Fig. 1: Toughness and conductivity of spider silk composites. | Nature Communications

Fig. 1: Toughness and conductivity of spider silk composites.

From: A supertough electro-tendon based on spider silk composites

Fig. 1

a Graph shows the conductivity and toughness of different flexible materials. Green represents metals, red is PDMS-based stretchable conductors, and blue represents other special conducting materials/structures. Pink star represents S-silk@10% SWCNT composites described in this work. b Optical image of a bundle of raw dragline silk from Nephila pilipes. Inset shows a single silk fiber has a very smooth surface. c SEM image showing the wrinkled surface of a single fiber of S-silk@10% SWCNT composite formed from the intrinsic shrinkage of the spider silk after immersion in water during PEDOT:PSS and SWCNT coating. The wrinkled structure prevented any changes in the conductive path, allowing the S-silk composite to maintain its conductivity during stretching and compression. d Cross-sectional scanning electron microscopic image of a spider silk composite. The core is spider silk, and the diameter is about 3–4 μm. The outer conducting layer is about 2 μm. e Stress–strain curves of natural spider silk (S-silk), spider silk with PEDOT:PSS@0%SWCNT (S-silk composite@0%SWCNT), spider silk with PEDOT:PSS@10%SWCNT (S-silk composite@10%SWCNT). Area under gray dotted curve represents toughness of S-silk. Toughness is defined as the energy needed to break the silk. f, g Conductivity and toughness of the S-silk composite increased with increasing weight percent of SWCNT, before experiencing saturation at 12.5 wt%. The maximum conductivity and toughness achieved were 1077 S/cm and 420 MJ/m3, respectively. Our S-silk composite is more conductive and tougher than the other flexible materials shown in Fig. 1a. The error bars in f and g show standard deviations based on 50 independent samples.

Back to article page