASPREE individuals within ±1 year of age of i. Ages were rounded to the nearest
integer for the purposes of neighbourhood definition; for the median ASPREE male
age of 80 years, this neighbourhood contained 293 men with ages in [79, 81] years.
Given these local mtDNA copy number quantile estimates q, a generalised additive
model of the form grip strength~age+ s(q) was fit using the R package mgcv68, with

s smooth term as above. Predictions from this model with age= 80 and varying q
defined the estimated influence of age-local mtDNA copy number on grip strength
for an 80 year old man. These grip strength predictions were transformed to
effective age estimates assuming typical mtDNA copy number by inversion of the
model predictions for s = 0.5, and used to calculate an age excess as a function of q.
Variability of this relationship was estimated using 100,000 bootstrap samples, and
results presented as highest posterior density intervals.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Summary variant frequency data for the MGRB cohort are available at the web portal:
https://sgc.garvan.org.au/explore. Raw genomic data have been deposited at the
European Genome-Phenome Archive under study ID EGAS00001003511. Phenotype
data are available upon application to the MGRB Data Access Committee at
mgrb@garvan.org.au.

Code availability
Source code for all analyses is available at https://github.com/mpinese/mgrb-manuscript;
source code for the somatic SNV and LoH detection tools can be found at https://github.
com/mpinese/soma-snv and https://github.com/mpinese/soma-cnv.
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