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A deep learning method for HLA imputation and
trans-ethnic MHC fine-mapping of type 1 diabetes
Tatsuhiko Naito 1,2, Ken Suzuki 1, Jun Hirata1,3, Yoichiro Kamatani4, Koichi Matsuda 5, Tatsushi Toda2 &

Yukinori Okada 1,6,7✉

Conventional human leukocyte antigen (HLA) imputation methods drop their performance

for infrequent alleles, which is one of the factors that reduce the reliability of trans-ethnic

major histocompatibility complex (MHC) fine-mapping due to inter-ethnic heterogeneity in

allele frequency spectra. We develop DEEP*HLA, a deep learning method for imputing HLA

genotypes. Through validation using the Japanese and European HLA reference panels (n=
1,118 and 5,122), DEEP*HLA achieves the highest accuracies with significant superiority for

low-frequency and rare alleles. DEEP*HLA is less dependent on distance-dependent linkage

disequilibrium decay of the target alleles and might capture the complicated region-wide

information. We apply DEEP*HLA to type 1 diabetes GWAS data from BioBank Japan (n=
62,387) and UK Biobank (n= 354,459), and successfully disentangle independently asso-

ciated class I and II HLA variants with shared risk among diverse populations (the top signal

at amino acid position 71 of HLA-DRβ1; P= 7.5 × 10−120). Our study illustrates the value of

deep learning in genotype imputation and trans-ethnic MHC fine-mapping.
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Genetic variants of the major histocompatibility complex
(MHC) region at 6p21.3 contribute to the genetics of a
wide range of human complex traits1. Among the genes

densely present in the MHC region, human leukocyte antigen
(HLA) genes are considered to explain most of the genetic risk of
MHC1. Strategies for direct typing of HLA alleles, including
sequence specific oligonucleotide (SSO) hybridization, Sanger
sequencing, and next-generation sequencing (NGS), cannot be
easily scaled-up for large cohorts since they are labor-intensive,
time-consuming, expensive, and limited in terms of allele reso-
lution and HLA gene coverage2,3. As a result, in many cases, the
genotypes of HLA allele are indirectly imputed from single
nucleotide variant (SNV)-level data using population-specific
HLA reference panels3–6. Although a high-throughput alternative
is HLA type inference from whole-genome sequencing data7,8,
HLA imputation is still widely performed for existing single
nucleotide polymorphism (SNP) genotyping data.

The MHC region harbors unusually complex sequence varia-
tions and haplotypes that are specific to individual ancestral
populations; thus, the distribution and frequency of the HLA
alleles are highly variable across different ethnic groups1,9. This
results in heterogeneity in reported HLA risk alleles of human
complex diseases across diverse populations10. For instance, in
type 1 diabetes (T1D), the strong association between non-Asp57
in HLA-DQβ1 and T1D risk has been found in European
populations11,12, but not in the Japanese populations, where the
T1D susceptible HLA-DQβ1 alleles carry Asp5713. Although the
elucidation of risk alleles across ethnicities would contribute to
further understanding of the genetic architecture of the MHC
region associated with the pathologies of complex diseases, limited
transethnic MHC fine-mappings have been reported to date14.
One method for conducting transethnic fine-mapping in the
comprehensive MHC region is to newly construct a large HLA
reference panel, that captures the complexities of the MHC region
across different populations15. Another method is to integrate data
of different populations that are imputed with population-specific
reference panels. The latter approach appears straightforward but
requires an HLA imputation method accurate enough for infre-
quent alleles to allow robust evaluation of HLA variants, that show
highly heterogenous in allele frequency across ethnicities.

Starting with a simple inference using tag SNPs16,17, various
methods have been developed for HLA allelic imputation. Leslie
et al. first reported a probabilistic approach to classical HLA
allelic imputation18. HLA*IMP uses Li & Stephens haplotype
model with SNP data from European populations19,20. A subse-
quently developed software program, HLA*IMP:02, uses SNP
data from multiple populations and can address genotypic
heterogeneity21. The current version of HLA*IMP:02 does not
provide a function for users to generate an imputation model
using their own reference data locally. SNP2HLA is another
standard software, which uses the imputation software package
Beagle to impute both HLA alleles and the amino acid poly-
morphisms for those classical alleles22. HLA Genotype Imputa-
tion with Attribute Bagging (HIBAG)23 is also promising
software, which employs multiple expectation–maximization-
based classifiers to estimate the likelihood of HLA alleles.
Whereas SNP2HLA explicitly uses reference haplotype data, for
which public access is often limited, HIBAG does not require
these data once the trained models are generated. These methods
have achieved high imputation accuracy24; however, they are less
accurate for rare alleles as shown later. The complex linkage
disequilibrium (LD) structures specific for the MHC region
requires a more sophisticated pattern recognition algorithm
beyond simple stochastic inference.

After boasting of its extremely high accuracy in image recog-
nition, deep learning has been attracting attention in various

fields. It can learn a representation of input data and extract
relevant features of high complexity through deep neural net-
works. Many successful applications in the field of genomics have
been reported25. A typical application of deep learning for
genomics is the prediction of the effects of non-coding and
coding variants, where models encode the inputs of flanking
nucleotide sequence data26–29. Another application is non-linear
unsupervised learning of high-dimensional quantitative data from
transcriptome30,31. However, successful representation learning
for SNV-data in the field of population genetics is limited32.

Here, we develop DEEP*HLA, a multitask convolutional deep
learning method to accurately impute genotypes of HLA genes
from SNV-level data. Through the application to the two HLA
reference panels of different populations, DEEP*HLA achieves
higher imputation accuracy than conventional methods. Notably,
DEEP*HLA is advantageous especially for imputing low-
frequency and rare alleles. Furthermore, DEEP*HLA shows the
fastest total processing time, which suggests its applicability to
biobank-scale data. We apply the trained models of DEEP*HLA
to the large-scale T1D genome-wide association study (GWAS)
data from BioBank Japan (BBJ) and UK Biobank (UKB) and
conducted trans-ethnic fine-mapping in the MHC region.

Results
Overview of the study. An overview of our study is presented in
Fig. 1. Our method, DEEP*HLA, is convolutional neural net-
works that learn from an HLA referenced panel and impute
genotypes of HLA genes from pre-phased SNV data. Its frame-
work uses a multitask learning that can learn and impute alleles of
several HLA genes which belong to the same group simulta-
neously (see “Methods” section). Multitask learning is presumed
to have two advantages in this situation. First, the genotypes of
some flanking HLA genes, which often show strong LD for each
other, are correlated, and the shared features of individual tasks
are likely to be informative. Second, the processing time is
reduced by grouping tasks, especially in our latest reference panel,
which comprises more than 30 HLA genes. We employed the two
different HLA imputation reference panels for robust bench-
marking: (i) our Japanese reference panel (n= 1118)3 and (ii) the
Type 1 Diabetes Genetics Consortium (T1DGC) reference panel
(n= 5122)33. We compared its performance with that of other
HLA imputation methods by 10-fold cross-validation and an
independent HLA dataset (n= 908)6. Further, we tested its
imputation accuracy for multi-ethnic individuals using data from
the Phase III 1000 Genomes Project (1KGv3). In the latter part,
we performed MHC fine-mapping of the Japanese cohort from
BBJ and British cohort from UKB by applying trained models
specific for individual populations. We integrated the imputed
GWAS genotypes and performed transethnic HLA association
analysis.

DEEP*HLA achieved high imputation accuracy especially for
low-frequency and rare alleles. First, we applied DEEP*HLA to
the Japanese reference panel, a high-resolution allele catalog of
NGS-based HLA typing data of the 33 classical and non-classical
HLA genes along with high-density SNP data of the MHC region
by genotyping with the Illumina HumanCoreExome BeadChip
for 1118 individuals of Japanese ancestry3. We compared the
imputation accuracy of DEEP*HLA in terms of sensitivity,
positive predictive value (PPV), and r2 of allelic dosage, and
concordance rate of best-guess genotypes (see “Methods” section)
with those of SNP2HLA and HIBAG in 10-fold cross-validation.
DEEP*HLA achieved total sensitivity of 0.987, PPV of 0.986, r2 of
0.984, and concordance rate of 0.988 in 4-digit allelic resolution.
The differences in total accuracy were modest among the
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methods; however, DEEP*HLA was more advantageous for rare
alleles (For alleles with a frequency < 1%, sensitivity = 0.690;
PPV= 0.799; r2= 0.911; and concordance rate = 0.691 in
DEEP*HLA, compared to sensitivity = 0.628, 0.635; PPV=
0.624, 0.505; r2= 0.862, 0.792; and concordance rate = 0.621,
0.675 in SNP2HLA and HIBAG, respectively; Fig. 2a). Further, we
applied the model trained with our Japanese reference panel to a
dataset of 908 Japanese individuals to investigate whether
DEEP*HLA could impute well when applied to independent
samples. The dataset comprised 4-digit alleles of eight classical
HLA genes based on the SSO method and SNP data genotyped
using multiple genotyping arrays6. DEEP*HLA achieved the
highest total accuracy, with a sensitivity of 0.973, PPV of 0.972, r2

of 0.986, and concordance rate of 0.973. Again, DEEP*HLA was
more advantageous for low-frequency and rare alleles (Fig. 2a).
For alleles with a frequency < 1%, sensitivity = 0.690; PPV=
0.799; r2= 0.911; and concordance rate = 0.691 in DEEP*HLA,
compared to sensitivity = 0.628, 0.635; PPV= 0.624, 0.505; r2=
0.862, 0.792; and concordance rate = 0.621, 0.675 in SNP2HLA
and HIBAG, respectively.

We also applied DEEP*HLA to the Type 1 Diabetes Genetics
Consortium (T1DGC) reference panel of 5122 unrelated
individuals of European ancestries33. It comprises 2-digit and 4-
digit alleles of the eight classical HLA genes based on the SSO
method, with SNP data of the MHC region genotyped with the
Illumina Immunochip. DEEP*HLA achieved a sensitivity of
0.979, PPV of 0.976, r2 of 0.981, and concordance rate of 0.979 in
4-digit resolution, and these values were superior to those of

SNP2HLA and HIBAG. DEEP*HLA was more advantageous
especially in PPV and r2, for low-frequency and rare alleles
(Fig. 2b). For alleles with a frequency < 1%, sensitivity = 0.830;
PPV= 0.863; r2= 0.908; and concordance rate = 0.832 in
DEEP*HLA, compared to sensitivity = 0.793, 0.745; PPV=
0.640, 0.753; r2= 0.745, 0.886; and concordance rate = 0.804,
0.769 in SNP2HLA and HIBAG, respectively.

We assessed the superiority of DEEP*HLA using a down-
sampling approach (Supplementary Note 1a). DEEP*HLA
trained with down-sampled data also outperformed other
methods especially for rare allele, although there were differences
between metrics (Supplementary Fig. 1). In the cross-validation of
our Japanese reference panel, DEEP*HLA with sampling rates of
70–80% and 60–70% was almost equivalent to HIBAG and
SNP2HLA, respectively. In the Japanese independent samples,
DEEP*HLA with a sampling rate of even 70% and 60%
outperformed HIBAG and SNP2HLA, respectively. In the
cross-validation of the T1DGC panel, DEEP*HLA with a
sampling rates of 70–80% was almost equivalent to HIBAG and
SNP2HLA, respectively. Notably, DEEP*HLA with a sampling
rate of even 50% outperformed other methods in most cases in
terms of PPV.

Finally, we investigated differences in accuracy among different
HLA genes (Fig. 3). Whereas the accuracies for HLA-B and HLA-
DRB1 were lower than those for other loci especially in terms of
total accuracy, those in DEEP*HLA were relatively high. As a
result, DEEP*HLA had the highest means and lowest variances of
accuracies among HLA genes in most cases. Only for rare alleles
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b   MHC fine-mapping in T1D GWAS data of biobanks

Japanese cohort (831 cases, 61,556 controls)

Input

Chromosome 6, MHC region

gol-
01

(P
)

Class II HLA genes

BBJ

SNV data

Model trained with
Japanese reference panel

Training and validation procedureArchitecture of DEEP*HLA

Impute

0  1
1  1
1  0
0  0
1  0

1  1
0  1
1  1
0  0
0  1

... ...

...

British cohort (732 cases, 353,727 controls)

Input

UKB

SNV data

Model trained with
European reference panel

Impute

0  1
1  1
1  0
0  0
1  0

1  1
0  1
1  1
0  0
0  1

... ...

Trans-ethnic analysis

Class I HLA genes

HLA-A*24:02
HLA-C*01:02
HLA-B*52:01

HLA-DPB1*05:01

HLA genotypes

...

HLA-A*02:01
HLA-C*07:01
HLA-B*15:01

HLA-DPB1*04:01

HLA genotypes

Japanese reference panel 
(n = 1,118)

Independent Japanese data
(n = 908)

European reference panel 
(n = 5,122)

1000 Genomes Project data
(n = 2,554)

Merge

Merge

Validation

Validation

Mixed reference panel
(n = 6,240)

10-fold cross-validation

...

10-fold cross-validation

...

Fig. 1 An overview of the study. a DEEP*HLA is a deep learning architecture that takes an input of pre-phased genotypes of SNVs and outputs the
genotype dosages of HLA genes. To train a model and benchmark its performance, we used Japanese and European HLA reference panels respectively. We
evaluated its accuracies in cross-validation with other methods. For the Japanese panel, we also evaluated its accuracy by applying the trained model to an
independent Japanese HLA dataset. Further, we experimentally generated a mixed panel and validated its accuracy using 1KGv3 data. b We conducted
transethnic MHC fine-mapping in T1D GWAS data. We performed HLA imputation for the Japanese cohort from BBJ and the British cohort from UKB using
models specific for individual populations. We integrated the individual results of imputed genotypes and performed transethnic association analysis. SNV
single nucleotide variant, HLA human leukocyte antigen, MHC major histocompatibility complex.
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Japanese panel in cross-validation

European panel in cross-validation
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(Training with GPU)

Japanese panel in cross-validation
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Fig. 2 Performance evaluations of HLA imputation methods. a–d Sensitivity, PPV, and r2 of allelic dosage and concordance rate of best-guess genotypes
for the 4-digit alleles (a, b) and amino acid polymorphisms (c, d) evaluated in our Japanese reference panel (a, c) and the T1DGC reference panel (b, d).
For each metric, mean values of alleles with a frequency less than a value on the horizontal axis are shown on the vertical axis. DEEP*HLA was advantages
especially for rare alleles. e Processing time (left) and maximum memory usage (right) evaluated on imputing BBJ samples using the Japanese panel.
DEEP*HLA imputed the fastest in total processing time as the sample size increased. The dashed blue line in the processing time represents a case when
DEEP*HLA used GPU only in training a model. All methods exhibited maximum memory usage scaling roughly linearly with sample size. SNP2HLA did not
work within 100 GB in our machine for the sample sizes greater than 20,000. Source data are provided as a Source Data file. PPV, positive predictive value.
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in the Japanese independent samples, the variances of sensitivity
and concordance rate were higher than those for SNP2HLA, in
which the accuracy metrics of SNP2HLA were lower than those
of DEEP*HLA for almost all loci.

In summary, although the improvement in total accuracy of
DEEP*HLA might be modest, DEEP*HLA was advantageous in
imputing infrequent alleles especially in terms of the dosage
accuracy. PPV was significantly decreased in SNP2HLA, probably
because the sum of the allele dosages of each HLA gene in an
individual can exceed the expected value (i.e., = 2.0) since it
imputes each allele separately as a binary allele. The improvement
in dosage accuracy is meaningful considering that allelic dosages
are typically used for association analysis3. Furthermore, its small
interlocus variation in imputation accuracy should also be
advantageous in MHC fine-mapping because the accuracy
difference among HLA genes would result in imbalanced filtering,
leading to a biased result.

DEEP*HLA achieved higher accuracy when applied to 1000
Genomes Project data using a mixed reference panel. To con-
duct further validation in independent samples and evaluate the
effect of ethnicity differences between a reference panel and target
populations, we tested imputation accuracy in 1KGv3 cohort.

First, we conducted HLA imputation using our Japanese panel
and (n= 1118) and a mixed panel which was experimentally
conducted using the Japanese and the European panels (n=
6240). When we used the Japanese panel, DEEP*HLA achieved
the highest accuracies in all the metrics in the 1KGv3 JPT cohort
(sensitivity= 0.974, PPV= 0.950, r2= 0.995, and concordance
rate = 0.975 in total alleles; Supplementary Fig. 2a). All the
methods achieved high accuracies for rare alleles, in which
DEEP*HLA was still superior (sensitivity= 0.862, PPV= 0.865,
r2= 0.999, and concordance rate = 0.862 for alleles with a fre-
quency of <1%). On the other hand, in other populations
including EAS (excluding JPT), no methods were found to be
accurate enough for practical use. This is probably attributed to
the distinct haplotype structures and allele frequency spectra
specific for Japanese ancestries even within East Asian
populations6. In addition, DEEP*HLA did not always perform
better than other methods. Presumably, its high learning capacity
of deep learning might backfire and cause overfitting to the
population-specific reference panel. We thus recommend
empirical validation of accuracy when applying DEEP*HLA to
individuals mismatched with a reference panel population.

When we used a mixed panel, despite a slight decline in
accuracy in JPT (sensitivity= 0.965, PPV= 0.940, r2= 0.996, and

Fig. 3 Comparison of imputation accuracy between different HLA genes. Each panel represents accuracy in eight classical HLA genes evaluated in the
Japanese panel in cross-validation (a, upper), the Japanese panel to the independent data (a, lower), and the European panel in cross-validation (b). Solid
and dashed lines correspond to the accuracy of all allele and allele with frequency <1%, respectively. The right two scatter plots represent the relation
between the mean and variance of each metric among different HLA genes for individual methods. R2 metric is not shown because it is not an additive
statistic. Source data are provided as a Source Data file. PPV positive predictive value, AF allele frequency.
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concordance rate = 0.964 for total alleles), DEEP*HLA achieved
high accuracies in EUR populations (sensitivity= 0.964, PPV=
0.918, r2= 0.983, and concordance rate = 0.963 for total alleles).
DEEP*HLA also achieved the highest accuracies in both JPT and
EUR populations for total and rare alleles although the difference
was relatively modest (Supplementary Fig. 2b). Thanks to a
significant increase in the sample sizes of the reference panel, the
accuracies in other populations were also improved. Notably,
DEEP*HLA achieved the highest accuracies in the different
populations, especially for rare alleles. Although the mixed panel
used here is an experimental version that comprises genotypes
from different typing procedures, the present results would
suggest the applicability of our method to a multiethnic
reference panel.

DEEP*HLA can define HLA amino acid polymorphisms con-
sistently with classical alleles. DEEP*HLA separately imputes
classical alleles of each HLA gene, as a multiclass classification in
the field of machine learning. Thus, it has an advantage that the
sum of imputed allele dosages of each HLA gene is definitely set
as an ideal value of 2.0. This enables us to define a dosage of
amino acid polymorphisms from the imputed 4-digit allele
dosages consistently with classical alleles. We compared this
method of imputing amino acid polymorphisms with SNP2HLA,
which imputes each allele as binary alleles. Although DEEP*HLA
was equivalent to SNP2HLA in imputing amino acid poly-
morphisms in total alleles (sensitivity= 0.996, PPV= 0.996, r2=
0.951, and concordance rate = 0.996 in the Japanese panel;
sensitivity = 0.997, PPV= 0.995, r2= 0.982, and concordance
rate = 0.997 in T1DGC panel), it achieved more accurate
imputation for rare alleles (sensitivity= 0.487, PPV= 0.811, r2=
0.665, and concordance rate = 0.487 in the Japanese panel;
sensitivity = 0.775, PPV= 0.864, r2= 0.826, and concordance
rate = 0.775 in T1DGC panel for alleles with a frequency of < 1%;
Fig. 2c, d). The improvement in performance in terms of PPV
was remarkable.

We admit that this method is only applicable to the reference
panel where 4-digit alleles are accurately determined. Therefore,
our method could not eliminate the ambiguity in the genotyping
that derived from incompleteness of the original reference panel.

High performance of DEEP*HLA in computational costs. We
benchmarked the computational costs of DEEP*HLA against
those of SNP2HLA and HIBAG using a subset of the GWAS
dataset from BBJ containing n= 1000, 2000, 5000, 10,000, 20,000,
50,000, and 100,000 samples (2000 SNVs was consistent with the
reference panel). A model-training process with reference data is
required for DEEP*HLA and HIBAG but not for SNP2HLA. In
addition, DEEP*HLA took an input of pre-phased GWAS data.
Thus, we compared the total processing time including pre-
phasing of GWAS data, model training, and imputation of
DEEP*HLA, with the time of model training and imputation of
HIBAG, and the running time of SNP2HLA. As shown in Fig. 2e,
DEEP*HLA imputation had the fastest total processing time as
the sample size increased. On comparing pure imputation times,
it was faster than HIBAG (Supplementary Table 1). Furthermore,
with a state-of-the-art Graphics Processing Unit (GPU), the
training time of DEEP*HLA was shortened from 153 to 36 min.
As for memory cost, all methods exhibited maximum memory
usage scaling roughly linearly with sample size (Fig. 2e and
Supplementary Table 1). HIBAG was the most memory-efficient
across all sample sizes. Whereas SNP2HLA could not run within
our machine’s 100 GB memory for sample sizes of >20,000,
DEEP*HLA was able to perform imputation even for biobank-
scale sample sizes of 100,000.

Characteristics of the alleles for which DEEP*HLA was
advantageous to impute. We focused on the characteristics of the
HLA alleles of which accuracy was improved by DEEP*HLA
compared with SNP2HLA, which is a gold-standard software.
SNP2HLA runs Beagle intrinsically, which performs imputation
based on a hidden Markov model of a localized haplotype-cluster.
We hypothesized that this kind of method shows better perfor-
mance for imputing alleles for which LDs with the surrounding
SNVs are stronger in close positions, and get weaker as the dis-
tance from the target HLA allele increases (we termed this feature
as distance-dependent LD decay). Conversely, it might show
limited performance for imputing alleles with sparse LD struc-
tures throughout the MHC region. We defined the area under the
curve (AUC) representing distance-dependent LD decay to verify
this hypothesis. AUC values increase when LDs with the sur-
rounding SNVs get stronger as they get closer to the target HLA
allele (Fig. 4b). We evaluated the degree by which the accuracies
of DEEP*HLA and SNP2HLA were affected by the AUCs and
allele frequency using multivariate linear regression analysis.
When calculating AUCs, we tested two different window sizes of
AUCs: bilateral 1000 SNVs from a target HLA allele and input
size of DEEP*HLA. As expected, all accuracy metrics of
SNP2HLA were positively correlated with the AUCs. Although
the accuracy metrics of DEEP*HLA were also correlated with
AUC, the correlations were weaker than those in SNP2HLA for
all the metrics in both reference panels (Fig. 4a and Supple-
mentary Table 2). In addition, we assessed the correlation
between a simple metric of the maximum value of LD coefficients
within 100 SNVs from a target allele, and the accuracy of each
method to examine our assumption more robustly with another
index. Similarly, the correlations in DEEP*HLA were weaker
than those in SNP2HLA (Supplementary Table 2).

Next, we used SmoothGrad to investigate our assumption that
DEEP*HLA performs better imputation by recognizing distant
SNVs as well as close SNVs of strong LD. SmoothGrad is a
method for generating sensitivity maps of deep learning models34.
It is a simple approach based on the concept of adding noise to
the input data and taking the mean of the resulting sensitivity
maps for each sampled data. A trained DEEP*HLA model
reacted to the noises of not only the surrounding SNVs with
strong LD but also the distant SNVs as displayed in example HLA
alleles (Fig. 4c). Interestingly, SNVs that reacted strongly were not
always those of even moderate LD, but also spread across the
entire the input region. While the validity of SmoothGrad for a
deep learning model of genomic data is presently under
investigation, one probable explanation is that predicting an
allele using our method also means predicting the absence of
other alleles of the target HLA gene. Thus, any SNV positions in
LD with any of the other HLA alleles could be informative.
Another explanation is that DEEP*HLA might recognize
complex combinations of multiple distinct SNVs within the
region rather than the simple LD correlations between HLA
alleles and -SNVs.

Empirical evaluation of imputation uncertainty. A common
issue in deep learning models is quantification of the reliability of
their predictions. One potential solution is uncertainty inferred
from the concept of Bayesian deep learning35. We experimentally
evaluated imputation uncertainty by DEEP*HLA using Monte
Carlo (MC) dropout, which could be applied following the gen-
eral implementation of neural networks with dropout units36,37.
In MC dropout, uncertainty is presented as entropy of sampling
variation with keeping dropout turned on. This uncertainty index
corresponds not to each binary allele of a HLA gene, but to the
prediction of genotype of each HLA gene of an individual. Thus,
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we evaluated whether the uncertainty could guess the correctness
of best-guess genotypes of the target HLA genes. We compared
this with a dosage-based discrimination, in which we assumed
that a best-guess imputation of higher genotype dosage (prob-
ability) is more likely to be correct. The entropy-based uncer-
tainty identified incorrectly-imputed genotypes with an area
under the curve of the receiver operating characteristic curve
(ROC-AUC) of 0.851 in the Japanese panel and of 0.883 in the
T1DGC reference panel in 4-digit alleles, which were superior to
dosage-based discrimination (ROC-AUC= 0.722 and 0.754 in
the Japanese T1DGC panels, respectively; Supplementary Fig. 3).
Estimation of prediction uncertainty of a deep learning model is
still under development37; however, our results might illustrate its
potential applicability to the establishment of a reliability score
for genotype imputation by deep neural networks.

Transethnic MHC fine-mapping of T1D. We applied the
DEEP*HLA models trained with our Japanese panel and the
T1DGC panel to HLA imputation of T1D GWAS data from BBJ
(831 cases and 61,556 controls) and UKB (732 cases and 353,727
controls), respectively. T1D is a highly heritable autoimmune
disease that results from T cell-mediated destruction of insulin-
producing pancreatic β cells38. We performed imputation for
GWAS data of the cohorts separately and then combined them to
perform transethnic MHC fine-mapping (1563 cases and 415,283
controls). We filtered imputed alleles in which r2 accuracy in 10-

fold cross-validation was lower than 0.7 in the current
application.

Association analysis of the imputed HLA variants with T1D
identified the most significant association at the HLA-DRβ1
amino acid position 71 (Pomnibus = 7.5 × 10−120; Fig. 5a and
Supplementary Data 1), one of the T1D risk-associated amino
acid polymorphisms in the European population12. As for
T1D, the largest HLA gene associations were reported for a
combination of variants in the HLA-DRB1, HLA-DQA1, and
HLA-DQB112,39; thus, we further investigated independently
associated variants within these tightly linked HLA genes
before searching for other risk-associated loci. When con-
ditioning on HLA-DRβ1 amino acid position 71, we observed
the most significant independent association in HLA-DQβ1
amino acid position 185 (Pomnibus= 3.1 × 10−69). Through
stepwise forward conditional analysis in the class II HLA
region, we found significant independent associations for
Tyr30 in HLA-DQβ1 (Pbinary = 6.7 × 10−20), HLA-DRβ1
amino acid position 74 (Pomnibus = 1.2 × 10−11), and Arg70 in
HLA-DQβ1 (Pomnibus = 3.3 × 10−9; Supplementary Fig. 4 and
Supplementary Data 2).

These results were different from those of a previous study of a
large T1D cohort of European ancestries, which reported three
amino acid polymorphisms, i.e., HLA-DQβ1 position 57, HLA-
DRβ1 position 13, and HLA-DRβ1 position 71, as the top-
associated amino acid polymorphisms in the HLA-DRB1, HLA-
DQA1, and HLA-DQB1 region. We then constructed multivariate
regression models for individual populations that incorporated
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Fig. 4 Comparison between DEEP*HLA and SNP2HLA displayed with allele frequencies and AUC for distance-dependent LD decay. a Comparisons of
imputation accuracy between DEEP*HLA and SNP2HLA for 4-digit allele imputation for cross-validation with the Japanese panel (upper) and T1DGC
panels (lower). Each dot corresponds to one allele, displayed with allele frequencies (size) and AUC for distance-dependent LD decay (color). The size and
color scales are provided in the bottom of the figure. The AUC was calculated based on bilateral 1000 SNVs. Comparisons in concordance rate are not
shown because they were almost the same as those in sensitivity. The performance of SNP2HLA was limited when imputing the alleles with low-frequency
and low AUC; DEEP*HLA was relatively accurate even for the less frequent alleles regardless of AUC. b Example illustrations of AUC for distance-
dependent LD decay. The left figures illustrate r2 of LD between an HLA allele (red dash line in the central) and flanking SNVs. HLA-DRB1*16:02 has strong
LD in close positions and weaker LD in the distant positions. The cumulative curve of r2 of bilateral SNVs becomes convex upward; and the AUC increases.
In contrast, HLA-DRB1*07:01 has moderate LD in distant or sparse positions, the curve does not become convex upward, and the AUC becomes smaller. c
Comparison between r2 (blue line) and sensitivity maps of DEEP*HLA (orange line) for example alleles (red dash line in the center). The sensitivities are
normalized for visibility. In both examples, DEEP*HLA reacted to noise across an extensive area regardless of LD. PPV positive predictive value, AUC area
under the curve, LD linkage disequilibrium.
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our T1D risk-associated HLA amino acid polymorphisms and
classical alleles of HLA-DRB1 and HLA-DQB1, and compared the
effects of these variants. The odds ratios of the risk-associated
variants reported previously did not show any positive correlation
between different populations (Pearson’s r=−0.59, P= 0.058;
Supplementary Fig. 5 and Supplementary Table 3). On the other
hand, we identified a set of variants with significant positive
correlation by trans-ethnic fine-mapping of the integrated cohort
data (Pearson’s r= 0.76, P= 6.8 × 10−3; Supplementary Fig. 5).

We further investigated whether the T1D risk was associated
with other HLA genes independently of HLA-DRB1, HLA-DQA1,
and HLA-DQB1. When conditioning on HLA-DRB1, HLA-DQA1,
and HLA-DQB1, we identified a significant independent association
at HLA-A amino acid position 62 (Pomnibus= 5.9 × 10−13; Fig. 5b
and Supplementary Data 1). After conditioning on HLA-A amino
acid position 62, we did not observe any additional independent
association in HLA-A alleles. When we conditioned on HLA-DRB1,

HLA-DQA1, HLA-DQB1, and HLA-A, we identified a significant
independent association at HLA-B*54:01 (Pbinary= 1.3 × 10−9;
Fig. 5c and Supplementary Data 1), and its unique amino acid
polymorphisms (Gly45 and Val52 at HLA-B). When conditioned
on HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-A, and HLA-B, no
variants in the MHC region satisfied the genome-wide significance
threshold (P > 5.0 × 10−8; Fig. 5d and Supplementary Data 1).
Multivariate regression analysis of the identified risk variants
explained 10.3 and 27.6% of the phenotypic variance in T1D under
assumption of disease prevalence of 0.014%40 and 0.4%41 for the
Japanese and British cohorts, respectively. Their odds ratios on T1D
risk were also correlated between different populations (Pearson’s r
= 0.71, P= 4.4 × 10−3; Fig. 6 and Table 1).

To evaluate the advantage of the transethnic fine-mapping, we
performed fine-mapping for each cohort separately and com-
pared the results with those of the transethnic analysis. The most
significant associations were observed in the HLA-DRB1 and
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Fig. 5 Transethnic association plots of HLA variants with T1D in the MHC region. Diamonds represent −log10 (P values) for the tested HLA variants,
including SNPs, classical alleles, and amino acid polymorphisms of the HLA genes. Dashed black horizontal lines represent the genome-wide significance
threshold of P = 5.0 × 10−8. The physical positions of the HLA genes on chromosome 6 are shown at the bottom. a–e Each panel shows the association
plot in the process of stepwise conditional regression analysis: nominal results. a Results conditioned on HLA-DRB1, HLA-DQA1, and HLA-DQB1. b Results
conditioned on HLA-DRB1, HLA-DQA1, HLA-DQB1, and HLA-A. c Results conditioned on HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-A, and HLA-B. d Our study
identified the independent contribution of multiple HLA class I and class II genes to the T1D risk in a trans-ethnic cohort, in which the impacts of class II
HLA genes were more evident. Detailed association results are shown in Supplementary Data 1. HLA human leukocyte antigen, SNP single nucleotide
polymorphism.
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Ala71 of HLA-DRβ1 Glu71 of HLA-DRβ1 Lys71 of HLA-DRβ1 Arg74 of HLA-DRβ1 Glu74 of HLA-DRβ1 Gln74 of HLA-DRβ1 Leu74 of HLA-DRβ1
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Fig. 6 HLA variants associated with the T1D risk identified through trans-ethnic fine-mapping. Forest plots for individual risk-associated alleles are
displayed along with a location map of classical HLA genes. Each forest plot shows the estimated odds ratio (OR) and 95% confidence interval from
cohort-specific logistic model for BBJ and UKB, and the transethnic logistic model. Red dashed lines indicate OR in transethnic cohorts. Black solid lines
represent OR = 1. Colored square boxes represent amino acid polymorphisms of the same position or a classical allele. Source data are provided as a
Source Data file. BBJ BioBank Japan, UKB UK Biobank.

Table 1 Associations of the HLA variants with the T1D risk identified through trans-ethnic fine-mapping study.

Frequency (BBJ) Frequency (UKB)

Case Control Case Control OR (95% CI)a Pa

HLA variant n = 831 n = 61,556 n = 732 n = 353,727 BBJ UKB BBJ UKB

HLA-DRβ1 amino acid position 71
Alanine 0.10 0.18 0.043 0.15 0.85 (0.66–1.10) 1.34 (0.89–1.99) 0.23 0.16
Arginine 0.82 0.73 0.33 0.45 (reference)
Glutamic acid 0.073 0.074 0.083 0.12 1.26 (0.89–1.77) 0.72 (0.56–0.93) 0.019 0.0013
Lysine 0.0096 0.011 0.54 0.28 1.31 (0.71–2.24) 2.11 (1.77–2.53) 0.035 1.9 × 10−16

HLA-DQβ1 amino acid position 185
Isoleucine 0.39 0.57 0.68 0.83 2.74 (2.21–3.40) 4.12 (3.49–4.99) 3.5 × 10−20 7.0 × 10−55

Threonine 0.61 0.43 0.32 0.17 (reference)
HLA-DQβ1 amino acid position 30
Histidine 0.16 0.19 0.18 0.23 1.36 (0.97–1.93) 4.16 (2.86–5.96) 0.0078 3.0 × 10−14

Serine 0.0042 0.0038 0.34 0.25 inf 3.82 (2.53–5.87) 0.079 3.8 × 10−10

Tyrosine 0.83 0.80 0.48 0.52 (reference)
HLA-DRβ1 amino acid position 74
Alanine 0.56 0.59 0.59 0.65 (reference)
Arginine 0.0018 0.00088 0.28 0.15 0 (0–0.05) 0.64 (0.42–0.96) 0.080 0.0036
Glutamic acid 0.32 0.27 0.021 0.036 0.77 (0.64–0.93) 0.57 (0.38–0.82) 6.5 × 10−4 4.0 × 10−4

Glutamine 0.0024 0.0030 0.079 0.15 0 (0–0.0029) 0.31 (0.21–0.44) 0.079 4.5 × 10−10

Leucine 0.12 0.14 0.023 0.023 0.97 (0.81–1.16) 2.20 (0.85–4.84) 0.074 0.0077
HLA-DQβ1 amino acid position 70
Arginine 0.60 0.62 0.79 0.63 (reference)
Glutamic acid 0.26 0.17 0.020 0.020 0.73 (0.59–0.90) 0.27 (0.11–0.71) 2.0 × 10−4 0.0052
Glycine 0.14 0.20 0.19 0.35 0.95 (0.72–1.25) 0.50 (0.36–0.70) 0.073 3.1 × 10−5

HLA-A amino acid position 62
Arginine 0.19 0.20 0.064 0.086 1.25 (1.05–1.49) 0.93 (0.74-1.16) 0.0012 0.53
Glutamic acid 0.39 0.37 0.094 0.093 1.40 (1.21–1.63) 1.33 (1.10-1.60) 9.2 × 10−6 0.0025
Glutamine 0.15 0.19 0.46 0.49 (reference)
Glycine 0.26 0.24 0.33 0.29 1.44 (1.23–1.68) 1.27 (1.12-1.44) 6.6 × 10−6 1.6 × 10−4

Leucine 0 0 0.055 0.044 – 2.01 (1.57–2.55) 1.5 × 10−12 1.9 × 10−8

HLA-B allele
HLA-B*54:01 0.14 0.073 0 0 1.78 (1.51–2.08) – – –

BBJ BioBank Japan, UKB UK Biobank, HLA human leukocyte antigen, OR odds ratio, 95% CI 95% confidence interval.
aObtained from the multivariate regression model that included all the variants listed here.
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HLA-DQB1 in both cohorts (Supplementary Figs. 6 and 7). The
top signals were at the HLA-DQβ1 amino acid position 185
(Pomnibus= 8.3 × 10−47) for the BBJ cohort and HLA-DRβ1
amino acid position 71 (Pomnibus= 4.1 × 10−107) for the UKB
cohort, both of which were consistent with the risk-associated
variants identified through the transethnic fine-mapping. On the
other hand, the risk-associated variants pointed in subsequent
conditional analyses within this region were not identical.
Generally, parsimonious fine-mapping using a single population
was challenging due to multiple candidate variants with similar
degrees of LD (and thus associations) to the top signal in each
iteration of the stepwise conditional analysis (Supplementary
Figs. 8 and 9). As a result of the transethnic analysis, we
successfully identified finer sets of the more variants, which
exhibited clearer significance by interrogating the different LD
patterns between the populations. When conditioning on HLA-
DRB1, HLA-DQA1, and HLA-DQB1, we identified significant
independent associations in HLA-B for the BBJ cohort with the
top at HLA-B*54:01 (Pbinary= 4.1 × 10−10), and HLA-A for the
UKB cohort with the top at HLA-A amino acid position 62
(Pomnibus= 1.4 × 10−8), respectively (Supplementary Figs. 6 and
7). Both variants were identical to those originally identified in
the transethnic analysis. This observation indicates that the
transethnic analysis could discover more associated loci than
single population-based analyses. Whereas HLA-B*54:01 was too
rare and not assessed in Europeans, it is notable that the T1D risk
of HLA-A amino acid position 62 was shared with East Asians.
These observations should illustrate the value of the transethnic
MHC fine-mapping.

Discussion
In this study, we demonstrated that DEEP*HLA, a multitask
convolutional deep learning method for HLA imputation, out-
performed conventional HLA imputation methods in various
aspects. DEEP*HLA was more advantageous when the target
HLA variants, including classical alleles and amino acid poly-
morphisms, were low-frequent or rare. Our study demonstrated
that the performance of a conventional method was reduced for
alleles that did not exhibit distance-dependent LD decay with the
target HLA allele. DEEP*HLA was less dependent on this point,
and might comprehensively capture the relationships among
multiple distinct variants regardless of LD. Taking advantage of
the significant improvement of imputation accuracy in rare
alleles, we conducted transethnic MHC fine-mapping of T1D.
This approach could be performed as well using the conventional
HLA imputation methods. However, the results obtained using
DEEP*HLA should be more reliable because there were several
risk-associated alleles, which were rare only in one population.

To date, technical application of deep neural networks to
population genetics data has been limited. In a previous attempt
for genotype imputation, a sparse convolutional denoising auto-
encoder was only compared with reference-free methods32. There
might be two possible explanations for the success of our
DEEP*HLA. First unlike genotype imputation by denoising
autoencoders, which assumes various positions of missing geno-
types in a reference panel to impute, the prediction targets were
fixed to the HLA allele genotypes as a classification problem.
Second, convolutional neural networks, which leverage a con-
volutional kernel that is capable of learning various local patterns,
might be better suited for learning the complex LD structures in
the MHC region.

We filtered alleles with poor imputation quality based on the
results of cross-validation in the current application; however, an
indicator of reliability could be further utilized. We demonstrated
that the prediction uncertainty inferred from a Bayesian deep

learning method had potential capability of identifying
incorrectly-imputed alleles in a per-gene level. Our future work
should establish a method to quantify per-allele imputation
uncertainty that can be practically used as a filtering threshold for
subsequent analyses.

As for the genetic features of the MHC region associated with
T1D, the highest risk is conferred by DR3-DQA1*05-DQB1*02
and DR4-DQA1*03-DQB1*03:02 haplotypes in Europeans39,42,
and by DR9-DQA1*03-DQB1*03:03 and DR4-DQA1*03-
DQB1*04:01 haplotypes in Japanese43. In a previous study for a
large European cohort, Hu et al. demonstrated that the three
amino acid polymorphisms of DRβ1 and HLA-DQβ1 explained
the majority of the risk in the HLA-DRB1, HLA-DQA1, and HLA-
DQB1 region with the top signal at non-Asp57 in HLA-DQβ112.
Conversely, the risk haplotypes in Japanese population carry
Asp57 of HLA-DQβ143. We obtained several additional insights
in the present study. We initially conducted a transethnic MHC
fine-mapping of T1D, and successfully disentangled a set of 5
risk-associated amino acid polymorphisms of position 71 and 74
in HLA-DRβ1, and 30, 70, and 185 in HLA-DQβ1. Four of these
positions compose the peptide-binding grooves, suggesting their
functional contributions to antigen-presentation ability (Supple-
mentary Fig. 10). While the association of HLA-DRβ1 amino acid
position 71 was replicated in concordance direction with Eur-
opeans, the effects in the Japanese population were not preserved
in the final model. Whereas the association of amino acid posi-
tion 74 in HLA-DRβ1 has been reported in Han-Chinese and
certain European populations44,45, the European study did not
report its independent association due to the rareness of its
characterized classical allele, HLA-DRB1*04:03. We successfully
identified its independent association in trans-ethnic cohorts with
a similar effect size between the diverse populations. Although
amino acid position 185 in HLA-DQβ1 does not compose the
peptide-binding groove, the variation of Ile/Thr is suggested to
alter DQ-DM anchoring by interacting with its neighboring
residues, leading to the susceptibility to other autoimmune
diseases46,47. Variant Ile185 is tagged with HLA-DQA1*03,
which composes the risk haplotypes in Japanese and European
population respectively. A correspondence table of the amino acid
polymorphisms and 4-digit classical HLA alleles is shown in
Supplementary Data 3. As a result, the catalog of the T1D risk-
associated variants in this region identified by our transethnic
approach was different from that in the European study12. We
admit the possibility that the smaller sample size in our study and
different definitions of the phenotypes (between studies, and
between cohorts in our study) might contribute to this disparity.
Particularly, we note the potential distinctiveness of Japanese T1D
phenotypes48. However, considering that our observed variants
shared the effects on the T1D risk between different populations,
we might gain insight into the issue of interethnic heterogeneity
of T1D risk alleles in the MHC region. As for class I HLA genes,
the independent association of amino acid position 62 in HLA-A
was consistent with the previous European study12. We found
that it had similar effects on the T1D risk also in the Japanese
population. HLA-B*54:01 has traditionally been suggested as a
potential risk allele in Japanese by a candidate HLA gene
approach13, of which an independent association via the MHC
region-wide fine-mapping was first proven here.

While an advantage of transethnic fine-mapping is the eluci-
dation of truly risk-associated signals by adjusting confound by
LD of each population49, there are several potential limitations to
note. First, we need to consider population-specific LD structures
and allele frequency spectra, which are important especially in the
MHC region. Strong population-specificity may preclude removal
of the effects of LD for the current purpose of transethnic fine-
mapping when few populations are available. Conversely, some

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21975-x

10 NATURE COMMUNICATIONS |         (2021) 12:1639 | https://doi.org/10.1038/s41467-021-21975-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


HLA alleles exist only in a certain population, and fine-mapping
in a single population could also be of importance. Second,
modeling heterogeneity in effects among diverse populations
could enhance the power of discovery of causal variants in
transethnic analysis50. Since the purpose of the current trans-
ethnic fine-mapping is to identify transethnically risk-associated
variants rather than to discover variants with a strong effect only
in one population, we did not explicitly model heterogeneity.
However, in an analysis using more cohorts from different
populations, modeling heterogeneity might be more suitable
because a bias by single population would be reduced.

Therefore, multiethnic MHC fine-mapping that integrates
further diverse ancestry should be warranted for robust prior-
itization of risk-associated HLA variants as a next step15. Given
their high learning capacity of deep neural networks, our method
will be helpful not only when integrating the imputation results
from multiple references, but also when using a more compre-
hensive multiethnic reference. We expect that highly accurate
imputation realized by learning of complex LDs in the MHC
region using neural networks will enable us to further elucidate
the involvement of common genetic features in the MHC region,
that affect human complex traits across ethnicities.

Methods
The architecture of DEEP*HLA. DEEP*HLA is a multitask convolutional neural
network comprising a shared part of two convolutional layers and a fully-
connected layer, and individual fully-connected layers that output allelic dosages of
individual HLA genes to simultaneously impute HLA genes of the same group
(Fig. 1a). The grouping was based on the LD structure3 and physical distance in the
current application: (1) {HLA-F, HLA-V, HLA-G, HLA-H, HLA-K, HLA-A, HLA-J,
HLA-L, and HLA-E}, (2) {HLA-C, HLA-B, MICA, and MICB}, (3) {HLA-DRA,
HLA-DRB9, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB8, HLA-DRB7, HLA-
DRB6, HLA-DRB2, HLA-DRB1, HLA-DQA1, HLA-DOB, and HLA-DQB1}, and (4)
{TAP2, TAP1, HLA-DMB, HLA-DMA, HLA-DOA, HLA-DPA1, and HLA-DPB1}.
Genes not typed or with only single alleles in individual reference panels were
excluded from the group. Comparisons with single-task neural networks or mul-
titask neural networks with random groupings are shown in Supplementary
Note 1b and Supplementary Fig. 11.

DEEP*HLA takes the input of each haplotype SNV genotypes from pre-phased
data, and outputs the genotype dosages of individual alleles for each HLA gene. For
each group, SNVs within its window are encoded to one-hot vectors based on
whether each genotype is consistent with a reference or alternative allele. The
window sizes on each side were fixed to 500 kb for fair comparisons in the current
investigation, using different window sizes might slightly change the accuracy for
some loci (Supplementary Note 1c and Supplementary Fig. 12). Two convolutional
layers with max‐pooling layers and a fully-connected layer follow the input layer as
a shared part. The fully-connected layer at the end of the shared part is followed by
individual fully-connected layers, which have nodes consistent with the number of
alleles of each HLA gene. Softmax activation was added before the last output to
return an imputation dosage that ranges from 0.0 to 1.0 for each allele of one
haplotype. Thus, an individual layer outputs the individual allelic dosages of the
HLA gene of which the sum equals 1 for one haplotype. Dropout was used on the
convolutional and fully-connected layers51, and batch normalization was added to
the convolutional layers52.

During training, 5% of the data set were used for sub-validation to determine
the point for early-stopping training. In 10-fold cross-validation, we separated sub-
validation for early-stopping from a training fold to conduct valid benchmarking
(Supplementary Fig. 13). A categorical cross entropy loss function for each HLA
gene was minimized using the Adam optimizing algorithm53. For a multitask
learning to find a Pareto optimal solution of all tasks, we used the multiple-gradient
descent algorithm-upper bound (MGDA-UB), where the loss function of each task
was scaled based on its optimization algorithms54. To taking advantage of the
hierarchical nature of HLA alleles (i.e., 2-digit, 4-digit, and 6-digit), we
implemented hierarchical fine-tuning, in which parameters of the model of upper
hierarchical structures were transferred to those of the lower one55. We transferred
the parameters of shared networks of 2-digit alleles to 4-digit alleles, and of 4-digit
alleles to 6-digit alleles successively during training. Although some HLA alleles in
our reference panel were not determined in 4-digit or 6-digit resolution, we set
their upper resolution instead to maintain equivalent hierarchical levels with other
HLA genes. Hyperparameters, including the number of filters and kernel sizes of
convolutional layers, and fully-connected layer size, were tuned using Optuna56.
The hyperparameters for each reference panel were determined using a randomly
sampled dataset before cross-validation. Our deep learning architectures were
implemented using Pytorch 1.4.1 (http://pytorch.org/), a Python neural network
library.

Empirical evaluation of HLA imputation accuracy. We used the accuracy metrics
of sensitivity, PPV, and r2 for imputed allelic dosage, and concordance rate for
best-guess genotypes to evaluate the imputation accuracy in various aspects.

In the paper of SNP2HLA, per-locus accuracy was defined as a sum of the
dosage of each true allele across all individuals divided by the total number of
observations33. This definition of accuracy counts positives that are correctly
identified as such and it corresponds to sensitivity in a cross-tabulation table when
decomposed to individual alleles (Supplementary Note 2 and Supplementary
Fig. 14). Thus, we termed this as sensitivity (Se) to contrast with the PPV defined
later

Se Lð Þ ¼
∑n

i¼1 Di A1i;L
� �

þ Di A2i;L
� �� �

2n
ð1Þ

where n denotes the number of individuals, Di represents the imputed dosage of an
allele in individual i, and alleles A1i, L and A2i, L represent the true HLA alleles for
individual i at locus L. The calculations were based on the condition that the
imputed alleles are arranged to optimize for consistency with the truth alleles A1i, L
and A2i, L.

To evaluate the imputation performance in individual HLA alleles, we
decomposed the Se (L) to evaluate the imputation performance of each allele as.

Se Að Þ ¼ ∑m
j¼1 Dj Að Þ

m
ð2Þ

This metric cannot evaluate the effect of false positives; thus, we defined PPV in
the same manner as

PPV Að Þ ¼ ∑m
j¼1 Dj Að Þ

∑m
j¼1 Dj Að Þ þ∑2n�m

k¼1 Dk Að Þ ; ð3Þ

where m denotes the number of true observations of allele A in the total sample,
and Di represents imputed dosage of allele A in individual haplotype j that has
allele A. Dk represents imputed dosage of allele A in individual haplotype k that has
an allele other than allele A. This definition is also based on a cross-tabulation table
(Supplementary Fig. 14a).

In addition, we calculated r2 based on Pearson’s product moment correlation
coefficient between imputed and typed dosages for each allele22.

Further, to evaluate the accuracy of best-guess genotypes, we calculated the
concordance rate (CR) of best-guess genotypes and true genotypes for each allele as

CR Lð Þ ¼
∑n

i¼1 Bi A1i;L
� �

þ Bi A2i;L
� �� �

2n
; ð4Þ

where Bi represents the best-guess genotype of an allele in individual i. By
definition, it was the same as the sensitivity, in which dosages were changed to best-
guess genotypes. Thus, we decomposed it to CR(A) for accuracy for each allele in
the same way. We did not evaluate PPV for best-guess genotype due to
redundancy.

When determining accuracy metrics for each locus or a certain range of allele
frequencies, we calculated the weighted-mean of individual allele-level accuracies
based on individual allele frequencies. For r2, we applied Fisher’s Z-transformation
to individual values, and back-transformed them after averaging to reduce bias57.

Estimation of HLA imputation uncertainty of DEEP*HLA using MC dropout
method. In order to estimate prediction uncertainty, we adopted the entropy of
sampling variation of MC dropout method36. In MC dropout, dropouts are kept
during prediction to perform multiple model calls. Different units are dropped
across different model calls; thus, it can be considered as Bayesian sampling with
treating the parameters of a CNN model as random variables of Bernoulli dis-
tribution. The uncertainty of a best-guess genotype inferred from the entropy of
sampling variation is determined as

H ¼ � t
T
log

t
T
þ T � t

T
log

T � t
T

� �
; ð5Þ

where T is the number of variational samplings and t is the number of times in
which obtained genotype was identical to the best-guess genotype. We set T = 200
in the current investigation.

AUC metric representing distance-dependent LD decay. To evaluate whether
the the strength of LD between an HLA allele and its surrounding SNVs weakens as
the the distance between them increases, we calculated the AUC of the cumulative
curve of r2 from the HLA allele (AUC for distance-dependent LD decay). When the
LD of flanking SNVs of an HLA allele has such a characteristic, r2 of LD from the
HLA allele tends to decrease. In other words, the bilateral cumulative curve of r2

from the HLA allele is more likely to be convex upward; then, the AUC tends to be
higher. We determined the AUC by normalizing the maximum values of r2 sum
and window sizes to 1. We evaluated the association of the AUC with allele-level
accuracy metrics of each imputation method by linear regression models adjusted
for an allele frequency. The window size of the AUC should be set to an input
range for each imputation method. However, SNP2HLA does not have a clear
input range. Thus, we tested two different window sizes as bilateral 1000 SNPs
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from a target HLA allele and the input range of DEEP*HLA. We investigated the
correlation between the imputation accuracy and the AUC of two different window
sizes, respectively.

Regional sensitivity maps of DEEP*HLA. We applied SmoothGrad to estimate
which SNVs were important for DEEP*HLA imputation of each HLA allele34. For
each haplotype, we generated 200 samples which were added Gaussian noise to
encoded SNV data and input them into a trained model. Sensitivity values for
individual SNV positions were obtained by averaging the absolute values of gra-
dients caused by the difference from the true label. When we obtained the sensi-
tivity of an HLA allele, we averaged the maps of all haplotypes that have the target
HLA allele.

HLA imputation software and parameter settings. We tested the latest version
of the software available in Jun 2020 for comparison with our method. SNP2HLA
(v1.0.3; http://software.broadinstitute.org/mpg/snp2hla/) first arranges the strand
in its own algorithm; however, we removed this step data during cross-validation
because the strands must be the same between training and test data. The other
settings of SNP2HLA were set to the default values. For HIBAG (1.22.0.; https://
www.bioconductor.org/packages/release/bioc/html/HIBAG.html) the number of
classifiers was set to 25, which is sufficient to achieve good performance58 for
testing the Japanese data. For the T1DGC panel, the training time was extremely
long with 25 classifiers; thus, we set two classifiers after we confirmed that the
imputation accuracy was almost unchanged in the first set of cross-validation. The
flanking regions on each side were set to 500 kb. The current version of
HLA*IMP:02 did not support a function to generate an imputation model using
own reference data in a publicly available form; thus, we did not evaluate its
performance in this study for fair comparison.

Measurement of computational costs. We measured the computational costs of
imputation of a subset of BBJ data set (n = 1000, 2000, 5000, 10,000, 20,000,
50,000, and 100,000 samples) using our Japanese reference panel (2000 SNVs were
consistent). All our runtime analyses were performed on a dedicated server run-
ning CentOS 7.2.1511, with 48 CPU cores (Intel ® Xeon ® E5-2687W v4 @ 3.00
GHz) and 256 GB of RAM without GPU. Additionally, we measured the training
time of DEEP*HLA with GPU using a machine with Ubuntu 16.04.6 LTS with 20
CPU cores (Intel ® Core ™ i9-9900X @ 3.50 GHz), 2 GPUs (NVIDIA ® GeForce ®
RTX 2080 Ti), and 128 GB of RAM. DEEP*HLA requires pre-phased GWAS data
and the models trained with reference data; thus, we measured the process of not
only imputation, but also pre-phasing of GWAS data (conducted by Eagle) and
training the models with a reference panel. Similarly, HIBAG requires the time for
training a model, which was also measured. In SNP2HLA, the maximum of
available memory was set to 100 GB. The processing time and maximum memory
usage were measured using GNU Time software when running from a command
line interface.

HLA imputation reference data. We used two HLA reference panels in cross-
validation and HLA imputation for biobank GWAS data. The panels were dis-
tributed as a phased condition; thus, they were used as input for training a
DEEP*HLA model as they were. When they were used as a validation set, we
removed the target alleles (i.e., HLA alleles and amino acid alleles) to leave only
phased SNV data. We discussed stricter cross-validation including the process of
haplotype pre-phasing in Supplementary Note 1d.

(i) Our Japanese reference panel and a validation dataset
Our Japanese reference panel contained NGS-based 6-digit resolution HLA

typing data of 33 classical and non-classical HLA genes, of which nine were
classical HLA genes (HLA-A, HLA-B, and HLA-C for class I; HLA-DRA, HLA-
DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 for class II) and 24
were non-classical HLA genes (HLA-E, HLA-F, HLA-G, HLA-H, HLA-J, HLA-K,
HLA-L, HLA-V, HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRB6,
HLA-DRB7, HLA-DRB8, HLA-DRB9, HLA-DOA, HLA-DOB, HLA-DMA, HLA-
DMB, MICA, MICB, TAP1, and TAP2), along with high-density SNP data in the
MHC region by genotyped using the Illumina HumanCoreExome BeadChip (v1.1;
Illumina) of 1120 unrelated individuals of Japanese ancestry3. It was phased using
Beagle imputation software. We excluded two individuals’ data of which sides of
some HLA alleles were inconsistent among different resolutions.

We used 908 individuals of Japanese ancestry with 4-digit resolution alleles of
classical HLA genes (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, and HLA-
DQB1, HLA-DPA1) based on SSO method to benchmark the imputation
performance when the Japanese panel was applied to an independent dataset. The
dataset was used as an HLA reference panel in our previous study6. It contains
high-density SNP data genotyped using four SNP genotyping arrays (the Illumina
HumanOmniExpress BeadChip, the Illumina HumanExome BeadChip, the
Illumina Immunochip, and the Illumina HumanHap550v3 Genotyping BeadChip).
It was distributed in a phased condition with Beagle format. Samples with missing
genotype data for a locus were excluded in the accuracy evaluation of the locus.

This study was approved by the ethical committee of Osaka University
Graduate School of Medicine. All the participants provided written informed

consent approved from ethics committees of RIKEN Center for Integrative Medical
Sciences, and the Institute of Medical Sciences, the University of Tokyo.

(ii) The Type 1 Diabetes Genetics Consortium (T1DGC) reference panel.
The T1DGC panel contains 5868 SNPs (genotyped using Illumina

Immunochip) and 4-digit resolution HLA typing data of classical HLA genes
(HLA-A, HLA-B, and HLA-C for class I; HLA-DPA1, HLA-DPB1, HLA-DQA1,
HLA-DQB1, and HLA-DRB1 for class II) based on SSO method of 5225 unrelated
individuals of European ancestry22. It was distributed in a phased condition with
Beagle format. We excluded 103 individuals’ data of which sides of some HLA
alleles were inconsistent among different resolutions.

HLA imputation in 1000 Genomes Project data. We used Phase III 1000
Genomes Project (1KGv3) cohort as independent data to evaluate imputation
accuracy. It comprises 2554 individuals of five different super populations (AFR,
AMR, EAS, EUR, and SAS). We obtained NGS-based 4-digit resolution HLA
typing data for classical HLA genes (HLA-A, HLA-B, and HLA-C for class I; HLA-
DRB1 and HLA-DQB1 for class II). HLA-typing was performed with PolyPheMe
v1.2 (Xegen, France) on the exome sequences59. We evaluated imputation accuracy
for individual populations based on their allele frequencies. Samples containing
ambiguous alleles for a locus were excluded in the accuracy evaluation of that locus.

We experimentally constructed a mixed panel by merging the Japanese and
T1DGC panels to assess imputation accuracy in diverse populations of 1KGv3.
Considering the disparity in allele frequency of SNVs between two populations, we
removed all palindromic SNVs to align the strands correctly when merging
reference panels. We used 1445 SNVs for imputation which were consistent with
1KGv3 genotype data. We used the same 1445 SNVs for imputation to compare the
accuracies in the same condition, when we evaluated imputation accuracy using the
Japanese panel.

T1D GWAS data in the Japanese population. The BioBank Japan (BBJ; https://
biobankjp.org/english/index.html) is a multi-institutional hospital-based registry
that comprises DNA, serum, and clinical information of approximately 200,000
individuals of Japanese ancestry with a diagnosis of at least 1 of 47 diseases
recorded from 2003 to 200760,61. The genotyping was performed with the Illumina
HumanOmniExpressExome BeadChip or a combination of the Illumina Huma-
nOmniExpress and HumanExome BeadChips62. We used GWAS data from 831
cases who had record of T1D diagnosis and 61,556 controls of Japanese genetic
ancestry enrolled in the BBJ Project. The controls were same as those enrolled in
our previous study that investigated the association of the MHC region with
comprehensive phenotypes, and the number of T1D cases was increased3.

T1D GWAS data in the British population. The UK Biobank (UKB; https://www.
ukbiobank.ac.uk/) comprises health-related information approximately 500,000
individuals aged between 40 and 69 recruited from across the United Kingdom
from 2006 to 201063. We used GWAS data of 732 T1D patients and 353,727
controls of British genetic ancestry enrolled in UKB. We selected T1D patients as
individuals who were diagnosed with insulin-dependent diabetes mellitus in hos-
pital records, and eliminated individuals with non-insulin-independent diabetes
mellitus in hospital records and type 2 diabetes in self-reported diagnosis. The
controls were individuals with no record of any autoimmune diseases in hospital
records or in self-reported diagnosis. We included only individuals of British
ancestry according to self-identification and criteria based on principal component
(PC)64. We excluded individuals of ambiguous sex (sex chromosome aneuploidy
and inconsistency between self-reported and genetic sex), and outliers of hetero-
zygosity or call rate of high quality markers.

Imputation of the HLA variants of GWAS data of T1D cases and controls. In
this study, we defined the HLA variants as SNVs in the MHC region, classical 2-
digit and 4-digit biallelic HLA alleles, biallelic HLA amino acid polymorphisms
corresponding to the respective residues, and multiallelic HLA amino acid poly-
morphisms for each amino acid position. We applied DEEP*HLA to the GWAS
data to determine classical 2-digit and 4-digit biallelic HLA alleles. The dosages of
biallelic HLA amino acid polymorphisms corresponding to the respective residues
and multiallelic HLA amino acid polymorphisms of each amino acid position were
determined from the imputed 4-digit classical allele dosages. We applied post-
imputation filtering as the biallelic alleles in which r2 accuracy in 10-fold cross-
validation was lower than 0.7. The SNVs in the MHC region were imputed using
Minimac3 (version 2.0.1; https://genome.sph.umich.edu/wiki/Minimac3) after pre-
phased with Eagle (version 2.3; https://data.broadinstitute.org/alkesgroup/Eagle/).
We applied stringent post-imputation QC filtering of the variants (minor allele
frequency ≥ 0.5% and imputation score Rsq ≥ 0.7). For transethnic fine-mapping,
we integrated results of the imputation of individual cohorts by including the HLA
genes, amino acid position, and SNVs that were typed in both reference panels.
Regarding the HLA alleles and amino acid polymorphisms, those present in one
population were regarded as absent in the other population. Considering the dis-
parity in allele frequency of SNVs among different populations, we removed all
palindromic SNVs to correctly align the strands.
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Association testing of the HLA variants. We assumed additive effects of the
allele dosages on the log-odds scales for susceptibility to T1D, and evaluated
associations of the HLA variants with the risk of T1D using a logistic regression
model. To robustly account for potential population stratification, we included the
top ten PCs obtained from the GWAS genotype data of each cohort (not including
the MHC region) as covariates in the regression model. We also included ascer-
tainment center and genotyping chip for UKB as covariates. For transethnic
analysis, PC terms for each other population were set to 0, and a categorical
variable indicating a population was added as a covariate. We also included the sex
of individuals as a covariate.

To evaluate independent risk among the HLA variants and genes, we conducted
a forward-type stepwise conditional regression analysis that additionally included
the associated variant genotypes as covariates. When conditioning on HLA gene(s),
we included all the 4-digit alleles as covariates to robustly condition the
associations attributable to the HLA genes3,14. When conditioning on the specific
HLA amino acid position(s), we included the multiallelic variants of the amino acid
residues. We applied a forward stepwise conditional analysis for the HLA variants
and then HLA genes, based on a genome-wide association significance threshold (P
= 5.0 × 10−8). A previous study reported that the T1D risk was strongly associated
with a combination of variants in the region of HLA-DRB1, HLA-DQA1, and HLA-
DQB1, where the variants have strong LD to each other12. In such a situation,
conditioning on all the 4-digit alleles of a single HLA gene might inadvertently
blind the association of alleles of other HLA genes; therefore, we conditioned on a
set of individual HLA variants rather than an each HLA gene when analyzing this
region.

We tested a multivariate full regression model by including the risk-associated
HLA variants in HLA-DRB1, HLA-DQB1, HLA-A, and HLA-B, which were
identified through the stepwise regression analysis. We excluded the most frequent
residue in the British cohort from each amino acid position as the reference allele
when we included amino acid polymorphisms in the model. Phenotypic variance
explained by the identified risk-associated HLA variants was estimated on the basis
of a liability threshold model assuming a population-specific prevalence of T1D,
and using the effect sizes obtained from the multivariate regression model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Japanese HLA data have been deposited at the National Bioscience Database Center
(NBDC) Human Database with the research ID hum0114 (https://humandbs.
biosciencedbc.jp/en/hum0114-v2). Independent HLA genotype data of Japanese
population have been deposited at the NBDC with the research ID hum0028 (https://
humandbs.biosciencedbc.jp/hum0028-v2), and available through the Japanese
Genotype–phenotype archive (JGA) with the accession ID JGAS000018. T1DGC HLA
reference panel can be download at a NIDDK central repository with a request (https://
repository.niddk.nih.gov/studies/t1dgc-special/). GWAS data of the BBJ are available at
the NBDC Human Database with the research ID hum0014 (https://humandbs.
biosciencedbc.jp/hum0014-v18). The analysis of UKB GWAS data was conducted via the
application number 47821 (https://www.ukbiobank.ac.uk/). The protein structures of
HLA-A, HLA-DR, and HLA-DQ are available on Protein Data Bank entries (https://
www.rcsb.org/structure/2BVP), (https://www.rcsb.org/structure/3PDO), and 1UVQ
(https://www.rcsb.org/structure/1UVQ), respectively. Source data are provided with
this paper.

Code availability
Python scripts for training a model and performing imputation with our method are in
DEEP*HLA GitHub repository (https://github.com/tatsuhikonaito/DEEP-HLA)65.
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