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Symmetry-controlled edge states in the type-II
phase of Dirac photonic lattices
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The exceptional properties exhibited by two-dimensional materials, such as graphene, are

rooted in the underlying physics of the relativistic Dirac equation that describes the low

energy excitations of such molecular systems. In this study, we explore a periodic lattice that

provides access to the full solution spectrum of the extended Dirac Hamiltonian. Employing

its photonic implementation of evanescently coupled waveguides, we indicate its ability to

independently perturb the symmetries of the discrete model (breaking, also, the barrier

towards the type-II phase) and arbitrarily define the location, anisotropy, and tilt of Dirac

cones in the bulk. This unique aspect of topological control gives rise to highly versatile edge

states, including an unusual class that emerges from the type-II degeneracies residing in the

complex space of k. By probing these states, we investigate the topological nature of tilt and

shed light on novel transport dynamics supported by Dirac configurations in two dimensions.
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Τhe experimental discovery of graphene ushered in a new
era in the development of two-dimensional (2D) materials,
which were only previously theorized1–3. In graphene-

based systems, the bulk excitation spectra exhibit a linear dis-
persion relation—a Dirac cone—akin to that governing massless
Dirac fermions in quantum relativistic theories. These conical
band degeneracies act either as a source or a sink of Berry cur-
vature in momentum space and under broken time-reversal
symmetry their pairs favor the emergence of a well-defined Chern
number in the first Brillouin zone. Such inherent topological
properties are known to lead to a wealth of unusual phenomena
like the quantum Hall effect, anomalous magnetoresistance, and
the appearance of edge states in terminated systems4–8, that is of
crucial importance to current transport dynamics9,10.

The observation of type-I massless Dirac and Weyl fermions in
solid state systems11–15 has spurred an intense research activity in
other fields like, for example, photonics, acoustics, and other
bosonic settings16–22. In this vein, generalized forms of the Weyl
Hamiltonian that either modify or shift the underlying symme-
tries of the fermionic model have attracted considerable attention.
In certain classes of systems displaying a broken Lorentz invar-
iance, the Fermi surfaces become conical (type-II) instead of
point-like as in type-I, owing to the underlying strong tilt of the
associated Weyl cones. Such type-II Weyl fermion excitations
have been lately observed in semimetals, e.g., WTe2, MoTe2,
PdTe2, along with Fermi arcs and unusual chiral photogalvanic
effects23–30. An issue of interest is how the rich topological
properties of type-II Weyl and Dirac systems can alter the
properties and dynamics of localized edge states. In this respect,
to what extent will this class of edge states occupy the Brillouin
zone (with regard to the type-II Dirac cones), and what para-
meters will determine their mobility? If so, can such interactions
be observed in a purely bosonic environment31–34?

In this work, we explore the type-II Dirac degeneracies emer-
ging in a 2D all-dielectric, non-centrosymmetric, photonic
topology. To this aim, adjustable waveguide chains were intro-
duced between the main lattice sites of a centered-square lattice in
order to reproduce the molecular bond structure, characteristic of
the class of artificial carbon allotropes known as graphynes35–37.
These chains enable a controlled variation of the effective lattice
intercouplings and provide access to the full parameter space of
the quasi-relativistic model. By studying a number of archetypical
examples, we observe the unique and rich edge state dynamics
that arise from the type-II cones and demonstrate how these band
degeneracies can relocate outside the first Brillouin zone and
generate tilted edge states that extend throughout all k space.
Fundamentally, the exclusive use of single-mode elements in the
optical lattice allows for a full characterization of the bulk and
edge dynamics through a single-orbital, tight-binding formalism.
This produces a simple yet highly versatile and universal arche-
type for the exploration of the subtle physics of quantum relati-
vistic effects in a variety of optical and molecular systems38–40.

Results
Dirac Hamiltonian in a chained lattice model. The relativistic
Dirac equation provides a fundamental description of electron
dynamics in many diatomic systems, in which the Dirac spinor is
associated with the eigenmode vector of the tight-binding, two-
band representation. A class of specially synthesized multi-
element arrangements may also promote an analogous behavior,
while introducing new degrees of freedom to the relativistic
model (e.g., graphynes35,41). In these arrangements, the effective
2 × 2 Dirac Hamiltonian can be obtained by identifying two
principal elements in the unit cell while extracting a reduced
coupling representation. Employing a similar approach, we

examine the tight-binding model of a centered square lattice
(Fig. 1) under a broad generalization of its discrete representation,
which, as shown in the Supplementary Note 1, can produce the
extended Dirac Hamiltonian,

H kð Þ ¼ uT � k � kDð ÞI þ uD k � kDð Þ� � � σþm0σz; ð1Þ

around finite regions at the (kD, −kD) points. In this tight-
binding description k is the wave vector, σ= (σx, σy) and σz
represent Pauli matrices, and I stands for the identity matrix. All
key variables in Eq. (1) are associated with individual symmetries,
whose status (broken/unbroken) is strictly linked to the five
lattice parameters (t1− t4, ts). In particular, the mass term m' is
non-zero if the effective P-(sublattice) symmetry or T-symmetry
is disturbed, resulting in a gap opening at the Dirac degeneracy.
Here, the 2 × 2 matrix uD term determines the multiplication
constants of (kxσx, kyσx, kxσy, kyσy) and hence the anisotropy
(orientation/ellipticity) of the Dirac cone. The elements of uD,
along with the cone position kD, are regulated via an explicit
manipulation of the hopping terms t1− t4 (see Supplementary
Eqs. (10)–(18) in Supplementary Note 1) while, in turn, the ts
hopping term independently governs the uT vector, thus
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Fig. 1 Chained square lattice of photonic waveguides and tilted type-II
Dirac cone. a The anisotropic square lattice with five independent hopping
terms between sites A and B. Each term is associated with a unique
waveguide chain that regulates its magnitude (here, we explicitly draw t1
and ts). Light propagates towards the z direction, with momentum kz
imposed by the eigenvalues of the quasi-relativistic model. b The
generalized Dirac cone, located at kD, is characterized by the amount of
anisotropy (a/b) and degree of tilting (θtilt). The plane of anisotropy is in
general separate from the θtilt plane. These properties are directly governed
by the hopping terms introduced in a.
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promoting a transition to the type-II phase by disturbing the
Lorentz invariance of Eq. (1).

In a diatomic square lattice (i.e., a lattice with direct coupling
between sites A and B) the diagonal hopping terms (t1− t4) have
equal magnitude and phase defined by the excitation wavenum-
ber and distance between the central nodes. To extend this
characterization we introduce secondary sites between the central
nodes, as shown in Fig. 1, forming a chained lattice. Utilizing the
same fundamental tight-binding formalism (see Supplementary
Note 1), these chains exhibit a unique ability to control the
hoping terms of Fig. 1, breaking the fourfold symmetry of the
square topology. Most importantly, they enable arbitrary
perturbations to Eq. (1) under unbroken sublattice symmetry
(i.e., maintaining a gapless state) while preserving the geometrical
features of the unit cell. In the absence of nontrivial topological
transitions, a gap at the Dirac cones is, herein, avoided through
the symmetric placement of the nodes around each chain’s center,
thereby nullifying the effective mass. Furthermore, these same
bonds allow for interactions beyond nearest-neighbors, which is
impossible to accomplish in conventional two-atom models,
giving rise to the Lorentz-violating term of Eq. (1). These
attributes provide complete access to the parameter space of the
Dirac Hamiltonian in terms of freely moving (kD), rotating (uD),
and tilting (uT) the Dirac cones in the bulk, without being
exclusively restrained on the high-symmetry lines. Therefore, the
chained lattice is not only able to define a group isomorphism
with every general perturbation of the honeycomb unit cell (e.g.,
strained graphene) but also extend this characterization even
further.

The edge states of ribbon-like topologies. A consistent way to
put the aforementioned claims to the test is to study edge states
that are topologically connected to the Dirac representation; a
field of substantial theoretical and applicative interest in its own
right. The topological characteristics of the bands in the bulk are
revealed by determining the Zak phase42, γ, enclosing the Dirac
cones at the kD points. This is explicitly defined by the phase of
the anti-diagonal terms of the effective Hamiltonian, Η12= |Η12|
eϕ(k), through γ Cð Þ ¼ i

H
C ∇kφðkÞ � dk, where C is a path in the k

space. The existence of edge states is related to the appearance of
discontinuities in ϕ(k), which emerge from and end at the kD
points of a Dirac cone pair (see Supplementary Note 2). The
existence and extent of these regions are dictated by the uD term
of the effective Hamiltonian and can be controlled via the t1− t4
hopping terms of the lattice model (see Supplementary Fig. 2). In
contrast, the type-II (uT) term and its effective counterpart in the
lattice model (the ts hopping term) do not disturb this topological
characterization. Therefore, it follows that a type-II terminated
lattice, with an arbitrarily enhanced magnitude for uT, should
support its own class of edge states.

To study these states, we design a photonic analog of coupled
waveguides, a system where light propagates according to the
dynamic laws of Schrödinger’s equation (see also Supplementary
Note 4). In this framework, we consider a simple lattice formed
by retaining only three main bonds in its unit cell (namely, t4= 0
and ts= 0 in the entire k space), as shown in the unit cell of
Fig. 2a. The existing bonds (t1−3) are regulated by the Δn1−3

variables, defined as the refractive index difference of the central
waveguide pairs. In a uniform system (Δn1−3= Δn0, t1−3= t0), a
pair of slightly anisotropic Dirac cones of the type-I phase
appears at kD = (±2π/3, ±2π/3), as depicted in Fig. 2b. To
produce a bearded set of edge states, arising from the
discontinuous line of Fig. 2c, (Zak phase), one has to accordingly
terminate the chained lattice. The unit cell comprises a total of 14
elements, indicating a variety of possible terminations. Here, we

terminate the lattice as shown in Fig. 2a (see also Supplementary
Note 3), whose band diagram is depicted in Fig. 2d. Of the four
parameters affecting the Dirac cones in the bulk (location, tilt,
orientation, and anisotropy), only the first two are associated with
inherent properties of the edge stats.

In order to demonstrate control over the location of the Dirac
degeneracies, we modify the refractive index difference of the
middle waveguide pairs in chain 3 (Δn3). This corresponds to a
proportionate increase of the potential term (in the Schrödinger
definition) and as a result, stronger bonding between the four
elements in the chain (in the tight-binding representation). In the
effective model, the magnitude of the t3 hoping term increases,
disturbing further the rotational symmetry of Eq. (1), which
causes the Dirac points to relocate in momentum space. Beyond a
critical value (t3,cr), the solutions to equations (S4) become
complex and the band degeneracies move outside the Brillouin
zone, as illustrated in Fig. 2e, f. Although, the bulk, now, lacks any
trace of the Dirac points, their transition to the complex plane is
not sufficient by itself to also eliminate the presence of the
associated edge states, which, as a consequence, now extend
throughout the entire Brillouin zone (Fig. 2g). In general, the
position of a Dirac pair can be adapted continuously over any k-
space curve (see Supplementary Fig. 1b) but here, for simplicity,
we parametrically trailed the lines of Fig. 2f by perturbing a single
chain, until the (0, ±π/2) points are reached and the cones are
merged, annihilated, and carried over to the complex plane. As
such, we are able to construct states that start and end between
any points in ky.

By introducing the secondary chains (Fig. 2h; red waveguide
sites), associated with the ts hopping term, we cause the Dirac
cones to tilt (Fig. 2i). For the properly terminated lattice, we
display in Fig. 2j, k the dispersion curves corresponding to
different values of Δns. The group velocity (∂kz/∂ky) can be
evidently associated with the tilt of the kz-symmetry plane at a
Dirac degeneracy point (red line in Fig. 2i); and can be, therefore,
related to the magnitude of Δns (ts). More specifically, above a
critical value (ts,cr), the system transitions to the type-II phase and
the intersection with the Fermi plane becomes conical (see also
Supplementary Fig. 1g, h). For this case (Fig. 2j), the type-II edge
states are noticeably curved, as the peripheral modes obtain a
high transverse group velocity. By increasing Δns (and corre-
spondingly ts) even further, we can proportionately increase the
tilt of the Dirac cones and, as an outcome, the transport speed of
the edge states (Fig. 2k). Hence, the transport speed is explicitly
associated with an aspect of the Dirac model; an important
implication that allows its precise control in the current system.

A combination of the hitherto examined perturbations, i.e., a
concurrent variation of Δn3(t3) and Δns(ts), leads to an extended
class of edge states that emerge from complex pairs of type-II
cones. This can be accomplished for a properly perturbed case in
which t3 > t3,cr and ts > ts,cr. The new tilted states will occupy the
entire Brillouin zone, as shown in Fig. 2l for Δn3, Δns= 1.1Δn0,
retaining the same level of high parametric control. In essence, by
progressively disturbing the Lorentz invariance and rotational
symmetry independently (first and second term in Eq. (1)), we
precisely tailor the edge state characteristics and generate modes
with the desired dynamic properties. From beyond a purely
physics standpoint, explicitly controlling the group velocity and
occupation of states in k-space can be deemed rather compelling
for many solid-state or photonic applications that can exploit this
class of excitations.

Observation of dynamic phenomena in the photonic analog.
To experimentally explore the dynamic transport properties of
these systems, we employed the femtosecond laser direct writing
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technique to inscribe discrete photonic lattices of evanescently
coupled waveguides43 arranged in the respective geometries. The
samples were characterized by exciting specific lattice sites at
different wavelengths, where, light from a fiber-coupled super-
continuum source (NKT SuperK Extreme) was spectrally selected
to a bandwidth of ~2 nm (see also Supplementary Note 5). By
varying the excitation wavelength, we were able to change the
effective coupling strength between the waveguides, and therefore
the rate of the transverse evolution in the lattice. Since the cou-
pling between waveguides arises from the overlap of evanescent
fields, it increases strongly with the wavelength. In contrast, the
effective refractive index of the individual sites stems from the
overlap of the central part of the mode with the waveguide core,
and is therefore affected to a much lesser extent. In this vein, we
were able to investigate different dynamics regimes while keeping
the excitation conditions fixed.

We, first, study the edge dynamics in the basic three-chain
model (with no secondary chains attached), with the respective

fabricated prototype presented in Fig. 3a. In this system, we
implemented two distinct cases, one corresponding to the band
diagram of Fig. 2d in which all 14 waveguides of the unit cell are
identical (Δn0), and one corresponding to the band diagram of
Fig. 2g, in which the perturbed (blue) waveguides are written with
a 10% larger refractive index contrast difference (Δn3= 1.1Δn0).
In this latter case, the edge mode’s dispersion curve extends
throughout the entire Brillouin zone, indicating that an edge state
can emerge for any wavenumber in k-space. Hence, even narrow
excitations that comprise a wide range of ky values across the first
Brillouin zone, will populate this state with high specificity and,
under ideal conditions, none of the supported bulk modes.
Figure 3c, d illustrates the observed intensity distributions at the
end facets of the respective lattices. As indicated in Fig. 3a, the
single-site input spans less than one fifth of the unit cell, clearly
much wider than 2π in the normalized k-space. For both cases,
we expect that any emergent edge state will remain static due to
the vanishing dispersion of the respective mode. Herein, as
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Fig. 2 Ribbon lattice and band structures of infinite and terminated systems. a The properly terminated type-I square lattice. The highlighted (blue) sites
indicate the waveguides that regulate the hoping term t3. They are associated with a variable index difference Δn3. b The bulk band structure corresponding
to an infinite lattice (both along the x- and y-direction), with a unit cell as shown in a, when Δn3 = Δn0. c The Zak phase term ϕ(k) indicating that the edge
states should appear along the discontinuous (−π→π) line. d Band diagram corresponding to the ribbon lattice of a (Δn3 = Δn0) with the edge states given
in red. e–g Bulk band structure, Zak phase term ϕ(k), and ribbon band diagram corresponding to a, yet for Δn3 = 1.1Δn0. This higher index value increases
the t3 hopping term, resulting into the relocation of the Dirac cones to the red spots of f. As a result, the edge states extend now throughout the Brillouin
zone, as shown in g. h The type-II square lattice where seconary s-chains have been introduced. The red and blue sites indicate the waveguides that
regulate ts and t3 (associated with a variable index difference Δns and Δn3, respectively). i, j Bulk and ribbon band structures when all waveguides are
identical (Δn3=Δns=Δn0). The curvature of the edge states in j is associated with the red symmetry line of i. Ribbon band diagram for (Δn3=Δn0,
Δns= 1.1Δn0) and (Δn3=Δns= 1.1Δn0). By perturbing the red and blue highlighted waveguides sequentially, we attain full control over the curvature (in k)
and then extend (in l) of the edge states.
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predicted, the lattice with the enhanced chains (second case)
displays a clear formation of an edge state with minimal leakage
into the bulk. The leaked fraction of power in the experiment
amounts to less than 10% and is attributed to the mismatch
between the edge state eigenfunction and the single-waveguide
input (see Supplementary Fig. 5) and possibly, to a lesser extent,
to the structural imperfections of the lattice. In contrast, the
leakage in the lattice without these enhanced chains exceeds 60%,
as can be expected given that the edge state here only exists across
two thirds of the Brillouin zone (k < |2π/3|). Notably, while the
increased refractive index boosts the coupling strength between
the elements and one might expect a corresponding enhancement
of the leak effect of Fig. 3b, the tight-binding dynamics, actually,
enable a total confinement of light at the edge, as observed in
Fig. 3c. This characteristic is of vital importance in the physics of
edge state dynamics and, as evident here, can be systematically
implemented with only minor modifications of the underlying
homogeneous lattice.

The second experiment involves two separate lattices, designed
to exhibit type-II Dirac cones that reside in the complex space of
k. This means that the associated bulk band diagrams will not
exhibit Dirac degeneracies but their presence in the complex
plane will lead to the emerge of tilted states at the edge. A
micrograph of the lattice geometry is depicted in Fig. 3f,
replicating the example of Fig. 2h. Here, the addition of the
secondary chains grants access to the Lorentz-breaking term of
the Dirac Hamiltonian, which serves to control the curvature of
the edge modes in the k-space. By increasing the refractive index
of the waveguides in these chains we direct the transport speed of

the edge modes. We conduct experiments in two lattices with two
different refractive index contrasts. In Fig. 3g, h, the introduced
curvature in the momentum space leads to the initially confined
wave packet being transported symmetrically along the edge. The
rate of transport corresponds exclusively to the magnitude of
detuning (Δnsw/Δn0), applied in the secondary chains, and varies
proportionately to the number of detuned waveguides, here the
middle four. In general, the concurrent modification of a larger
group of waveguides leads to a faster response, hence, a better
fine-tuning of the mode’s transport speed can be achieved by
adjusting only the central waveguide pair of the chain.

In addition to the observed cases, the chained lattice may
exhibit a number of secondary edge states that have not been
discussed yet. For the properly terminated lattice these states
emerge from the Dirac cones of lower energy bands and relate
directly to the topological characteristics of these cones. They,
thus, conform to the same conjectures made for the dominant
modes. Nevertheless, as they may interfere with the intended
observables, we explore the possibility of isolating them. In the
preceding experiment, the light energy was injected directly into
the fourth waveguide site of the secondary chain, maximizing the
Hermitian inner product with the eigenfunction of the dominant
edge state (first modal group of Fig. 4a). Using the same setup, a
different site is excited (marked in a circle) so as to more
efficiently couple to the secondary edge state (second modal
group of Fig. 4a). Evidently, both edge states can be excited
independently with no leakage into the bulk. It is noteworthy that
for non-proper terminations, the secondary modal groups can
manifest simultaneously bearded-like, zigzag-like as well as a

Fig. 3 Physical models and experimental results. a Micrograph of the three-chain lattices. The numerically calculated edge eigenstate is portrayed as
overlay. b Observed distribution of light power at the end facet of the homogenous lattice. A considerable amount of power is leaked into the bulk. c Light
power distribution for the lattice with a detuned chain. The edge mode occupies all k values and the edge state is excited almost exclusively. d, e Simulation
results, obtained via the beam propagation method (BPM), for the two experimental lattices which demonstrate an analogous response. f Micrograph of
the type-II lattice and the numerically calculated edge eigenstate. g, h Light power distribution at the edge for different wavelengths and different amounts
of detuning (Δnsw/Δn0) for the secondary chains. The different probe wavelengths, effectively change the propagation distance within the physical sample.
By adjusting Δnsw, we modify the curvature of the edge-propagating modes and achieve higher group velocities that result in the observed spread of the
pulse (for the respective simulation results see Supplementary Fig. 4).
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number of unconventional edge states (see Supplementary Fig. 3),
displaying a rich set of excitations.

Discussion
In conclusion, we have experimentally observed the excitation
and transport of an extended class of type-II edge states in a two-
dimensional setting. The proposed tight-binding model allows a
controlled variation in its effective lattice intercouplings and
provides full access to the parameter space associated with the
quasi-relativistic model. The parametrization avoids any distor-
tions to the form or geometry of the unit cell, which, also, pre-
serves the overall dimensions of the lattice itself. It is thereby
superior to alternative means of variation, such as the application
of strain. Of particular interest, as well, will be the exploitation of
nonlinear effects in the photonic analog, so as to manipulate the
bonding strength of the chain elements (e.g., by switching the
effective refractive index though localized spatial solitons44),
altering dynamically the state of the Dirac model and its transi-
tion between the type-I and type-II phases. Finally, the intrinsic
simplicity of the featured chain model could enable different
approaches that may lead to the non-trivial topological transition
of the type-II cones in particular modified configurations45.

Methods
Experimental configuration. The photonic lattices are fabricated by focusing
ultashort laser pulses from a Ti:sapphire regenerative amplifier system (Coherent
Mira/RegA, wavelength 800 nm, repetition rate 100 kHz, pulse length 130 fs) into
the volume of a fused silica sample (Corning 7980, dimensions 1 mm × 20 mm ×
100 mm, background refractive index n0= 1.457 at 633 nm), thereby inducing
permanent refractive index changes along arbitrary three-dimensional trajectories
as defined by the motion of a precision translation system (Aerotech ALS130,
inscription speed 100 mm/min). Owing to the focussing conditions, these wave-
guides exhibit slightly elliptical mode fields with a typical effective refractive
contrast index of Δn0= 5 × 10−4. The selective positive (negative) detuning of
connecting sites was achieved by an appropriate decrease (increase) of the
inscription speed.

Polychromatic probing of the lattices. The laser-written waveguide lattices were
probed by exciting specific lattice sites at different wavelengths. To this end, light
from a fiber-coupled supercontinuum source (NKT SuperK Extreme) was spec-
trally selected to a bandwidth of ~2 nm in a seamlessly tunable fashion (mono-
chromator NKT LLTF). By adjusting the wavelength of the excitation, the effective
coupling strength between the waveguides can be increased (longer wavelengths) or
decreased (shorter wavelengths) at will, yielding a corresponding acceleration or

deceleration of transverse evolution in the lattice. Notably, the effective refractive
index of the individual sites remains largely unaffected, as it mainly stems from the
overlap of the central part of the mode with the waveguide core. In this vein, we
were able to investigate different dynamics regimes while keeping the excitation
conditions fixed.

Data availability
The experimental data that support the findings of this study are available from M.H.
upon reasonable request.

Code availability
The MATLAB® codes corresponding to the BPM and band structure algorithms are
available from G.G.P. upon reasonable request.
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