Fig. 5: Characterization of AD pathophysiology in wild-type, 5xFAD, and 5xFAD mice overexpressing VGF. | Nature Communications

Fig. 5: Characterization of AD pathophysiology in wild-type, 5xFAD, and 5xFAD mice overexpressing VGF.

From: Multiscale causal networks identify VGF as a key regulator of Alzheimer’s disease

Fig. 5

a Immunohistochemical staining of Aβ amyloid plaques and microglial cells in the male mouse cortex of 5xFAD mice overexpressing VGF in the germline. Left panel, green: Aβ (6E10), red: Iba-1, blue: DAPI; right panel, quantification of percent area of Aβ and Iba-1 staining in male and female mice. Quantification of percent area of Aβ and Iba-1 staining in the cerebral cortex, hippocampal CA3, and hilus; data are presented as mean percentage ± SEM of the control group. One-way ANOVA with Newman–Keuls post hoc analysis, cortex (anti-Aβ): F(3,86) = 30.84, p < 0.0001, CA3 (anti-Aβ): F(3,86) = 12.44, p < 0.0001, cortex (anti-Iba-1): F(3,56) = 7.307, p = 0.0003, n = 9, 8, 7, 6 mice per group, 2–3 slices analyzed per animal, *p < 0.05, **p < 0.01, ***p < 0.001; female: n = 7, 6 mice per group, two-sided Student’s t test, p = 0.031 (Aβ), p = 0.0454 (Iba-1). b Doublecortin staining (DCX) of the subgranular zone (SGZ) in the dentate/hilus area of male 5xFAD brains. Upper panel, red: DCX, blue: DAPI; lower panel, average number of DCX-positive cells per subgranular zone. One-way ANOVA with Newman–Keuls post hoc analysis, male: F(2, 21) = 6.652, p = 0.0058, n = 4, 4, 4 mice per group, 2 slices analyzed per animal; female: F(2, 21) = 7.008, p = 0.0047, n = 10, 9, 5 mice per group. **p < 0.01 c Reduced staining of phosphor-Tau and dystrophic neurite clusters in 5xFAD brains with germline VGF overexpression. Upper panel: phosphor-Tau staining; lower panel: quantification results of dystrophic neurite clusters in the hippocampus and cortical area. One-way ANOVA with Newman–Keuls post hoc analysis, cortex: F(2, 15) = 10.92, p = 0.0012, hippocampus: F(2, 15) = 5.549, p = 0.0157, n = 7, 7, 4 male mice/per group. *p < 0.05, ***p < 0.001. d Barnes maze test. Mice were trained daily and WT mice learned the target quarter (TQ) of the hiding zone by increased distance traveled in the TQ (left panel) and increased time spent in the TQ (right panel). 5xFAD mice showed impaired spatial learning on day 4, while germline VGF overexpression (5xFAD,VGF + /Δ) partially restored memory performance. N = 12–14 mice (male + female) per group. Data were analyzed by two-way repeated-measures ANOVA. % of distance spent in TQ: Days (F(3,108) = 3.215, p < 0.05) and Groups (F(2,36) = 8.77, p < 0.001), and Days × Groups interaction (F(6,108) = 1.9, p = 0.0873). % time spent in TQ: Days (F(3,105) = 2.422, p = 0.07) and Groups (F(2,35) = 20.01, p < 0.0001), and Days × Groups interaction (F(6,105) = 4.501, p < 0.001). Tukey’s post hoc test. #p < 0.05, **p < 0.01, ****p < 0.0001. All data in b–d are presented as mean percentage ± SEM.

Back to article page