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Cobalt-catalyzed highly enantioselective
hydrogenation of α,β-unsaturated carboxylic acids
Xiaoyong Du 1,3, Ye Xiao 1,3, Jia-Ming Huang1, Yao Zhang1, Ya-Nan Duan1, Heng Wang1, Chuan Shi1,

Gen-Qiang Chen 1,2✉ & Xumu Zhang1✉

Asymmetric hydrogenation of α,β-unsaturated acids catalyzed by noble metals has been well

established, whereas, the asymmetric hydrogenation with earth-abundant-metal was rarely

reported. Here, we describe a cobalt-catalyzed asymmetric hydrogenation of α,β-unsaturated
carboxylic acids. By using chiral cobalt catalyst bearing electron-donating diphosphine ligand,

high activity (up to 1860 TON) and excellent enantioselectivity (up to >99% ee) are

observed. Furthermore, the cobalt-catalyzed asymmetric hydrogenation is successfully

applied to a broad spectrum of α,β-unsaturated carboxylic acids, such as various α-aryl and α-
alkyl cinnamic acid derivatives, α-oxy-functionalized α,β-unsaturated acids, α-substituted
acrylic acids and heterocyclic α,β-unsaturated acids (30 examples). The synthetic utility of

the protocol is highlighted by the synthesis of key intermediates for chiral drugs (6 cases).

Preliminary mechanistic studies reveal that the carboxy group may be involved in the control

of the reactivity and enantioselectivity through an interaction with the metal centre.
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Chiral carboxylic acids are prevalent structural units in
varieties of pharmaceutical molecules, agrochemicals, fla-
vors, and fragrances. Some examples are exhibited in

Fig. 1. Chiral carboxylic acids such as Ibuprofen, Naproxen1,2,
and (R)-Tiagabine3 are well-known drugs. The key intermediates
for a large number of drugs or bioactive compounds, such as
Artemisinin4,5, Rupintrivir6,7, (S)-Equol8, and Sacubitril9–12 are
chiral carboxylic acids. In addition, chiral carboxylic acids are
versatile intermediates for organic synthesis, as they are utilized
in the construction of various C–C bonds via decarboxylative
coupling reaction13–16, and in the activation of C–H bond as a
directing group17,18. Thus, the development of efficient methods
for the preparation of chiral carboxylic acids is highly demanded
in both academic research and industrial production.

Transition-metal-catalyzed enantioselective hydrogenation of α,
β-unsaturated acids is one of the most atom-economic and effi-
cient approaches to access chiral carboxylic acids19. Various noble
metal-based catalysts, such as Ru catalysts with chiral diphosphine
ligands20–24, Rh catalysts with chiral phosphorus or nitrogen-
containing ligands25–31, and Ir catalysts with chiral P,O-32 and P,
N-ligands33–40 have been developed for the hydrogenation of
different unsaturated carboxylic acids in high enantioselectivities
(Fig. 2a). As modification of ligands or catalysts is necessary to
achieve high enantioselectivity for different substrate types, the
development of catalytic system with wide applicability is still

highly desirable. On the other hand, a major concern regarding
the noble metal-based hydrogenation catalysts is the sustain-
ability. Ru, Rh, and Ir are extremely scarce elements, occurring at
very low abundances in the earth’s crust (5 × 10−5–10−4 ppm)41.
Owing to the low abundance and high cost of the noble metals,
the development of cheap earth-abundant metal substitutes to the
noble metal catalysts is of high significance42–54.

Catalysts based on earth-abundant and environmentally
benign cobalt are highly attractive for asymmetric alkene
hydrogenation55–57. Early studies have showed the potential
application of cobalt catalysts in the asymmetric alkene hydro-
genation58–61 However, these systems suffer from limited enan-
tioselectivities, and in many cases H2 could not be used as
the stoichiometric reductant. Appreciable progress has been made
in recent years, employing cobalt-based complexes for asym-
metric hydrogenation of alkenes62–72. Chirik and coworkers
report the highly enantioselective hydrogenation of styrene
derivatives, cyclic alkenes, and enamides with cobalt complexes
bearing C1-symmetric PNN-type pincer ligand or chiral dipho-
sphine ligands65,71,72. Stereoselective olefin hydrogenations
are also independently described by Lu and Huang group
employing chiral IPO–Co and PPO–Co complexes62,66,67,69.
Though important progresses have been made, the development
of base metal catalyst for challenging substrates is still
underexplored56.
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Fig. 1 Biologically active compounds and drugs derived from chiral carboxylic acid. Ibuprofen and Naproxen (nonsteroidal anti-inflammatory drugs); (R)-
Tiagabine (γ-aminobutyric acid reuptake inhibitor); Artemisinin (antimalarial drug); Rupintrivir (rhinovirus protease inhibitor); (S)-Equol (soy isoflavonoid
metabolite); Sacubitril (antihypertensive drug used in combination with Valsartan).
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Fig. 2 Transition metal-catalyzed asymmetric hydrogenation of α,β-unsaturated carboxylic acids. a Previous work: noble metal-based catalysts. b This
work: cobalt-catalyzed asymmetric hydrogenation of α,β-unsaturated carboxylic acids.
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As a continuation of our interest in transition metal-
catalyzed asymmetric hydrogenation reactions, herein, we
report a highly enantioselective cobalt-catalyzed hydrogenation
of α,β-unsaturated carboxylic acids for the synthesis of
chiral carboxylic acids. High yields and enantioselectivities are
generally achieved for a wide range of substrates (up to 99%

yield and up to >99% ee). Besides, the synthetic value of
the methodology is demonstrated by its applications
in the synthesis of important drugs (Fig. 2b). After the first
submission of our paper, the asymmetric hydrogenation of α,β-
unsaturated carboxylic acids is reported by Chirik and cow-
orkers73 with a cobalt catalytic system, and high yields and
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Fig. 3 The performance of chiral diphosphine ligands in Co-catalyzed asymmetric hydrogenation of 1a. The yields were determined by 1H NMR and the
enantioselectivities were determined by HPLC analysis in all cases.

Table 1 Optimization for cobalt-catalyzed asymmetric hydrogenation of (E)-2,3-diphenylacrylic acid.

Co(acac)2 (x mol%), (S,S)-Ph-BPE (x mol%)

additive (10-50 mol%), solvent, 60 atm H2, 50 °C, 24 h

COOH COOH

1a 2a

Entry x (mol%) Additive Solvent Conv. (%)a ee (%)b

1 5 — MeOH 70 94
2 5 — iPrOH >98 93
3c 5 — TFE >98 84
4 5 — DME 7 43
5 5 — Toluene 15 86
6 5 — THF NR —
7 5 — 1,4-Dioxane NR —
8 1 — iPrOH 61 93
9 1 Cs2CO3 iPrOH 7 88
10 1 KOtBu iPrOH 55 93
11 1 Mn iPrOH >98 96
12 1 Zn iPrOH >98 97
13d 1 Zn iPrOH >98 97
14e 0.1 Zn iPrOH >98 97
15e 0.05 Zn iPrOH 93 97

TFE trifluoroethanol, DME dimethoxyethane, THF tetrahydrofuran.
Conditions: 1a (0.1 mmol) in solvent (0.6 mL) under 60 atm H2 pressure at 50 °C for 24 h.
aDetermined by 1H NMR.
bDetermined by HPLC analysis.
cUsing TFE (0.6 mL) and THF (0.6 mL) as solvent.
dUnder 40 atm H2, room temperature.
e2 mmol scale, under 80 atm H2, 7 d.
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enantioselectivities are achieved for a wide range of acrylic acid
derivatives.

Results
Condition optimization. In the initial study, asymmetric
hydrogenation of (E)-2,3-diphenylacrylic acid 1a was investigated
by using 5 mol% of Co(acac)2 and 5 mol% of chiral ligand. The
reaction was conducted under 60 atm H2 pressure at 50 °C in
MeOH over 24 h. Several chiral diphosphine ligands were eval-
uated and we found that cobalt catalysts ligated by highly
electron-rich and sterically demanding diphosphines were cata-
lytically active (Fig. 3). In particular, the Ph-BPE was found to be
the best one, which afforded the desired product 2a in 70% yield
and 94% ee. Me-DuPhos and iPr-DuPhos were catalytically
active, but only lower yields and moderate ee values were
obtained. Other strongly electron-donating bis(alkylphosphine)s

like Binaphine and Duanphos were also tested, but they afforded
unsatisfactory yields and ee values. P-chiral diphosphine Qui-
noxP* and BenzP* gave no desired product. The less electron-
donating bis(arylphosphine)s such as BINAP and Segphos were
completely inactive in cobalt-catalyzed hydrogenation (Supple-
mentary Table 2).

Next, various solvents and additives were tested (Table 1). It
became apparent that alcoholic solvents are beneficial for the
catalytic asymmetric hydrogenation, with iPrOH giving the
highest activity and enantioselectivity (entries 1–2). The run in
more acidic fluorinated solvent, trifluoroethanol (TFE) afforded
moderate ee value (entry 3). Furthermore, reactions performed in
dimethoxyethane (DME) and toluene led to very low conversions
(entries 4–5). When tetrahydrofuran (THF) and 1,4-dioxane were
used as solvents, the reactions were totally inhibited (entries 6–7).
The investigation of the effect of additives in the reaction showed
that the addition of one-electron reductant is benefit for obtaining
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Fig. 4 Cobalt-catalyzed asymmetric hydrogenation of various α,β-unsaturated carboxylic acids. aConditions: 1 (0.1 mmol), Co(acac)2 (1 mol%), (S,S)-
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full conversions with low catalyst loading (entries 8–12). To
further improve the enantiocontrol, temperature and hydrogena-
tion pressure effects were surveyed. 97% ee of 2a could be
achieved at room temperature under 40 atm H2 pressure with
full conversion of 1a (entry 13). The asymmetric hydrogenation
also proceeded smoothly with full conversion and high ee when
reducing the catalyst loading to 0.1 mol% (entry 14). Moreover, in
the presence of 0.05 mol% of catalyst, 1a reacted with H2

efficiently, giving 2a in 93% yield on 2 mmol scale without
any decrease of the ee value (TON up to 1860, entry 15). The
absolute configuration of the product 2a was established by
comparison of its optical rotation with previous report (Supple-
mentary Tables 3–5).

Substrate scope. To delineate the scope of the Co-catalyzed
asymmetric hydrogenation, the catalytic system was applied to
the reactions of different types of α,β-unsaturated acids. α-Aryl
and α-alkyl cinnamic acid derivatives 1 were hydrogenated with
1 mol% catalyst loading under the optimized condition (Fig. 4).
Most of the reactions proceeded smoothly under 40 atm H2

pressure at ambient temperature, providing the desired products
in high isolated yields and excellent enantioselectivities (95–99%
ee). The method works efficiently for α-methyl cinnamic acid
derivatives bearing both electron-donating (1c–1e) and -with-
drawing groups (1f–1i). Substituents at the para and meta posi-
tions of the phenyl ring are tolerated under the reaction
conditions, furnishing the hydrogenation products in high yields
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with excellent enantioselectivity (1j–1l). Heteroaromatic α,β-
unsaturated acid 1m was also efficiently hydrogenated to give the
desired product 2m in 90% isolated yield with 97% ee. Increasing
the steric demand in the α-substituted position by using an iPr
group led to the formation of 2n with 86% ee.

Our preliminary results show that the [Co]/BPE is also active
for hydrogenation of N-heterocyclic acids to produce chiral
heterocyclic acids, which are present in various pharmaceuti-
cals74. The asymmetric hydrogenation of N-Boc-1,2,5,6-tetrahy-
dropyridine-3-carboxylic acid 1o gave the desired product 2o
with an impressive 93% ee. α-Oxy-functionalized α,β-unsaturated
acids were also subjected to our [Co]/BPE system due to the
corresponding hydrogenation products are important building
blocks for asymmetric synthesis in both pharmaceutical and
agrochemical industries75. To our delight, the catalyst system
showed high efficiency in the asymmetric hydrogenation of α-
alkoxy- and α-aryloxy-substituted α,β-unsaturated acids. A broad
range of α-aryloxy and α-alkoxy substituted α,β-unsaturated acids
1p–1u were hydrogenated smoothly to give the desired chiral α-
oxy-functionalized acids in good to excellent yields and
enantioselectivities (80–95% yield, 90–99% ee).

Finally, we turned our attention to the asymmetric hydro-
genation of α-substituted acrylic acids (Fig. 4). It is revealed that
solvents have critical roles in [Co]/BPE catalyzed hydrogenation
of α-substituted acrylic acids, affecting both catalytic activity and
selectivity. Full conversion and 98% ee were obtained in
hexafluoroisopropanol (HFIP, Supplementary Table 6). A wide
range of α-aryl acrylic acids (3a–3h) were subjected to the cobalt-
catalyzed hydrogenation, affording the corresponding chiral
carboxylic acids in good to excellent yields and enantioselec-
tivities (89–99% yields, 90–99% ee). Furthermore, 2-alkyl acrylic
acid 3i was also smoothly hydrogenated with 80% ee.

Synthetic applications. To demonstrate the synthetic utility of
cobalt-catalyzed enantioselective hydrogenation of α,β-unsaturated

acids, its synthetic application in series of chiral natural products
and drugs was studied. The critical synthon to (S)-Equol, (S)-2v,
could be easily accessed under standard conditions with high
enantioselectivity (94% ee, Fig. 5a). Similarly, chiral carboxylic acid
2w, a key intermediate in the synthesis of rhinovirus protease
inhibitor Rupintrivir, was obtained in 95% isolated yield and >99%
ee (Fig. 5b). Following optimization of the reaction conditions,
Sacubitril intermediate 2x was obtained in 97% isolated yield and
17/1 dr (Fig. 5c, Supplementary Table 7).

The asymmetric hydrogenation of α-substituted acrylic acids
is of highly practical value because optically pure α-substituted
propionic acids, such as ibuprofen and naproxen, are well-
known non-steroid anti-inflammatory drugs, which can be
readily prepared through asymmetric hydrogenation of the
corresponding α-aryl acrylic acids. Indeed, Naproxen (4j) and
Ibuprofen (4k) were prepared with high yields and enantios-
electivities by using cobalt-based catalytic system (Fig. 5d, e).
Based on the excellent performance of Co/BPE in the above
reaction, we carried out the gram-scale asymmetric hydrogena-
tion of AA (artemisinic acid) 5 in the presence of 0.5 mol% of
chiral cobalt catalyst. Desired product (R)-DHAA (dihydroar-
temisinic acid) 6 was obtained in excellent isolated yield and dr
value (1.16 g, 97/3 dr, Fig. 5f). It is noteworthy that the
trisubstituted olefin in 5 is unreactive under the Co-catalyzed
hydrogenation conditions.

Mechanism study. To provide insight into the possible catalyst
activation mode and the mechanism of the asymmetric hydro-
genation of α,β-unsaturated carboxylic acids, several control and
catalytic experiments were conducted. Previous research by
Chirik and coworkers revealed that additives such as Zn, Mn, or
LiCH2Si(CH3)3 were necessary in the cobalt-catalyzed asym-
metric hydrogenation of enamines and acted as an activator for
pre-catalyst to generate catalytic active cobalt speices65,71. How-
ever, the reaction of α,β-unsaturated carboxylic acid 1a, in the
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absence of any additives, afford 2a in >98% conversion and 94%
ee (Table 1, entry 2). The data suggested that the carboxylic acid
might serve as an activator and mediate the activation process. In
sharp contrast to the high reactivity and enantioselectivity
observed in the case of 1b (99% yield and 96% ee, Fig. 4), no
reaction occurred for the corresponding ethyl ester 1b′ under
standard conditions (Fig. 6a). Moreover, no hydrogenation pro-
duct was observed when AcOH or 1b was added to the reaction
mixture as external carboxylic acid (Fig. 6b, c). These results
indicated that the carboxy group of substrate may be involved in
the control of the reactivity and enantioselectivity through
interaction with the metal center19,22–24,33.

The deuterium-labeling experiments were also conducted to
elucidate the reaction mechanism. The reaction of 1b with D2

under standard condition produced 2b-d2 smoothly in >98%
conversion and 96% ee (Fig. 6d). Performing the hydrogenation
reaction under 40 atm of H2 in isopropanol-d8 solution with 5 eq.
CH3COOD gave 2b in >98% conversion, and no deuterated
products were observed (Fig. 6e). These data suggested that the
H2 served as the hydrogen source and protonation of the Co-alkyl
intermediate was probably not involved in the current reaction
(Supplementary Figs. 1–5). Besides, EPR experiments were also
conducted to monitor the process of the current reaction using 1b
as model substrate. The EPR spectra changed greatly after the
addition of (S,S)-Ph-BPE and substrate 1b, suggesting that the
coordination of the ligand and the exchange between acac and
substrate 1b probably happened (Supplementary Figs. 6–11).

Based on our experimental observations and the previous study
on iridium-catalyzed enantioselective hydrogenation of α,β-
unsaturated acids33, we proposed a plausible mechanism (Fig. 7).
The key catalytic intermediate E could be generated through two
pathways. In the absence of Zn, complex E can be generated
through carboxy group mediated H2 heterolytic process.
Coordination of Co(acac)2 with (S,S)-Ph-BPE generates Co(II)
complex A, which then undergoes ligand exchange with more
acidic substrate 1b to produce complex B, complex B and B′ are
in equilibrium with each other. Heterolysis of H2 by complex B′
produces the key catalytic species E via transition state C.
Intermediate E may be also produced through protonation76 of
dihydride complex D65,73 with 1b when employing one-electron
reductant. Chirik and coworkers73 reported an alternative
mechanism which involved the migratory insertion of the
dihydride complex and the subsequent reduction elimination as
key step. Note that the addition of one-electron reductant is
beneficial for obtaining full conversions with low catalyst loading
(vide supra). The success of Zn or Mn used in this reaction is
presumably due to enhanced activation of Co(II) precursor and
suppressed deactivation of the active catalyst. The key inter-
mediate E then enters the catalytic cycle. Intramolecular
migratory insertion of complex E produces five-membered
intermediate F. Coordination of H2 to F forms complex G,
which undergoes subsequent sigma-bond metathesis to give
complex H. The ligand exchange of intermediate H with
unsaturated carboxylate substrate releases the hydrogenation
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product 2b and regenerates the cobalt hydride complex D.
Mechanistic investigations indicate that the carboxy group has a
pivotal role in the improvement of the reactivity and enantios-
electivity via coordination with the metal center, and that is why
the current reaction does not work for α,β-unsaturated esters.

Discussion
In summary, we have developed a highly efficient cobalt-
catalyzed asymmetric hydrogenation of α,β-unsaturated car-
boxylic acids. The cobalt catalyst system exhibited both high
activities (up to 1860 TON) and excellent enantioselectivities
(up to >99% ee) for a broad spectrum of α,β-unsaturated acids.
It also affords an efficient way to the key intermediates of many
chiral natural products and drugs with high enantioselectivities.
Moreover, this operationally simple and atom-economic pro-
tocol could be easily scaled-up in gram-scale using 0.5 mol%
catalyst loading for the asymmetric synthesis of key inter-
mediate of Artemisinin. Mechanistic studies suggest that the
carboxy group may be involved in the control of the reactivity
and enantioselectivity through interaction with the metal cen-
ter. Additional mechanistic and DFT studies of the asymmetric
transformations with such cobalt system are currently under-
way in our laboratory.

Methods
General procedure for asymmetric hydrogenation. In an argon-filled glovebox,
Co(acac)2 (0.010 M in iPrOH, 0.10 mL, 0.001 mmol) and (S,S)-Ph-BPE (0.010M in
THF, 0.10 mL, 0.001 mmol) were stirred in a vial at room temperature for 10 min.
Then zinc dust (0.65 mg, 0.01 mmol) and iPrOH (0.50 mL) were added and the
mixture was stirred for 15 min. After that, substrate (0.1 mmol) was added to the
reaction mixture. The vial was subsequently transferred into an autoclave and
purged by three cycles of pressurization/venting with H2. The reaction was then
stirred under H2 (40 atm) at room temperature for 24 h. The hydrogen gas was
released slowly and carefully. The resulting solution was concentrated in vacuum
and the residue was purified by chromatography on silica gel. The ee values were
determined by HPLC with a chiral column.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files.
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