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Single cell transcriptomics of primate sensory
neurons identifies cell types associated with
chronic pain
Jussi Kupari 1,7, Dmitry Usoskin1,7, Marc Parisien 2, Daohua Lou1, Yizhou Hu 1, Michael Fatt1,

Peter Lönnerberg1, Mats Spångberg3, Bengt Eriksson3, Nikolaos Barkas 4, Peter V. Kharchenko4,

Karin Loré 5,6, Samar Khoury2, Luda Diatchenko 2✉ & Patrik Ernfors 1✉

Distinct types of dorsal root ganglion sensory neurons may have unique contributions to

chronic pain. Identification of primate sensory neuron types is critical for understanding the

cellular origin and heritability of chronic pain. However, molecular insights into the primate

sensory neurons are missing. Here we classify non-human primate dorsal root ganglion

sensory neurons based on their transcriptome and map human pain heritability to neuronal

types. First, we identified cell correlates between two major datasets for mouse sensory

neuron types. Machine learning exposes an overall cross-species conservation of somato-

sensory neurons between primate and mouse, although with differences at individual gene

level, highlighting the importance of primate data for clinical translation. We map genomic

loci associated with chronic pain in human onto primate sensory neuron types to identify the

cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two

different neuronal types distributed between pain disorders that display different genetic

susceptibilities, suggesting both unique and shared mechanisms between different pain

conditions.
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The dorsal root ganglion (DRG) consists of a variety of
neuron types, each tuned to detect and transduce different
physical stimuli. These neuron types can broadly be divi-

ded into low-threshold mechanosensitive neurons responsible for
sensing touch and high-threshold nociceptors, which are involved
in pain, temperature, and itch1–4. However, a comprehensive
classification of DRG neurons is critical for understanding exactly
how somatosensation works and for providing insights into the
cellular basis for acute and chronic pain. Rodents represent the
main species for studies on the cellular and molecular basis of
nociception and the greatest insights with respect to molecular
classification of neuronal types have been obtained from mouse,
where single-cell RNA-sequencing (scRNA-seq) has led to a
molecular taxonomy of existing types of sensory neurons5–9.

This has enabled the identification of molecular types repre-
senting richly myelinated A-fiber low-threshold mechanoreceptors
(LTMRs) and limb proprioceptors. The remaining neuronal types
in the scRNA-seq are assigned as weakly myelinated or unmye-
linated neurons. One of these is a C-fiber LTMR (C-LTMR)
neuron type that expresses Vglut3 (Slc17a8) and tyrosine hydro-
xylase (Th) that likely is not involved in pain sensation1–5.
Nociception is largely conferred through unmyelinated peptider-
gic C-fiber neuron types and a few lightly myelinated Aδ-noci-
ceptors, a Trpm8 expressing cluster of neurons, as well as cell
types marked by expression of Mrgprd, Mrgpra3, or Sst (named
NP1, NP2, and NP3 types of neurons, respectively8). This mole-
cular classification agrees remarkably well with previous studies
based on myelination and conduction velocity, neurochemical
features and termination patterns peripherally in the skin and
centrally in the spinal cord and is also consistent with the known
ontogeny of DRG neuron types5. As a result, there have been
significant advances in understanding the cellular and molecular
characteristics of sensory neurons found in mouse DRG.

Much less is known about characteristics of human DRG.
Apart from information on size of the ganglia along the rostro-
caudal axis, micro-anatomy including neuron size10–12 and
electrophysiological characteristics13–16, the molecular char-
acterization of human DRG is still limited to bulk RNA-
sequencing17–19 and neurochemical analyses of gene products
in a handful of studies20. Hence, the concordance of markers used
in different studies and their relation to actual neuron types
remain largely unknown. Nevertheless, by examining individual
gene products, these studies suggest important species differences
between human and mouse where, for example, Nav1.8, Nav1.9,
P2X3 receptor, and TRPV1 are present in both small and large
neurons in humans, but only small neurons in mouse, suggesting
fundamental differences in molecular characteristics and princi-
ples of initiation and transduction of somatosensory stimuli
between humans and rodent20.

In humans, rare and drastic mutations that explain different
types of congenital insensitivity to pain and erythromelalgia have
been identified, such as, for example, SCN9A (Nav1.7), NTRK1
(TRKA), and SCN11A (Nav1.9)21–25. In addition to these rare
causing mutations, it is known that the genetic risk for chronic
pain is due to common variations with small effect size26. Close to
half of the risk of developing chronic pain are attributable to
genetic factors27–29, including musculoskeletal pain conditions28.
For musculoskeletal pain there is statistical evidence for a diverse
set of genes involved, with a marked overrepresentation of genes
expressed in neurons and functionally associated with neuro-
transmission, indicating a strong heritable component caused by
altered functions of neurons26. Pleiotropy of single-nucleotide
polymorphisms (SNPs) among painful and non-painful condi-
tions has also been shown30, even in human DRG31. It has
recently become possible to connect genomic results to tran-
scriptomics at the cellular level which allows for insights into the

cell types which are fundamental for disorders. Thus, taking
advantage of scRNA-seq for mapping susceptibility genes to cell
types, new insights have been made into the cell types involved,
for example, in schizophrenia32,33, neuroticism34, intelligence35,36,
and Alzheimer’s disease37, but such analyses have not been
attempted for chronic pain conditions.

Knowledge on the molecular and cellular characteristics of
primate DRG and their mouse correlates has critical implications
for translating data from rodent models to human pain
disorders38,39 and allows mapping genomic loci implicated in
chronic pain onto specific primate somatosensory neuron types.
In this work, we explore the cellular basis of somatosensation in
the non-human primate and identify sensory cell types linked to
human chronic pain. Our results reveal an overall conserved
cellular strategy for somatosensation between primate and mouse
and identify that heritability for musculoskeletal pain converge on
two discreet DRG sensory neuron types.

Results
Molecular diversity of sensory neuron types in a non-human
primate. We prepared DRG cell suspensions for scRNA-seq from
adult Rhesus macaques using two different platforms (Fig. 1a).
First, cells from three macaques (two females and one male) were
captured and sequenced using STRT-2i-seq. A total of 4742 cells
were sequenced and the reads were aligned to the macaque
genome Mmu10 with gene names and annotations transferred
from human (see “Methods”). The data were merged and then
clustered using the anchoring-based integration and graph-based
clustering approach implemented in Seurat40. Using iterative
rounds of clustering and quality control, we identified and
removed non-neuronal cells, injured neurons and ambiguous
cells, and finally merged clusters with highly similar tran-
scriptomic profiles (Supplementary Fig. 1a–g, see “Methods”).
The remaining 2518 neurons formed nine separate clusters
(Fig. 1b and Supplementary Fig. 1g). For validation, this cleaned
dataset was also analyzed using Conos41, an approach that
identifies multiple plausible inter-sample mappings and builds a
joint graph of the datasets. This approach produced close to
identical clusters to the original nine formed with Seurat (Sup-
plementary Fig. 1h, i; see “Methods”). Gene expression patterns
between the different animals showed near perfect positive cor-
relation indicating high similarity of inter-individual tran-
scriptome profiles (Supplementary Fig. 1j). The analyzed neurons
contained 5687 genes and 38,624 unique transcripts per cell on
average, expressed neuron and sensory neuron specific genes
(RBFOX3, SLC17A6) throughout with limited expression of
satellite-glia genes (FABP7, APOE), and showed unique gene
expression profiles (Supplementary Fig. 1k, l and Fig. 1c, d).

After clustering, we used canonical mouse DRG neuron
markers to assign tentative identities for the clusters based on
their likely mouse counterparts (Fig. 1e, f): NP1 (cluster 8) and
NP2 (cluster 9) were named based on the combination of GFRA1
and GFRA2 expression; C-LTMRs (6) were assigned using GFRA2
and ZNF521 (Zpf521 in the mouse); NTRK1 and GAL were used
to identify PEP1 (4); SCN10A and TRPM8 suggested the identity
of the TrpM8high (2) cluster (negative for SCN10A); IL31RA
expression was used for naming NP3 (7); CPNE6 together with
NTRK2 was used to assign putative A-LTMRs (1), and CPNE6
together with NTRK1 and SCN10A were used to assign the PEP2
(3) cluster. The final cluster (5) also expressed CPNE6, NTRK1,
and SCN10A, and was named PEP3.

A second dataset was prepared from five female macaques using
Smart-seq2 technology. After clustering and cleaning steps (Supple-
mentary Fig. 2a–d), these data included 1038 neurons showing
>480,000 counts and >13,500 detected genes per cell on average
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(Supplementary Fig. 2e, f). Tentative neuron identities for this
dataset were assigned in a supervised manner using the STRT-2i-seq
data as a reference (Fig. 1f, g and Supplementary Fig. 2g).
Interrogation of marker gene expression used for tentative cell-
type assignment showed identical patterns between the two macaque

datasets (Supplementary Fig. 2h); thus, representing an independent
identification of the cell types identified in the STRT-2i-seq data. For
full marker lists from both scRNA-seq datasets, see Supplementary
Data 1 and 2. An interactive web resource for browsing the datasets
is available at https://ernforsgroup.shinyapps.io/macaquedrg/.
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Fig. 1 Somatosensory neuron clusters in the macaque DRG. a A schematic view of the workflow. b UMAP plots showing (left) the contribution of
individual animals (N= 3) to STRT-2i-seq clusters and (right) final cluster numbers (m=male, f= female). c Violin plots showing total counts of unique
transcripts, detected genes, and transcript counts for neuronal and satellite-glia marker genes in the neuronal clusters. Y-axes show detected genes per cell
for nFeature_RNA; all others are raw UMI counts. Boxplot defines the median, interquartile range (IQR), and 1.5 × IQR (whiskers). d A hierarchically
organized heatmap with the five most specific genes (by p-adj) for each cluster. e UMAPs showing mouse canonical marker gene expression in the STRT-
2i-seq macaque clusters. f STRT-2i-seq macaque clusters named after most likely mouse counterparts. g Named Smart-seq2 clusters after label transfer
from the STRT-2i-seq data. Image sources: freevectors.net (human silhouette), needpix.com (microwell plates), openclipart.org (Eppendorf tube).
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A consensus on mouse DRG neuron types across datasets. We
wanted to further leverage the vast knowledgebase of mouse DRG
neuron types in our investigation of primate DRG neurons. For
this, we used two major scRNA-seq datasets from previously
published mouse studies, referred hereafter as the Zeisel and
Sharma datasets7,9. These studies identify similar number of
cell types, but it is not known if the same kinds of neurons
were identified and furthermore, the studies use different

nomenclature. We therefore first identified the corresponding cell
types between the datasets. Using the label transfer method
implemented in Seurat, we transferred labels from Sharma over to
the Zeisel data (Fig. 2a, b and Supplementary Fig. 3a) and then
also named the Zeisel types using Usoskin nomenclature8

(Fig. 2c). We then repeated the label transfer from Zeisel to
Sharma data and named the Sharma types also using Usoskin
nomenclature (Fig. 2d–f and Supplementary Fig. 3b). Finally, we
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Fig. 2 Consensus of mouse DRG neuron types across datasets and nomenclatures. a–f UMAPs showing a Zeisel types with Zeisel nomenclature, b Zeisel
data after label transfer from Sharma data, c Zeisel data with Usoskin nomenclature, d Sharma data with original nomenclature, e Sharma data after
label transfer from Zeisel data, and f Sharma data with Usoskin nomenclature. g Probability scores of Sharma types against Zeisel trained module
(performed with Usoskin nomenclature). h Probability scores of Sharma types against Zeisel trained module (performed with Zeisel nomenclature).
i Probability scores of Zeisel types against Sharma trained module (performed with original nomenclature from Sharma). Boxplots in g–i define the median,
interquartile range (IQR), and 1.5 × IQR (whiskers).
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repeated the label transfer from Zeisel to Sharma both ways using
Usoskin labels for the Zeisel data, and observed identical results
(Supplementary Fig. 3c, d).

As an independent method to establish the similarity between
cell types identified in the different studies, we employed neural-
network-based probabilistic scoring modules for learning cell-
type features between datasets. We trained the modules using
both mouse datasets and using all three nomenclature versions
(Zeisel and Usoskin nomenclatures for Zeisel data; Sharma
nomenclature for Sharma data) (Supplementary Fig. 4a–i). We
then tested the performance of these modules in finding the
corresponding cell types between the datasets and found that
the modules detected with high probability cell types across
the different datasets and that the cell-type assignments
concurred with the results obtained by the label transfer. For
the rest of our analyses we used the Usoskin type nomenclature as
the default naming. Taken together, the results confirmed a one-
to-one relationship between nociceptor types identified in refs. 7,9

although the Aδ-nociceptors of Zeisel were split into two subtypes
in Sharma (Fig. 2a–i). Because Usoskin nomenclature performed
with the least noise and greatest prediction scores, we used this
nomenclature for the rest of our analyses.

Overall cross-species conserved strategy for somatosensation.
We proceeded to use the probabilistic neural-network machine-
learning approach to evaluate whether the neuronal basis of
somatosensation is conserved between macaque and mouse, and
to validate our tentative assignment of cross-species neuron
correlations. For this purpose, we generated the probability score

for each macaque cluster to the mouse neuron types using both
the macaque STRT-2i-seq and Smart-seq2 datasets. Each of the
macaque clusters showed similarity to the previously assigned
mouse neuron types (Fig. 3a, b and Supplementary Fig. 5). These
results also indicated that the macaque A-LTMR cluster consists
of cells corresponding to the lightly myelinated Aδ-LTMR type.
Our original annotation of corresponding macaque-mouse neu-
ron types was consistent with the expression of PRDM12 in all
nociceptors and the mechanosensory channel PIEZO2 in
A-LTMRs, C-LTMRs, and NP1 (Fig. 3c). Interestingly, the mouse
proprioceptor marker PVALB was expressed in the macaque
PEP2 neurons. PEP3, the other macaque neuron type showing
similarity to mouse PEP2 differed from PEP2 neurons by
expression of TRPM8, PIEZO2, KIT, and SCGN, but no or low
levels of the heat-sensitive channels TRPV1 and TRPA1 (Fig. 3d).
When compared to the mouse PEP2 subtypes in the Sharma data,
macaque PEP3 showed higher probability to CGRP-eta over
GCRP-zeta and PEP2 to GCRP-zeta over CGRP-eta (Supple-
mentary Fig. 5a, b), indicating two types of Aδ-nociceptors.

To gain further confidence in our cross-species analyses we
performed co-integration of our macaque STRT-2i-seq data with
the Zeisel mouse data using Conos. Here, the previously assigned
macaque clusters showed close positioning to homologous mouse
clusters on a joined cross-species clustering graph (Fig. 3e–g).
This strong cross-species association was also apparent on the
probability profiles after label propagation from mouse clusters to
individual macaque neurons. All macaque clusters showed close
to one-to-one correspondence to individual mouse clusters with
PEP2 and PEP3 having the strongest association to the mouse
PEP2 cluster (Fig. 3h). Combined, these results show evidence of
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differentially expressed between macaque PEP2 and PEP3 clusters. Boxplots in a–d define the median, interquartile range (IQR), and 1.5 × IQR (whiskers).
e–g LargeViz plot showing cross-species clustering of macaque STRT-2i-seq and mouse Zeisel et al. datasets on a shared plot. e Macaque, f mouse,
g merged plot (legend shows origin of samples, WG=macaque, Zeisel=mouse). h Probability plot of label propagation from mouse neuron types to
macaque neuron types. Horizontal blue bars represent mean position for each distribution. i Synopsis of the corresponding DRG neuron types between
mouse and macaque datasets and nomenclatures.
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a strong cross-species association of sensory neuron types,
indicating that the overall cellular basis for somatosensation is
conserved between mouse and macaque (Fig. 3i).

The macaque neuronal types were validated in vivo by triple
in situ hybridization (Fig. 4a and Supplementary Fig. 6). SCN10A
was used as a general marker for nociceptors together with
cluster-specific markers or a combination of markers defining
only one cluster. For some clusters, negative markers were used to
rule out types other than the one under analysis (see “Methods”).

In addition, we analyzed the soma size distribution and
percentage contribution of each cell type in the DRG using in situ
hybridization data (Fig. 4b, c). Finally, we interrogated each of the
neuron types for unique expression patterns for transcription
factors, ion channels, G-protein couple receptors (GPCRs),
catalytic receptors, and endogenous ligands, including neuropep-
tides (Fig. 4d). This revealed, for example, the expression of
multiple GPCRs related to exogenous defense and cholestatic itch
in NP1 and NP2 (MRGPRX1-4), and to histaminergic itch and
inflammatory lipids in NP3 (HRH1, S1PR1) and NP1 (LPAR3).

Species differences and similarities in gene expression. Our
above results confirm an overall existence of neuronal correlates
between the mouse and a primate; nevertheless, important
divergences could still exist when examining expression of indi-
vidual genes within each of the different mouse–macaque cor-
relates. In order to provide a more comprehensive map of the
molecular conserved and divergent features of somatic sensation
and pain between the mouse and the macaque, we compared gene
expression patterns between the species (Fig. 5a–c and Supple-
mentary Data 3). Because strategies to identify new molecular
targets for development of analgesic drugs often are focused on
genes expressed uniquely in the neuron type(s) causative of pain,
we examined the presence of genes within the different neuron

types to identify conserved transcriptional programs between
species as well as sets of genes that are expressed in highly
species-specific manner between corresponding cell types. In such
analyses, false negatives can confound the results. We therefore
first examined the reliability of the individual STRT-2i-seq and
Smart-seq2 datasets in side-by-side analyses of cell-type-specific
expression patterns of mouse–macaque shared genes observing
high reproducibility across different platforms (Supplementary
Fig. 7a–c). We thereafter combined the datasets for mouse7,9 and
macaque (STRT-2i-seq and Smart-seq2) to obtain integrated
datasets for mouse and macaque. Analysis of this dataset revealed
the existence of robust conserved molecular features between
mouse and non-human primate (Fig. 5a).

For example, neuronal type-specific mouse-macaque conserved
features for NP3 neurons included SST, JAK1, IL31RA, OSMR,
and S1PR1 (n= 36 genes) and for C-LTMRs P2RY1, EXOC1L,
KCND3, IQSEC2, OSBPL1A, and FXYD6 (n= 60 genes). The
largest cell-type-specific shared gene program was found between
mouse and macaque Aδ-LTMRs ( n= 126 genes) whereas NP1
and NP2 both had cell-type-specific conserved features of less
than 30 genes (n= 26 and 27, respectively). However, we also
identified cell-type-specific gene expression that were species
specific and these existed both in mouse and macaque (Fig. 5b, c
and Supplementary Data 3). As examples, species differences
included in NP3 the specific expression of TDRD1, EDN3, and
GRIA1 in macaque and NPPB, HTR1F, and NTS in mouse. For C-
LTMRs, TH and RARRES1 were specific for mouse, whereas
HSD17B13 and CCKBR were specific for macaque. These species-
specific expression patterns need to be considered when
translating results obtained in rodents to primates.

We further performed supervised computational screens to find
gene families whose differential expression could reliably distin-
guish similar cell types within and across species42. A set of over
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1500 gene families from HGNC (HUGO Gene Nomenclature
Committee) was used for these screens (Supplementary Data 4).
Within each species the overall top performing gene families
defining all sensory neurons included ion channels, G-protein
coupled receptor families, cell adhesion molecules (CAMs), and
others (Supplementary Fig. 8a and Supplementary Data 5 and 6).
Shared mouse–macaque top performing families included voltage-
gated ion channels, G-protein-coupled receptors, and neuropep-
tides (Supplementary Fig. 8b and Supplementary Data 7),
suggesting that sensory neuron identities culminate mostly on
genes of these families even across species. The highest performing
gene families for correctly assigning macaque and mouse
corresponding sensory neuron subtypes (Supplementary Fig. 8c
and Supplementary Data 7) showed that A-LTMR/NF1 (Aδ-
LTMR) neurons were identified nearly perfectly by many gene
families, for example, by ion channels and CAMs. For the
peptidergic C-fibers (PEP1), neuropeptides/receptor ligands were
the highest performing family, as expected. On the other hand,
NP1 and NP2 scored poorly in comparison to all other types,
suggesting that these neuron types have diverged the most in their
gene expression signatures between mouse and macaque. As a
final comparison between the species, we used SCENIC43 to
identify gene regulatory networks formed from master transcrip-
tion factors and their gene targets (i.e. regulons) in all DRG cell
types of both macaque and mouse (Fig. 5d, e). We found, for
example, the known fate determining regulons driven by SHOX2,
RUNX1, and FOXP2 in mouse9,44–46 and predicted several new
species unique as well as cross-species conserved regulons
determining cell-type identities (see Supplementary Data 8 and
9 for genes).

Genetic association of neuronal types contributing to human
pain states. The identification of the cellular and molecular basis
for somatosensation and pain in non-human primate enables us to
determine the contribution of different primate neuron types in
human chronic pain states. We therefore used human genetic data
to explore how each cell type in the macaque DRG connects to
painful phenotypes in humans by employing genome-wide asso-
ciation studies (GWAS). To do so, we used a large cohort made
available by the UK Biobank project47,48, where we assessed
chronic pain from self-report at eight body sites (Fig. 6a). Among
the nine neuron types identified in the macaque DRG, we found
that common variants associated with chronic pain sites mapped
to sets of genes that were specifically expressed in two neuron
types in the STRT-2i-seq dataset. We found enrichment of
headaches, facial, neck and shoulder, stomach, and hip chronic
pains partitioned heritability in PEP1 neurons (PFDR= 16%, each),
while NP2 neurons were associated most significantly with the
heritability of chronic back pain and hip pain (PFDR= 5% and 8%,
respectively) (Fig. 6b and Supplementary Data 10). Thus, herit-
ability of hip pain was significantly enriched in both PEP1 and
NP2 neuron types while heritability of all other pain sites was
significantly enriched in only one neuron type of the macaque
DRG. Since the epidemiological prevalence of chronic pain
patients to report more than one body site is high, the signal
attributed to, for example, subjects with hip pain may also have
back pain, so it is not clear where the association signal is deriving
from. To control for the co-morbidities, we performed new full
GWASes for each of the pain sites (row in Supplementary Fig. 9b,
c), and then removed one by one all comorbid pain sites (column
in Supplementary Fig. 9b, c) in all GWASes for PEP1 and NP2
neurons. Although some statistical power is lost in this analysis
due to reduced size of chronic case participants, partitioned her-
itability in PEP1 was confirmed in most GWASes (facial, neck/
shoulder, stomach/abdomen, and hip pain), while association with

back pain remained negative (row in Supplementary Fig. 9b).
However, the significance of PEP1 for headaches was lost for all
GWASes. Furthermore, back pain and hip pain remained sig-
nificant for NP2 neurons in all GWASes when excluding other
pain sites (row in Supplementary Fig. 9c). Our results show that
seven of the nine neuron types were not associated with any
chronic pain sites, and hence the two neuron types, PEP1 and
NP2, together represent the main enrichment of musculoskeletal
pain heritability. A meta-analysis across all pain sites for each cell
type (Fig. 6c) consistently found that both PEP1 (P= 5.4 × 10−3)
and NP2 (P= 3.9 × 10−3) displayed significant enrichment across
all pain sites.

We next tested if these results were reproducible in the
independent scRNA-sequencing dataset obtained by the Smart-
seq2 protocol. Consistent with the STRT-2i-seq dataset, we found
enrichment of stomach, hip, and neck, and shoulder chronic pain
partitioned heritability in PEP1 neurons (PFDR= 10%, 10%, 13%,
respectively), while NP2 neurons were associated most signifi-
cantly with the heritability of chronic back pain, hip pain, and
knee pain (PFDR= 10%, each) (Supplementary Fig. 9d). Thus,
heritability to pain was consistently assigned to the same
neuronal types using the STRT-2i-seq and Smart-seq2 datasets,
although significance of PEP1 to headaches and facial pain was
lost in the latter.

In order to identify functional pathways and genes whereby
human heritability contributes to chronic pain in the different
neuronal types, genes were ranked by exclusivity of neuronal cell-
type expression to establish enrichment scores. Human GWAS
enrichment scores were mapped to the macaque single-cell
expression enrichment to identify top genes in type-specific cells
contributing to chronic pain sites in PEP1 and NP2 neurons,
revealing hundreds of genes (Fig. 6d, e and Supplementary
Data 10). These were thereafter used to identify cellular pathways
that confer vulnerability to chronic pain (Fig. 6f and Supple-
mentary Data 10). Combined, these results show that heritability
of chronic pain at different sites is associated with each of the two
major pain neuron types through different biological pathways
(see Supplementary Data 10). Pathways contributing to chronic
pain in PEP1 neurons included “clathrin-dependent endocytosis”,
“central nervous system development”, and “axon development”
with an enrichment of proteins involved in the process of
endocytosis, cell adhesion as well as a few transcription factors
(Fig. 6f, g). In contrast, pathways in NP2 neurons included
“synapse organization”, “chemical synaptic transmission”, and
“cell projection morphogenesis” and were dominated by genes
associated with organization of the synaptic membrane and its
vesicles, ion channels participating in excitability, G-protein
signaling, and cell adhesion (Fig. 6f, h). Thus, the two neuron
types contribute to chronic pain via distinct pathways.

Discussion
The human DRG like the mouse contain neurons with different
histochemical and electrophysiological features13–16,49,50. The
identification of the molecular types of primate somatosensory
neurons addresses the longstanding question whether cell types
involved in somatosensation is conserved between rodents and
primates. We conclude that the mouse7–9 and the Rhesus
macaque largely share molecular neuron types which using
mouse genetics have been functionally identified as A-LTMRs
involved in touch and proprioceptive sensation1, C-LTMRs
involved in the affective aspect of pleasant touch5, C-cold ther-
moreceptors (TrpM8high), Aδ fast mechanical nociceptors
involved in pinprick pain (PEP2)51–54 and mechano-heat C-
nociceptors (PEP1), as well as “non-peptidergic” neuronal types
(NP1, NP2, NP3) known in mouse to be involved sensing noxious
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mechanical threshold and itch sensation55–57. Although the
neural-network prediction score was low, macaque PEP3 appears
to be an Aδ-fiber fast nociceptor which correspond to mouse
CGRP-eta type in Sharma nomenclature, which is a subtype of
the mouse PEP2 type in the Usoskin nomenclature.

Overt differences in the overall cellular basis for nociception
between mouse and macaque largely relates to NP1 and NP2
neurons. In the mouse, NP1 is involved in detecting pricking
mechanical stimuli and β-alanine induced itch through the
Mrgprd receptor, but not thermal sensation. In the macaque, the
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expression of the heat-activated channel TRPV1 in NP1 neurons,
in addition to TRPA1, suggests a broader function than in the
mouse. The mouse NP2 neurons express histamine and chlor-
oquine receptors and ablation of these neurons (Mrgpra3+ neu-
rons) specifically affects histamine-dependent and histamine-
independent itch, but not acute noxious heat, cold, or mechanical
pain56. NP2 neurons have therefore been considered to be dedi-
cated itch neurons in rodents58. However, this neuronal type was
recently found to code for both itch and pain, with itch behavior
induced by metabotropic Gq-linked stimulation and pain beha-
vior through fast ionotropic stimulation59, suggesting that the
same neuronal populations can drive distinct sensations in a
stimulus-dependent manner. In addition, based on the molecular
profiles, macaque NP2 neurons appear partly different from
mouse as histamine receptor HRH1 expression is low in macaque
NP2 neurons. Other known functional stimuli detectors found in
these cells are MRGPRX1–4, which are also expressed in NP1
neurons. MRGPRX1–4 are promiscuous low-affinity receptors
involved in non-histaminergic itch, conveyed, for example, by
chloroquine and pruritogenic peptides58. Primate NP1 and NP2
neurons may thus have at least partly different functions than in
the mouse.

Even though the exact neuronal basis for human chronic pain
is unknown, insights have been obtained through the identifica-
tion of genes causing congenital insensitivity to pain22,60. While
most of the genes causing painless phenotype are abundantly
expressed in all DRG neuron types, some display restricted
expression patterns, thus opening for linking neuronal types to
phenotype. These includes congenital insensitivity to pain by
mutations in SCN9A (Nav1.7), SCN11A (Nav1.9), and NTRK1
(TRKA)21–25,61 and PRDM12 (ref. 62). In contrast to mouse
which display an enriched expression in nociceptors, macaque
SCN9A is broadly expressed at similar levels in all neuronal types,
while SCN11A expression is more similar to mouse with
expression at varying levels in all unmyelinated neuronal types
(C-LTMRs, PEP1, NP1-3,) with very low levels in TRPM8high,
myelinated nociceptors, and A-LTMRs (see https://ernforsgroup.
shinyapps.io/macaquedrg/ for interrogation of gene expression).
NTRK1 is largely confined to macaque TRPM8high, PEP1, PEP2,
and PEP3 neuronal types, with lower levels in the other noci-
ceptors. PRDM12 expression is consistent with mouse, appearing
in all macaque neurons except Aδ-LTMRs. Thus, although it is
not possible to pinpoint the exact neuronal types, it seems based
on expression of these causative genes for human monogenic pain
insensitivity disorders that PEP1, PEP2, PEP3, and TRPM8high

represent important neuronal types for nociception. However, it
cannot be excluded that neuronal types sufficient for driving
chronic pain might partly involve neuron types other than those
required for nociception.

Previous GWAS studies have uncovered genome-wide sig-
nificant genes that contributes to the heritable risk of chronic
pain. Recent methods32,33 allow the integration of GWAS and
scRNA-seq data to map cell types contributing to disease through
testing the enrichment for cell-type-specific expression of genes

with nearby risk SNPs. Such analyses consider the heritability
carried by all common SNPs, linking them to nearby genes, rather
than focusing only on genome-wide significant genes. Using this
methodology, we linked GWAS results of several human chronic
pain sites to specific neuronal types in the primates. Significance
for cell-type-specific contributions reported in previous
studies32,63 showed stronger association than that reported in this
work (false discovery rate (FDR) in the range of 5–20%). How-
ever, the estimation for the heritability of pain ranges from 2 to
10%64–66 with 7.6% for chronic back pain67. In a comparative
study of heritability between different classes of diseases, it was
shown that mental health disorders show higher heritability
estimates than self-reported pain phenotypes66. Furthermore, all
chronic pain GWAS in the UK Biobank displayed inflated
genomic control parameters (λGC >> 1) while at the same time an
LD regression score intercept close to 1, indicating that the
inflation’s origin is highly polygenic in nature. Because of these
two effects combined (lower heritability and higher polygenicity),
a tissue- or cell-type-specific contribution to chronic pain would
be smaller in comparison with other diseases, like schizophrenia.
On the contrary, it is perhaps remarkable that some specific cell
types show significance, particularly since the burden also dis-
tributes to cell types other than sensory neurons. However, the
strength of our analysis is that it considers the accumulated
contribution of all small effect sizes in sensory neurons dis-
tributed across the human genome. Thus, we believe that the
significance observed is in the range of expectation. Furthermore,
we show that the association to the identified neuronal types
emerge from multiple pain GWAS and in addition was repro-
duced in an independent dataset using a different sequencing
platform.

The results show that musculoskeletal pain genetics is well
represented in the DRG. Our findings reveal a connection to two
of nine types of neurons to multiple chronic pain sites, namely
PEP1 and NP2. However, there is an overlap of individuals being
included in some of these pain groups and if a cell type is enri-
ched in multiple pain GWAS, there is a risk of reporting the false
association that is driven by phenotypic co-morbidity but not a
true genetic association. Iterative removal of one pain site at a
time in the GWAS and examining if the significance to the other
pain site remain indicates that most of the GWAS signals
observed is attributed to the annotated pain sites themselves.
These results point towards a common underlying pain vulner-
ability regardless of the body site where pain is manifested. PEP1
for headache could not be confirmed in this analysis. Thus,
assignment of contribution of PEP1 cell type to headaches might
be due to co-morbidity of other pain sites with headaches. This
suggest that musculoskeletal pain and headache are unique
experiences caused by different neuronal mechanisms, which is in
line with reports that in congenital insensitivity to pain pheno-
types, there are painless cases with the only pain felt consisting in
tension headaches68 and furthermore, is consistent with findings
that there is a shared genetic factors in conditions manifesting
chronic pain except for migraine69.

Fig. 6 Contribution of macaque DRG cell types to partitioned heritability of human chronic pain sites. a UK Biobank chronic pain sites mapped to the
human body. Number of chronic case participants shown in parentheses. b Heatmap of FDR-corrected p values for enrichment in partitioned heritability of
each macaque DRG cell type (n= 3 macaques) to each human chronic pain site. c Forest plot of partitioned heritability estimates for each macaque DRG
cell type contributing to chronic pain. Shown are heritability coefficient estimates (circles) and their 95% confidence intervals (bars) for each pain site.
Fixed-effect, standard error weighted, meta-analyzed heritability estimates (triangles) also shown, colored red when significant at Bonferroni-corrected
level (corrected for nine cell types). d, e Top genes in type-specific cells contributing to specific chronic pain sites. Top genes highlighted in a scatter plot
(pink, left). Scatter plots show human GWAS enrichment of gene (y-axis) as a function of macaque cluster enrichment (x-axis). f Bar plot of top pathways
for PEP1 and NP2 cell types in the meta-analysis of the eight chronic pain sites. g, h Schematic illustrations of pathway-related genes in g PEP1 and h NP2
neuron types. Image sources: wikipedia.org (human silhouette).
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Apart from headache, the different pain sites suggest the
involvement of one of two main neuron types PEP1 and NP2 in
all cases but hip pain, which is associated with both. Thus, these
results suggest that different neuron types are associated with
different chronic pain sites. This opens for the question if the
different types of pain could be location dependent, thus
depending on segmental levels of DRGs or trigeminal ganglion
neurons in the facial region rather than neuronal type depen-
dency. However, analysis of somatosensory neurons across the
rostro-caudal axis of the mouse, including DRG7–9, jugular
ganglion70, and trigeminal ganglion7, reveals that the neuronal
strategy of somatosensation is shared regardless of body location.
Thus, similar types of somatosensory neurons exist in the DRG as
in jugular and trigeminal ganglion. Because of this, we assumed
that rostro-caudal differences in pain sites should not affect the
identification of involved cell types. This motivated us to use
macaque DRG to predict the heritable risk genes at different pain
locations in the humans, including trigeminal area pain. While
mouse models have not specifically addressed the contribution of
NP2 neurons to chronic pain, the contribution of PEP1 neurons
to pain is well established. For example, ablation of CGRP+

neurons, which include the PEP1 neurons, results in the loss of
noxious heat sensation as well as inflammatory and neuropathic
heat hyperalgesia in the mouse71.

Largely different genes contribute to chronic pain in PEP1 and
NP2 neurons. In previous human association studies for mus-
culoskeletal chronic pain there is a marked enrichment of genes
involved in neurotransmission but also in, for example, immune
genes, metabolic processing, skeletal tissue differentiation, and
hormone signaling pathway genes26. In this study, we expected to
capture the signal associated with the heritable risk in the dif-
ferent somatosensory neurons. The results reveal unique vul-
nerability pathways at play during pain chronification in the
different neuronal types, suggesting that the causal mechanisms
might be different between chronic pain conditions. While there
is an enrichment of risk genes in PEP1 neurons that belongs to
clathrin-dependent endocytosis and axon and nervous system
development, NP2 neurons display an enrichment in synaptic
organization and transmission and cell projection morphogenesis.
This does not inform that these pathways are the only ones
present in the different sensory neurons of particular populations.
Instead, it shows that expression of, for example, specific mem-
bers of cell adhesion/repulsion genes carrying nearby variations
with significant heritable risk to chronic pain are enriched in
PEP1 neurons. Analysis of the underlying genes with enriched
heritability reveal a common pattern related to a susceptibility of
neuronal connectivity, although with different functional classes
of genes in different neurons. Thus, we conclude that the results
support the notion that the major genetic risks expressed in
somatosensory neurons are carried in genes involved in structural
and functional connections of the neurons, and thus impacts on
neurotransmission. The most direct effects may be contributed by
synaptic adhesion molecules, which are known to be involved in
synaptic plasticity of sensory neurons.

We have mapped heritability to two specific types of primary
sensory neurons. However, as previously mentioned, we do not
explain the full heritability to musculoskeletal chronic pain in this
study, since cell types other than those analyzed may also con-
tribute to chronic pain. Furthermore, the improvement of the
statistical power and functional human genomic data may add
resolution. Thus, more genes could contribute to chronic pain
within sensory neurons as well as in cells other than primary
sensory neurons, such as, for example, immune and vascular
cells for headaches. Nevertheless, the finding that two neuronal
types among the variety of sensory neurons carry a significant

enrichment for the heritable risk to musculoskeletal pain indi-
cates a contribution of these cell types to the pathophysiology of
musculoskeletal chronic pain. This provides a rational for a
deeper investigation of their participation with regard to human
chronic pain. Furthermore, many drugs fall into the translational
chasm between mice and humans72. Our atlas of somatosensory
neuron gene expression in non-human primate should be
important to verify putative drug targets and can also be of help
in informed strategies for development of conceptually new
analgesic drugs.

Methods
Animals. For WaferGen (STRT-2i-seq), DRGs from two 5-year-old female (sam-
ples WG17019 and WG17020) and one 14-year-old male (WG18008) macaques
were used. Smart-Seq2 samples were prepared from five females aged 5–7 years
from the same colony. All animals were healthy Indian rhesus macaques (Macaca
mulatta) from a colony of outbred animals housed in the Astrid Fagraeus
laboratory at the Karolinska Institutet. To reduce the usage of laboratory animals,
all tissue samples used in this study were collected from animals euthanized for
organ collection in an unrelated study73,74 (ethics license N2/15) approved by the
Stockholm Laboratory Animals Ethics Committee in accordance to the Swedish
legislation SJVFS 2019:9 saknr L150. A full list of samples used in the study is
presented in Supplementary Data 11.

Preparation of cell suspensions. Approximately 1 h after animal termination 6–8
lumbar DRGs (three pairs of the biggest and one pair of anterior/posterior L3–L7)
were exposed, dissected out, and kept in cold NMDG-cutting solution until dis-
sociation (NMDG-CS adopted from ref. 75; concentrations in mM: 103 NMDG (10
N HCl to adjust pH to 7.4), 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25
glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyruvate, 10 N-acetyl-L-cysteine,
1 mM EDTA). Dissociation procedure was modified from ref. 76 and all reagents
were from the same sources. All following steps were performed in cold NMDG-
CS. Connective tissue and nerve excess were removed before dissociation. DRGs
were cut once longitudinally (along the nerve) followed by chopping into ~0.5 mm
slices with a tissue slicer. Samples were enzymatically treated (3.9 ml papain
solution (45 units/ml, PAPL, cat.n.LS003118, Worthington) in NMDG-CS, 0.2 ml
DNAse I (1 mM in NMDG-CS, cat.n.LK003172, Worthington), 0.4 ml TrypLE (cat.
n.12605036, Life Technologies), 0.4 ml Collagenase/Dispase (20 mg/ml, cat.n.
LS004106, Worthington)) for 1 h at 37 °C with triturating every 15 min through a
1 ml tip cut to a ~5 mm opening. Then the sample was gently triturated trough 3–4
cut 1 ml tips (5–2 mm opening). The resulting cell suspension was then run
through 100-µm cell strainers (pluriStrainer®, 100 µm). The total volume of the
sample (after strainer rinsing) was ~5 ml. One milliliter of 10% Optiprep (cat.n.
D1556, Sigma Aldrich) in NMDG-CS was loaded under the cell suspension solu-
tion using a gel loading tip and centrifugated at 200g for 6 min with a low break.
Supernatant was discarded, the cell pellet re-suspended in NMDG-CS+
B27 supplement (NMDG-CS/B27), and run through a 10 µm pluriStrainer® pre-
coated with NMDG-CS/B27. The strainer was rinsed twice with 5 ml of NMDG-
SC/B27 applied slowly along the wall of the strainer, turned over, and the
remaining big cells were then collected by back flushing the filter twice with 5 ml of
filtered NMDG-CS/B27. Five microliters of CellTracker (Green CMFDA, cat.no.
C7025, 50 µg in 10 µl of DMSO) was added into the resulting 10 ml of cell sus-
pension. The cells were kept on ice for 15–20 min, centrifuged for 3 min at 100g
and re-suspended in 900 µl of 0.45 µm filtered NMDG-SC/B27/12% optiprep
(optiprep was added to slow cell sinking in the solution while dispensing) and
dispensed immediately into a WaferGen9600 Chip. Samples for Smart-Seq2 pro-
tocol (SS2) were dissociated in a similar way but CellTracker Orange was used
instead of Green. Then samples were run through FACS (BD Influx, nozzle—200
µm pressure—2.5 PSI), gating events for high values in both SSC and Orange
fluorescent channel and sorted into 384 plates for immediate freezing for later
processing in the Smart-Seq2 pipeline.

scRNA-seq, sequencing, and sequence alignment. WaferGen chips were pro-
cessed according to the STRT-seq-2i workflow described in ref. 77 and FACS sorted
384-well plates were processed according to the Smart-Seq2 workflow described in
ref. 78. The resulting WaferGen (samples WG in the text) and Smart-Seq2 (samples
SS2 in the text) were sequenced on three and one lanes, respectively, on the Illumina
HiSeq 2500 platform. Reads were aligned to the Macaca mulatta genome build
(Mmul_10/rheMac10, ftp://hgdownload.soe.ucsc.edu/goldenPath/rheMac10/). Since
transcript annotations are incomplete on the macaque genome, and names of
macaque genes differ from these of the human orthologues or putative orthologues,
we used the following procedure to extend and normalize the monkey transcript
annotation set with the human hg38 annotations: (1) LiftOver (http://hgdownload.
soe.ucsc.edu/goldenPath/rheMac10/liftOver/) was used to align the rheMac10 and
hg38 genomes. (2) A transcript from hg38 that had not even the smallest overlap
with any transcript in rheMac10 was added to final transcript set. (3) All transcripts
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from rheMac10 were put in the final set. If either 5′ or 3′ end matched within a few
bases to a human transcript, the gene name was changed to the human name. The
exception to this was microRNAs (“MIRxxx”) in hg38, where both ends were
required to match for a name change to be applied. (4) In the few cases where two
hg38 transcripts with the same 5′ or 3′ end had different gene names, a rheMac10
transcript with the same end was assigned a name which is a combination (“name1/
name2/…”) of the alternative names from hg38. 5) When there was a longer 5′ or 3′
extension in the liftOver model of a human transcript compared with the over-
lapping monkey transcript, the 5′/3′ exons of the corresponding monkey gene were
adjusted accordingly. Supplementary Data 12 lists all 2445 genes for which names
from Mmul10 build were replaced with hg38 gene names, as described above. The
outcome gene statistics for raw WG sample data is the following: median genes
detected per neuron—6380, total number of genes detected in at least three neurons
—22160, of them 15821 are in human gene nomenclature consortium.

RNAScope, microscopy, image analysis, and quantification. Sets of freshly
dissected macaque lumbar DRG were fresh frozen in OCT over dry ice and swiftly
stored at −80 °C until sectioning. Cryosections were cut at 10 µm thickness, the
slides were dried at RT, and then stored again at −80 °C to preserve RNA integrity.
RNAScope version 2.0 using the RNAscope Fluorescent Multiplex Reagent Kit
(Advanced Cell Diagnostics Inc.) was used for in situ hybridization. The staining
combinations listed below were used for validations. TrpM8High: TRPM8, SCN10A
(negative), CBLN2 (negative); PEP3: TRPM8, SCN10A, CBLN2 (negative); A-
LTMR: CBLN2, TRPM8 (negative), SCN10A (negative); NP1: GFRA1, GFRA2, GAL
(negative); NP2: GFRA1, GFRA2 (negative), GAL (negative); C-LTMR: GFRA2,
GFRA1 (negative), GAL (negative); PEP1: GAL, GFRA1 (negative), GFRA2
(negative); NP3: GFRA3, PVALB (negative), GAL (negative); PEP2: SCN10A,
PVALB. The following probes were used to validate the clusters: Hs-SCN10A (#Cat
No. 406291), Hs-TRPM8-C3 (#Cat No. 543121), Mmu-GAL-C3 (#Cat No.
830031), Hs-GFRA1-C2 (#Cat No. 435661), Hs-GFRA2 (#Cat No. 463011), Hs-
CBLN2-C2 (#Cat No. 446051), Hs-GFRA3-C2 (#Cat No. 535521), and Mmu-
PVALB (#Cat No. 461691). The cross-reaction of human probes was predicted
computationally by Advanced Cell Diagnostics Inc. and verified in macaque tissue
by the authors. A Zeiss LSM800 confocal microscope was used to capture images
and ImageJ (v.1.52h) was used for image analysis. Lumbar DRG sections from
two animals (females, about 5 years old) different from those used for scRNA-
sequencing were processed for quantification. Quantification of the proportion
each neuronal type in the DRG and measurements of cell diameter of the different
neuronal types was performed by two persons (total cells analyzed= 1009 cells).
Background enhancement was used to identify all neuronal profiles with a visible
nucleus in each section. Signal quantification was performed automatically
in imageJ on manually outlines cells. Using this data cells were classified to clusters
in R using a probe signal threshold as a positive classifier. Probe signal threshold
was determined for each individual probe signal using a signal distribution plot.
Different animals showed similar relative dimeter of each neuronal type (Pearson
correlation coefficient= 0.98).

scRNA-seq analysis of Macaque data. R (version 4.0.2) and Seurat (version
3.2.2) were used for the scRNA-seq analysis. Three objects were created from the
individual biological STRT-2i-seq replicates. The data were normalized (Normal-
izeData) after which 2000 most variable features were selected (FindVaria-
bleFeatures). To mitigate batch effects between replicates we used Seurat’s
integrated analysis approach that transforms datasets into a shared space using
pairwise correspondences (or “anchors”)40. Anchors were first defined using Fin-
dIntegrationAnchors (dims= 1:40) and the data were then integrated (Inte-
grateData) and scaled (ScaleData), followed by principal component analysis
(PCA) (RunPCA, npcs= 100). For clustering, the following parameters were used:
RunUMAP, reduction= pca, dims= 1:20; FindNeighbors, reduction= pca,
dims= 1:20; FindClusters, resolution= 1. The clusters showing minimal expres-
sion of a neuronal markers (SNAP25, RBFOX3) and/or low number of detected
genes were removed. The following round of clustering (resolution= 3) produced a
total 29 clusters, of which three expressing markers of injured cells (e.g. ATF3)
satellite glia (e.g. APOE) or other non-neuronal cells (e.g. EMCN [endothelial
cells]) were removed. The cells were then reclustered (resolution= 2) and
remaining cells with ambiguous identities were removed. After this, a residual
signal coming from satellite-glia marker genes was scored for each cluster
(AddModuleScore; features= “SPARC”,“PMP2”, “APOE”, “SPARCL1”, “PLP1”,
“ABCA8”, “S100A1”, “LPL”, “IFITM4P”, name= “scg_score”). The cells were then
clustered for the final time (dims= 1:30, resolution= 2) and the satellite-glia signal
was regressed out (ScaleData; vars.to.regress= “sgc_score1”). After this, highly
similar clusters without clearly distinguishable markers were merged to produce
the final nine clusters. A dendrogram was then built (BuildClusterTree) using
dimensions 1:30. For Smart-seq2, the individual datasets for each animal were
initially integrated and clustered similarly to the STRT-2i-seq data. After the first
round, clusters showing a non-neuronal identity and/or low levels of detected genes
were removed. After this, the cells were cluster a second time (dims= 1:20, reso-
lution= 1.5). To assign identities to the clusters we used label transfer between the
STRT-2i-seq and Smart-seq2 datasets (FindTransferAnchors; reference= STRT-2i,
query= Smart-seq2, dims= 1:30; TransferData; anchorset= anchors, refdata=

usoskin_id, dims= 1:30). Wilcoxon rank sum test was used to identify cluster-
enriched genes, reporting two-sided adjusted P values based on Bonferroni’s cor-
rection (FDR). Genes detected in >25% of cells in the cluster with FDR < 0.05 and
>0.25 average log2-fold-change were considered as marker genes for the cluster.

Label transfer between mouse DRG datasets. To visualize mouse DRG scRNA-
seq datasets as UMAPs, the individual datasets from refs. 7,9 were clustered with
Seurat (ScaleData, vars.to.regress=c(“orig.ident”, “nCount_RNA”); RunPCA, npcs
= 100; RunUMAP, dims= 1:20; FindNeighbors, dims= 1:20; FindClusters, reso-
lution= 0.1) but the cell identities were set as original identities from the pub-
lications. Label transfers between the datasets were then performed using the
different combinations of reference and query datasets and nomenclatures (Find-
TransferAnchors; reference= reference_dataset, query= query_dataset, dims=
1:30; TransferData; anchorset= anchors, refdata= used_nomenclature, dims=
1:30).

Conos analysis. For Conos41 WG macaque datasets were integrated using CCA
space ($buildGraph(k= 15, k.self=5, space= “CCA”, ncomps=30, n.
odgenes=2000, snn=F, snn.k= 50), followed by UMAP embedding ($embed-
Graph(method= “UMAP”, min.dist=0.1, spread=20, n.cores=4, min.prob.low-
er=1e-3). For macaque (WG) and mouse (Zeisel) dataset co-integration was
performed as $buildGraph(k= 15, k.self=5, space= “CCA”, ncomps=30, n.
odgenes=2000, snn=T,snn.k= 15), followed by largeVis embedding: $embed-
Graph(alpha= 0.1, sgd_batched=1e6, seed = 1). Label propagation ($propagate-
Labels) was run using method “diffusion”.

Mouse DRG scRNA-seq data. Mouse DRG data were downloaded from (http://
loom.linnarssonlab.org/clone/Mousebrain.org.level6/
L6_Peripheral_sensory_neurons.loom) and GEO (GSE139088) and the cluster
annotation was modified to conform to established nomenclature8. Mouse gene
names were switched to corresponding human orthologs using biomaRt (v2.42).

Scoring analysis of cell-type identity. For this analysis, our goal was to score the
probabilistic cell identity of each cell relative to the defined cell types at the
transcriptional level79,80. We built a vanilla neural-network model for classification
tasks in PyTorch framework with CUDA support for GPU computation, and
trained the model to learn the general prototypes of defined cell types. To train the
model, we obtained the over-dispersed genes by estimating the mean and coeffi-
cients of variation. The over-dispersed genes were further ranked by two heuristics
for cell-type specificity of both fold-change and enrichment score-change9. The
cross-species alignment was performed as described in ref. 80. Subsequently, the
ranked marker genes of defined cell types were log-transformed and scaled by
Minmax normalization, and then used for the neural-network model. The neural-
network model contains an input layer with the number of neuron nodes similar to
the number of marker genes, a hidden layer with the number of neuron nodes
similar to 20% of marker gene numbers, and an output layer with the number of
neuron nodes similar to the number of defined cell types. Linear regression was
performed between each layer, and the 30% threshold for dropouts was set to
reduce the overfitting. Rectified linear units were used as the activation function of
the hidden layer, and Softmax was used for the output layer to evaluate the
probabilities. Nesterov Momentum was used as a stochastic gradient descent (SGD)
optimizer. To choose the adequate regularization strength, the classifier accuracy
and the loss value were inspected against epoch numbers. The classifier accuracy
was estimated by a k-fold cross-validation, of which the dataset was randomly split
(k= 3). The learning rate, epoch number, and momentum were chosen corre-
sponding to the maximum point of learning curve reaching the accuracy plateaus.
The ready model was used to predict the probabilities of each cell belonging to each
trained reference cell types. The permutation test of dataset was applied to qualify
the significance of the prediction, and the p values were calculated by FDR. Data
were visualized using the radar plot81 consisting of a sequence of equiangular
polygon spokes with the distal vertex representing each trained reference cell type.
The distance between the polygon center and each vertex of the polygon represents
the relative probabilities of each trained reference cell assigning to the defined
reference cell types and the position of each predicting cell was calculated as a
linear combination of the probabilities against all reference cell types, and then
visualized as the relative position to all vertices of the polygon.

Comparison of transcriptional signatures between species. Individual Seurat
objects were formed for each species from the two mouse datasets and from the
two macaque datasets (Seurat function merge). Within each object, the genes
expressed in each cluster were first filtered (FindMarkers; only.pos=TRUE, logfc.
threshold=0). Then, genes found specifically in one species (setdiff; species1$genes,
species2$genes) or in both (intersect; species1$genes, species2$genes) were listed. A
log2FC threshold of 0.25 was used for finding genes that were expressed above
baseline for a corresponding cluster in both species. A similar threshold was used
when defining species unique cluster markers.
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Scenic. SCENIC43 was used to infer active transcription factors and their target
genes. SCENIC was performed following the authors’ vignette: https://github.com/
aertslab/SCENIC/blob/master/vignettes/SCENIC_Running.Rmd. First, gene sets
co-expressed with transcription factors were identified and modules kept if the
transcription factor motif was enriched among its targets. Then, target genes
without direct motif support were removed. Finally, regulon activity was scored
and binarized to determine whether the genes in each regulon are enriched in
each cell.

Computational genomics screen for gene families. For the supervised compu-
tational screen using Metaneighbor82, a set of 1500+ gene families was downloaded
from the HGNC website (https://www.genenames.org/download/custom/). The
gene families were filtered only to include families with three or more genes
expressed in the analyzed data. The analysis was run following the vignette pro-
vided by the authors (https://github.com/maggiecrow/MetaNeighbor). In brief, this
is a machine-learning-based analysis scores the performance to correctly connect
cells of known corresponding identity based on the similarity of their transcrip-
tional profiles across a given set of genes42. For intra-species analyses, comparisons
were run between 1 vs 2 individual macaques (for STRT-2i-seq data) and between
two biological replicates for the mouse data. For cross-species analyses, compar-
isons were run with “species” as the identifier. To improve readability, the lists of
highest scoring families were curated for redundancy for the figures (Supple-
mentary Fig. 8), showing only the highest scoring family from a group of highly
similar families. The full tables can be found in Supplementary Data 5, 6 and 7.

Cell-type-specific partitioned heritability. We followed the protocol established
by Finucane et al.32. Three steps of analysis were required to address our
hypothesis. The first step consisted in identifying the top 10% genes most asso-
ciated with a macaque DRG cluster cell type. For this, we extracted from the
expression matrix the raw counts of genes in each single-cell sample. Sample size
factors were estimated using DESeq2’s estimateSizeFactors83. Then, for each gene,
we regressed gene expression of all samples to cluster membership (yes= 1, no=
0), using size factors and animal’s sex as co-variables. We then sorted the genes by
decreasing regression’s test statistics and retained the top 10% (n= 1322) most
associated genes to a cluster. The second step consisted in creating cluster-specific
annotations following instructions given at URL https://github.com/bulik/ldsc/
wiki/LD-Score-Estimation-Tutorial, under the “Partitioned LD Scores” section.
The control track was made up of the same genes used in Franke’s control dataset84

by Finucane et al.32. The third and final step consisted of screening various pain-
related summary GWAS from the UK Biobank against these annotations to
uncover cluster-specific contributions to partitioned heritability. Statistical sig-
nificance was established at up to the 20% FDR level on a per-cluster basis, i.e., the
genetic contribution for each pain site was tested in each cluster. We chose FDR
instead of Bonferroni as epidemiological data establish co-morbidity of pain sites
report. Meta-analyses of partitioned heritability coefficients were performed using
the inverse standard error approach suggested in METAL85.

Sample size. For GWAS in the UK Biobank, the sample size was determined by the
number of available participants once genotyping quality controls have been per-
formed followed by our own study exclusion criteria (described below). GWAS
genotyping quality controls have been performed by the UK Biobank themselves,
and are described in this document: https://biobank.ctsu.ox.ac.uk/crystal/crystal/
docs/genotyping_qc.pdf.

Data exclusions. GWAS participants were excluded based on: (1) poor genotyping
quality, (2) voluntary retraction from the UK Biobank study, (3) of ancestries other
than Caucasian (UK Biobank field 22006), (4) participants who answered “prefer
not to answer” for the touchscreen question “In the last month have you experi-
enced any of the following that interfered with your usual activities?” (UK Biobank
field 6159).

Replication. For GWAS, no other cohorts with the same recruitment characteristics
(cross-sectional) and matching pain questionnaires (self-declared at eight body
sites, pain experienced for more than 3 months) were available for replication. The
UK Biobank is one of the largest cohorts available for genetics studies. The UK
Biobank cohort was used as a discovery cohort to test the hypothesis of involve-
ment of genetic loci in genes expressed in specific cell types in primate dorsal root
ganglia in pain phenotypes.

Randomization. No randomization of subjects in the UK Biobank for GWAS
purposes was needed.

Blinding. The UK Biobank study was cross-sectional in nature, and so is agnostic to
self-declared pain status in participants. We did not do any recruitment as part of
the UK Biobank project. Study protocols were approved by UK Biobank’s own
“Ethics Advisory Committee”. We analyze the data granted by UK biobank
application number 20802.

Cluster and GWAS enrichment. To uncover genes simultaneously strongly
associated with cluster specificity and chronic pain phenotypes, we estimated the
area spanned by a given gene using a scatter plot in which both cell type and
GWAS enrichments were tracked. Gene-level test statistics were obtained from
summary chronic pain GWAS using MAGMA86. We retained genes for which cell-
type specificity was positive, indicating an increased gene expression in the cell type
of interest, with enrichment increasing with cell-type specificity. P value for a
gene’s area was estimated from a fit of the density of genes to a Bessel function
(appropriate to model a product of two normal distributions), and then integrating
from minus infinity to minus the absolute value of the area of the gene. The Bessel
estimator was such that integrating over from minus infinity to plus infinity yielded
a value of 1 (the estimator was normalized). All genes up to FDR 20% were retained
for pathway analyses. Pathway analyses were conducted using the hypergeometrical
test for overrepresentation87, with pathways sourced from Gene Ontology’s bio-
logical processes88, obtained December 2019 from URL http://download.baderlab.
org/EM_Genesets/. We tested pathways that featured a number of genes between
10 and 1000.

UK Biobank. The UK Biobank is a large genetic study comprising half a million
participants aged between 40 and 69 years old47,48. The first round of standard
genotyping quality control was performed by the UK Biobank consortium and is
fully documented on their web portal (http://biobank.ctsu.ox.ac.uk/crystal/refer.
cgi?id=155580). Samples were discarded based on failed genotyping QC (het-
erozygosity rate, genotyping rate, etc.), genetic vs declared sex mismatch,
voluntary retraction, and of non-“white British” ancestry. Genome-wide asso-
ciation study was performed using the full release 500K cohort version. BOLT-
LMM version 2.3 performed association tests, with consideration of kinship
among participants89. Age, age squared, sex, dummy-coded recruitment sites,
genotyping platform, and the top 40 principal components were used as co-
variables. The phenotype was defined as chronic pain at a body site (e.g. back).
Cases were defined as those who answered “yes” at the touchscreen question
“Have you had back pains for more than 3 months?” and that had answered
“yes” at the question “In the last month have you experienced any of the fol-
lowing that interfered with your usual activities?” (field 6159). Control indivi-
duals were those who answered “None of the above” at field 6159 (n= 163,825).
A total of eight pain sites were available: headaches (UK Biobank field 3799;
36,381 cases), facial (field 4067; 3495 cases), neck and shoulder (field 3404;
63,933 cases), stomach and abdominal (field 3741; 18,749 cases), back (field
3571; 70,634 cases), hip (field 3414; 35,634 cases), knee (field 3773; 68,237 cases),
and widespread (field 2956; 5259 cases). To control for overlap of chronic pain
sites in individuals, we also performed additional GWASes for pain sites in
which cases who reported a particular additional pain site we removed, one site
at a time, from the analysis. A total of 8 × 8 – 8= 56 such GWASes were per-
formed. Post-GWAS SNP quality control included: (1) be part of the Haplotype
Reference Consortium90, (2) minor allele frequency >0.1%, (3) Hardy–Weinberg
P value >10−12, (4) INFO score >0.9. In all, this yielded a total of about 8.238
million SNPs per GWAS. The minimum effective count of minor alleles was
0.1% × 0.9 × 163,835 × 2 ~ 295. This work was done under the UK biobank
application number 20802.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and processed datasets for the scRNA-seq of macaque DRG neurons reported in
this study (STRT-2i-seq and Smart-seq2) have been deposited in the Gene Expression
Omnibus (GEO) under the accession GSE165569. Processed data for browsing gene
expression in the different macaque neuron types can be accessed at the following links:
STRT-2i-seq dataset (lumbar dorsal root ganglia of three adult Rhesus macaques) https://
ernforsgroup.shinyapps.io/macaquedrg/ and Smart-seq2 dataset (dorsal root ganglia of
five adult Rhesus macaques) https://ernforsgroup.shinyapps.io/macaqueSS2/. Macaca
mulatta genome build (Mmul_10/rheMac10 is available at: ftp://hgdownload.soe.ucsc.
edu/goldenPath/rheMac10/). Mouse DRG data (Zeisel) is available at http://loom.
linnarssonlab.org/clone/Mousebrain.org.level6/L6_Peripheral_sensory_neurons.loom.
Mouse DRG data (Sharma) is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE139088. We analyzed the data granted by UK biobank application number
20802, as the data from the UK Biobank is available from the biobank as part of
individual agreements. Source data are provided with this paper.

Code availability
Any custom code and data are available from the authors upon request. All analyses are
based on previously published code and software (see Reporting summary).
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