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A comprehensive characterization of the cell-free
transcriptome reveals tissue- and subtype-specific
biomarkers for cancer detection
Matthew H. Larson 1,2✉, Wenying Pan1,2, Hyunsung John Kim1, Ruth E. Mauntz1, Sarah M. Stuart1,

Monica Pimentel1, Yiqi Zhou1, Per Knudsgaard 1, Vasiliki Demas1, Alexander M. Aravanis1 & Arash Jamshidi1

Cell-free RNA (cfRNA) is a promising analyte for cancer detection. However, a compre-

hensive assessment of cfRNA in individuals with and without cancer has not been conducted.

We perform the first transcriptome-wide characterization of cfRNA in cancer (stage III breast

[n= 46], lung [n= 30]) and non-cancer (n= 89) participants from the Circulating Cell-free

Genome Atlas (NCT02889978). Of 57,820 annotated genes, 39,564 (68%) are not

detected in cfRNA from non-cancer individuals. Within these low-noise regions, we identify

tissue- and cancer-specific genes, defined as “dark channel biomarker” (DCB) genes, that are

recurrently detected in individuals with cancer. DCB levels in plasma correlate with tumor

shedding rate and RNA expression in matched tissue, suggesting that DCBs with high

expression in tumor tissue could enhance cancer detection in patients with low levels of

circulating tumor DNA. Overall, cfRNA provides a unique opportunity to detect cancer,

predict the tumor tissue of origin, and determine the cancer subtype.
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Tumor-derived cell-free DNA (cfDNA) has emerged as an
effective biomarker for cancer detection. The rapid
reduction in sequencing costs, combined with more effi-

cient library preparation techniques, has enabled the detection of
cancer-associated point mutations, copy number variations, and
methylation markers at increasingly earlier stages of disease1–4.
Despite the promise of these methods for cancer screening, they
are fundamentally constrained by the amount of tumor DNA
shed into the blood during cell death5. Small or slow-growing
tumors release less DNA into circulation6, leading to low
tumor fractions and reduced sensitivity for early-stage cancer
detection. Furthermore, most cfDNA features (e.g., small
nucleotide variants) are not tissue-specific, making it difficult to
predict the tumor tissue of origin (TOO) in positively screened
patients with cancer. More recently, targeted analysis of
methylation markers on cfDNA has been demonstrated to detect
and localize cancer with high specificity7. However, detection and
localization of cancer at its earliest stages will benefit from the
exploration of additional biomarkers to complement detection by
cfDNA.

Previous reports suggest that cancer cells also release cell-free
RNA (cfRNA) into circulation8–12. Cell-free RNA presents an
opportunity to detect cancer in patients with low tumor shedding
rates, as overexpression of tumor-specific transcripts could lead to
amplification of tumor-derived RNA signals in the blood. In
addition, cfRNA may be released into the blood through
mechanisms other than cell death, such as exosome-mediated
signaling by living cells13. Consequently, tumor-derived cfDNA
and cfRNA may originate from distinct cell populations within
the tumor microenvironment, potentially expanding the oppor-
tunities for cancer detection through the combined screening of
multiple analytes in the blood.

Historically, the study of cfRNA has focused on either
microRNAs (miRNA) or a small number of known cancer-
related messenger RNAs (mRNA). miRNAs are stable and
relatively abundant in plasma14,15, and numerous studies have
demonstrated cancer-associated miRNA expression changes16.
However, miRNA levels can be skewed by preanalytical pro-
cessing conditions, quantification strategies, and batch effects,
which have translated to a lack of reproducibility, low inter-
pretability, and poor specificity for miRNA biomarkers17.
Tumor-derived cell-free mRNA was identified nearly 2 decades
ago by polymerase chain reaction (PCR)9, but studies of cell-
free mRNA are typically hypothesis-driven, focusing on
mutations or expression changes for previously characterized
oncogenes9,10,12. As such, these studies may miss a large
number of potential biomarkers. Furthermore, many cancer-
related transcripts are also highly abundant in circulating
immune cells, red blood cells, and platelets, making it difficult
to identify small expression changes associated with early-stage
disease.

In this study, we aim to characterize cfRNA and to identify
cell-free biomarkers specific to patients with breast and lung
cancer. We develop a strategy to preserve, extract, and sequence
extracellular mRNAs from patient plasma while avoiding con-
founding background noise from circulating blood cells, and use
this approach to conduct a transcriptome-wide characterization
of circulating RNA in the blood of cancer and non-cancer par-
ticipants from the Circulating Cell-free Genome Atlas Study
(CCGA, NCT02889978). Here, we define the baseline cell-free
transcriptome in the absence of cancer and identify tissue and
subtype-specific cfRNA biomarkers in breast and lung cancer
patients. Taken together, these results suggest an opportunity to
detect and localize cancer using cell-free mRNA and provide a
framework for identifying highly specific biomarkers in different
cancers.

Results
Analytical characterization of cell-free RNA. We systematically
evaluated the effect of preanalytical parameters on cfRNA yield
and expression profiles to establish a reproducible protocol for
preserving cfRNA in patient plasma (see Supplementary Mate-
rials regarding the effect of blood collection tube type [Supple-
mentary Figs. 1–3], shipping temperature [Supplementary Fig. 4],
plasma storage [Supplementary Fig. 5], and freeze/thaw cycles
[Supplementary Fig. 6] on cfRNA recovery). Based on these
studies, we determined that Streck Cell-free DNA blood collec-
tion tubes preserve cfRNA in whole blood at temperatures ran-
ging from 6–35 °C for up to 48 h prior to plasma separation.
Moreover, we found that cfRNA is stable in frozen plasma for up
to 12 months when collected in Streck tubes and stored at −80 °C
and that a single freeze/thaw cycle does not significantly affect
cfRNA yield, enabling the use of banked plasma for the study of
cfRNA. We selected stored plasma from 47 breast and 32 lung
cancer subjects (stage III) collected as part of the CCGA study
(see Materials and Methods for sample selection criteria). Ninety-
three frequency age-matched individuals without cancer were also
selected to characterize the baseline transcriptome in non-cancer
individuals and ensure high specificity of the identified RNA
biomarkers (a full list of study participants can be found in
Supplementary Table 5).

Extracted and deoxyribonuclease (DNase)-treated cfRNA
contained a large proportion (55 ± 12%, median ± standard
deviation [SD]) of small RNA fragments (<200 nucleotides
[nt]), consistent with the previous reports14. We also observed
longer fragments (200–2000 nt) and prominent 18S/28S riboso-
mal RNA peaks (Fig. 1a), suggesting that a significant proportion
of circulating RNA is protected from RNase degradation in the
blood and remains largely unfragmented. The average cfRNA
yield from non-cancer and cancer samples was 7.1 and 7.9 ng/mL
of plasma, respectively, which is comparable to cfDNA yields
from the same donors (9.9 and 8.9 ng/mL of plasma in the non-
cancer and cancer groups) (Supplementary Fig. 7). We also
observed substantial patient-to-patient variability in cfRNA yield
(83% and 81% coefficient of variation in the non-cancer and
cancer groups, respectively).

Whole-transcriptome RNA-seq libraries were prepared for
each patient using the entire yield of extracted cfRNA (see
Methods and Supplementary Fig. 8). The sequencing results for
these whole-transcriptome libraries showed that cfRNA was
dominated by ribosomal RNA (rRNA) and mitochondrial rRNA
(Mt rRNA), which accounted for >95% of sequenced transcripts
(Fig. 1a), while mRNA made up a relatively small fraction of
cfRNA (~2%), consistent with the relative proportions of rRNA-
to-mRNA in most cell types. Within the population of cell-free
mRNAs, a few high-abundance transcripts accounted for half of
all sequenced transcripts. Among these transcripts were blood-
derived mRNAs such as the hemoglobin (HB) subunits (HBA1,
HBA2, HBB, HBD); components of the major histocompatibility
complex (B2M, CD74); and the RNA component of the signal
recognition particle (RN7SL), which has been identified as a
membrane-associated transcript present at high levels in red
blood cells18. We depleted these high-abundance transcripts after
amplification of complementary DNA (cDNA) libraries to
minimize losses at the beginning of our library preparation
protocol when the material is limiting. After depletion, the
resulting RNA-seq libraries were sequenced to saturation and
analyzed using a custom bioinformatics pipeline that generated
unique molecular identifier (UMI)-collapsed counts for each
gene on a sample-by-sample basis. Compared to cfDNA, which
shows relatively even coverage across the genome due to the
release of 2 genomic copies during cell death, cfRNA shows
increased coverage in exonic regions of expressed genes (Fig. 1b),
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as expected for mature mRNA, and reduced coverage in
unexpressed genes (Fig. 1c), reflecting contributions from cell
types with different expression profiles.

Identification of cell-free mRNA biomarkers. To identify the
sources of RNA normally present in circulation, we performed a
tissue deconvolution of cfRNA from non-cancer samples (see
“Methods” section). The majority of circulating transcripts (74 ±
10%, median ± SD) are derived from blood cells (Fig. 2a),
reflecting the high abundance of these cell types in circulation and
their constant turnover. We also observed significant contribu-
tions from transcripts expressed in the liver and spleen, both of
which are involved in blood-filtering and have direct contact with
the circulatory system. This is similar to cfDNA origins in plasma,
which are also dominated by contributions from white blood cells
and liver tissue19, suggesting that cfRNA and cfDNA in non-

cancer plasma share a common etiology derived from normal
turnover of blood cells and blood-filtering organs.

We also performed a tissue deconvolution analysis on RNA
from the cancer group, using plasma and matched tumor tissue
samples obtained for the CCGA study. The results of these
analyses revealed larger contributions from breast and lung
tissue in RNA from tumor tissue samples (Fig. 2b), as expected.
Notably, lung and breast-derived transcripts were also observed
in cfRNA from cancer plasma samples (Fig. 2c). The relative
fraction of these tissue-specific transcripts observed in plasma is
low compared to estimates in tumor tissue, as expected based
on previous estimates of circulating tumor DNA in plasma6,
but are indicative of tissue-specific transcripts in cancer plasma
that can be differentiated from the high background of blood-
cell derived transcripts. Overall, this suggests that there is a
detectable population of tumor-derived RNA circulating in
cancer plasma.
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We set out to identify tumor-specific transcripts among the
background of RNA from healthy blood cells by focusing our
search on genes rarely detected in the plasma of non-cancer
individuals. Of 57,820 annotated genes in the GENCODE v19
reference, 39,564 (68%) were absent in non-cancer plasma
(median reads per million [RPM]= 0). We call these “dark
channels,” as they represent regions of the genome that are free of
background expression in circulating blood cells. Remarkably, we
identified a subset of genes recurrently detected in patients with
cancer within these dark channel regions. These genes met the
following criteria: (1) they were not detected in non-cancer
plasma, (2) they were upregulated in the cancer group compared
to the non-cancer group, and (3) they were detected in more than
one cancer sample in our cohort (to exclude single outliers).
Because these biomarkers are found in regions that are normally
“dark” in the non-cancer group, we refer to them as dark channel
biomarker (DCB) genes. Overall, 12 DCB genes were identified in
lung cancer samples (SLC34A2, GABRG1, ROS1, AGR2, GNAT3,
SFTPA2, MUC5B, SFTA3, SMIM22, CXCL17, BPIFA1, WFDC2),
and 8 DCB genes were identified in breast cancer samples
(CSN1S1, FABP7, OPN1SW, SCGB2A2, LALBA, CASP14, KLK5,
WFDC2) (Fig. 3). One DCB gene (WFDC2) was identified in both
breast and lung cancer samples.

Dark channel biomarkers are tissue-specific and subtype-
specific. Unexpectedly, DCB genes are highly enriched for tissue-
specific genes. Among all 57,820 annotated human genes in the
GENCODE v19 reference, only 0.3% are lung-specific and 0.2%
are breast-specific (as defined by the Human Protein Atlas
database, version 18.1)20. By comparison, 50% of the lung DCB
genes (6 of 12) are lung-specific, and 50% of the breast DCB genes
(4 of 8) are breast-specific, indicating significant enrichment of

tissue-specific markers for both lung (Fisher’s exact P value= 7 ×
10−13) and breast DCBs (Fisher’s exact test P value= 3 × 10−9).
Furthermore, the tissue specificity of DCBs matched the cancer
type of the patients in which they were found: breast-specific and
lung-specific DCBs were detected in the plasma of patients with
breast and lung cancer, respectively, suggesting an opportunity to
predict tumor TOO using cfRNA (Fig. 3).

In addition to their specificity to the tumor TOO, ~30% of
the DCB genes identified are also specific to a certain cancer
subtype. In our breast cohort, FABP7 was upregulated in cfRNA
from patients with triple-negative breast cancer (TNBC) but
downregulated in hormone receptor-positive (HR+) breast
cancer (Fig. 4a). Conversely, the DCB gene SCGB2A2 was
downregulated in TNBC but upregulated in HR+ breast cancer
samples (Fig. 4a). Analysis of matched tumor tissue expression
from 33 breast subjects (23 HR+, 10 TNBC) collected at the
time of draw also showed similar results: FABP7 was
upregulated in the tumor tissue of patients with TNBC breast
cancer, while SCGB2A2 was upregulated in tumor tissue from
patients with HR+ breast cancer (Fig. 4b). This concordance
suggests that the subtype specificity of these DCB genes in
plasma reflects their subtype-specific expression in tumor
tissue. An analysis of DCB expression in breast cancer tumor
samples from The Cancer Genome Atlas (TCGA) also confirms
the subtype-specific expression of these markers in a larger
cohort of tumor tissue samples (Fig. 4c).

Similarly, this DCB subtype specificity also extends to lung
cancer: 4 of the 6 lung DCB genes (CXCL17, SFTA3, SFTPA2, and
SLC34A2) were upregulated in the plasma of patients with lung
adenocarcinoma compared to those with squamous cell carci-
noma (Fig. 4d). This same expression pattern was also observed
in 7 matched lung cancer tissue samples (4 squamous cell
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carcinoma, 3 adenocarcinoma) and tumor tissue samples from
TCGA (Fig. 4e, f), highlighting the concordance between lung
DCB levels in plasma and tumor tissue. The remaining 2 lung-
specific DCB genes (ROS1, BPIFA1) were also increased in the
plasma of patients with lung adenocarcinoma, though it did not
rise to the level of statistical significance. However, an analysis of
these markers in TCGA tissue data indicates a statistically
significant increase in expression in adenocarcinoma tumor tissue
compared to squamous cell carcinoma (Supplementary Fig. 9),
suggesting that larger cohorts of patients with lung cancer and
cfRNA expression data may confirm the subtype specificity of
these DCB genes.

Detectability of DCB genes is correlated with tumor fraction in
plasma and expression in tumor tissue. We observed that some
plasma samples in the cancer group did not have detectable
levels of DCB genes and set out to determine what governs DCB
detectability in cfRNA. Previous studies of cfDNA indicate that
the fraction of tumor-derived material in circulation varies
among cancers and individuals. If the fraction of tumor-derived
cfDNA and cfRNA are proportional for a given patient, then
the detectability of a DCB gene in cfRNA should correlate with
tumor fraction estimates from cfDNA. As part of the CCGA
study, tumor fraction estimates were calculated for all patients
with matched tissue using targeted DNA sequencing (Supple-
mentary Materials)7. Due to the relatively large number of
patients with breast cancer with matched tissue and tumor
fraction estimates in our cohort (n= 33), we applied this

analysis to breast biomarkers FABP7 and SCGB2A2, which were
selected from 4 breast-specific DCBs due to their high recur-
rence rate among patients with breast cancer (13% and 24%,
respectively) and specificity to different breast cancer subtypes.
We observed that all 4 patients with breast cancer who had
FABP7 detected in plasma had relatively high tumor fractions
(>1%) (Fig. 5a), consistent with the hypothesis that tumor
shedding rate is correlated with DCB detection. However, the 5
breast cancer patients with the highest apparent tumor fraction
did not have detectable levels of FABP7 in plasma, suggesting
that other factors beyond tumor fraction may affect DCB
abundance in cfRNA.

We hypothesized that the detectability of a DCB gene in cfRNA
is further modulated by the expression of DCB genes in the
matched tumor tissue, with a higher expression in tumor cells
leading to an increase in the likelihood that the transcript would
be shed and detected in plasma. Consistent with this hypothesis,
we observed that DCB gene levels in plasma are correlated with
DCB expression in tumor tissue (Supplementary Fig. 10).
Motivated by the observation that neither tumor fraction nor
expression fully explained the prevalence of DCBs in plasma, we
derived a variable—“tumor content”—which is the product of
tumor fraction and expression of the DCB gene in matched
tumor tissue. Tumor content was more significantly associated
with DCB detection in plasma compared to either tumor
fraction or tissue expression alone for the detectability of FABP7
(two-sided Mann–Whitney U test P value 0.003 vs. 0.02 and
0.01, respectively) and SCGB2A2 (P value 0.0001 vs. 0.01 and
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0.001, respectively) (Fig. 5). This may explain why patients with
high tumor fraction (>1%) but no expression of FABP7 in
matched tissue did not show detectable levels of FABP7 in plasma
(see samples BrCa31, BrCa44, BrCa3, and BrCa19 in Fig. 5a) and
why patients with lower tumor fractions but high tumor tissue
expression of SCGB2A2 showed detectable levels of SCGB2A2 in
plasma (see samples BrCa9, BrCa27, and BrCa40 in Fig. 5b).
There are also a number of samples that appear to have relatively
high tumor content (>1%) for SCGB2A2 and FABP7, but for
which the genes are not detected in cfRNA, suggesting that other
factors beyond tumor tissue expression may influence the
detectability of a given biomarker in circulation.

Inspired by the observation that tumor content for a given gene
is a better predictor of its expression in cfRNA, we developed a
statistical method called heterogeneous differential expression
analysis (heteroDE) to identify tumor-derived cfRNA biomarkers
(see “Methods” section). Standard differential expression techni-
ques, such as DEseq2 and edgeR21,22 separate samples into 2
categorical groups (disease and control) and assume that samples
in each group share the same mean expression value. However, in
highly heterogeneous samples like cfRNA, the mean expression of
a gene can vary significantly from sample to sample based on the
subtype of the primary tumor and the patient-specific tumor
fraction. Thus, heteroDE uses the continuous covariate tumor
content rather than the categorical covariate group label in the
generalized linear model. When we applied heteroDE to breast
cancer samples, we identified 7 cfRNA biomarkers (SCGB2A2,
CASP14, FABP7, CRABP2, VGLL1, SERPINB5, TFF1), 3 of which
(FABP7, SCGB2A2, CASP14) overlap with previously identified
DCB genes. In summary, we identified a total of 23 cfRNA
biomarkers in breast and lung cancer (Supplementary Table 6)
using 2 different feature selection methods (DCB criteria and
heteroDE). The overlap of genes identified by these two methods
suggests that the approaches are complementary and can be used
in different circumstances based on the availability of matched
tumor tissue.

Validation of cfRNA biomarkers in a separate cohort. We set
out to validate the 23 cell-free mRNA biomarkers identified in
our CCGA cohort in an orthogonal set of breast (n= 38) and
lung (n= 18) cancer plasma samples obtained from a commercial
vendor (Discovery Life Sciences). Stage I–IV patients were
selected to assess the prevalence of RNA biomarkers across dis-
ease progression, and 32 age-matched non-cancer samples were
included as controls of expression in patients without cancer.
Most of the cancer patients in this cohort do not have reliable
subtype data available at the time of collection, so this cohort
could only be used to validate the cancer specificity of DCB
genes and not their subtype specificity. To improve sensitivity
and reduce sequencing requirements, we developed a targeted
enrichment approach to select 23 cell-free mRNA biomarkers
(Fig. 6a). We also enriched for 34 positive control genes that are
normally present in non-cancer plasma (Supplementary Table 7),
which act as carrier material in the enrichment step. When
compared to the whole-transcriptome assay, we found that the
targeted approach increased conversion efficiency for targeted
cfRNA transcripts by 2-fold (Supplementary Fig. 11).

Consistent with our previous findings, and despite the
increased efficiency of the targeted assay, all but 1 of 23 DCB
genes tested in our validation cohort were dark (median
RPM= 0) in the non-cancer group (Fig. 6a, Supplementary
Table 6), satisfying the expression level criteria for dark channels.
Of the 21 genes in our panel detected in >1 cancer sample in the
validation cohort, 15 genes were differentially expressed in at least
1 cancer group. Seven DCB genes were differentially expressed in
breast cancer (Fig. 6b) and 14 were differentially expressed in
lung cancer with a false discovery rate ≤1% (Fig. 6c). The level of
cfRNA biomarker expression in the cancer group generally
increased with stage, with the highest expression seen for stage IV
samples (Fig. 6a and Supplementary Fig. 12). In summary, these
results confirm the diagnostic potential of 15 of the 23 DCB genes
in individuals with cancer and validate the DCB discovery
approach.
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Fig. 5 The impact of tumor fraction and tumor content on the detectability of dark channel biomarker genes in cell-free RNA. Patient IDs plotted as a
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Discussion
Early diagnosis of cancer can dramatically improve the chances
of survival23, and the detection of solid tumors through the
analysis of circulating nucleic acids in liquid biopsies has
demonstrated that cancers can be detected at increasingly ear-
lier stages of disease7. As a result, a significant amount of effort
has been devoted to the study of cfDNA and its potential for
cancer screening. By comparison, relatively little is known
about the biology of cfRNA, despite its potential to non-
invasively report on transcription dynamics within the tumor
environment.

To our knowledge, our study represents the first transcriptome-
wide assessment of cfRNA in cancer and non-cancer patients.

Previous work largely focused on circulating miRNA16, which
can be difficult to interpret due to their pleiotropic effects on
gene regulation, and which have rarely translated into clinical
practice17. Studies of circulating mRNA have more clinical appli-
cations but are limited to the detection of known oncogenic mRNA
markers, often with prior knowledge of mutations harbored in
matched tumor tissue24,25. Such approaches are invaluable for
treatment guidance and monitoring but do not address the
potential application of cfRNA for cancer screening. Our results
shed light on the origins of cfRNA in plasma and highlight a
population of circulating mRNAs that are specific to breast and
lung cancer. These results have significant implications for the
potential use of cfRNA in cancer detection and monitoring and
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Fig. 6 Detection of dark channel biomarker (DCB) genes in cell-free RNA of an independent validation cohort. a Samples are shown in columns and
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provide a framework for identifying highly specific cfRNA bio-
markers in other cancers.

The existence of RNA in plasma has been well-established for
more than 20 years. However, several factors may have hindered
its widespread adoption for cancer screening. First, circulating
RNA is assumed to be unstable and highly fragmented. This
perception arises from the relative instability of RNA compared
to DNA, which itself is highly fragmented and unstable in the
blood26, as well as the high concentration of RNases present in
circulation27,28. By evaluating different preanalytical conditions
and optimizing our extraction protocol, we were able to define a
set of conditions for which cfRNA is preserved in plasma after
blood collection. By design, our approach to cfRNA extraction is
agnostic to the origin of the extracellular material and seeks to
isolate all available RNA from the cell-free fraction. This pre-
cludes speculation about the potential function of these tran-
scripts in circulation but allows a comprehensive characterization
of cfRNA. We recovered full-length mRNAs that are similar to
the profiles reported in the literature for exosomal RNA29, and
the total yield of extracted cfRNA is comparable to cfDNA in
matched patients. These results suggest that cfRNA is relatively
stable in plasma and provide a preanalytical workflow for future
studies seeking to quantify circulating RNA in a robust and
reproducible manner.

A primary innovation in this work is that we restricted our
analysis to genes that are never (or rarely) detected in the non-
cancer group, and identified biologically-relevant transcripts that
are detected specifically in cancer plasma. We call these genes
“dark channel biomarkers.” These DCBs address a major chal-
lenge: identification of reliable RNA biomarkers for cancer
detection while avoiding a large number of false positives. By
focusing our analysis on regions that are free of background
signals from healthy cells, we can ensure high cancer specificity of
the identified biomarkers. This approach effectively reduces the
likelihood of identifying false positive cfRNA signal in plasma
(e.g., due to technical variations or batch effects) that may arise
from analyses focused on fold-changes in expression between
cases and controls. We also developed a differential expression
analysis framework (heteroDE) that utilizes gene expression from
matched breast tumor tissue and tumor fraction from matched
cfDNA libraries to identify biomarkers across heterogeneous
samples where both tumor fraction and tumor tissue expression
can vary dramatically. Using these 2 approaches, we were able to
identify 23 cfRNA biomarkers that are robust to processing
conditions and specific to cancer (Supplementary Table 6).

Dark channel biomarker genes exhibit several distinct char-
acteristics that support their validity as cancer-specific biomarkers:
(1) DCB genes are highly enriched for tissue-specific genes, (2) their
expression is correlated with expression in matched tumor tissue,
and (3) they have been previously identified as subtype-specific
biomarkers in tumor tissue.

SCGB2A2 (mammaglobin-A) is an example of a biomarker
gene that meets all of these criteria. Mammaglobin is a breast-
specific transcript that has been previously identified as a blood
biomarker for breast cancer detection30. In healthy breast tissue,
mammaglobin is expressed at low levels, but cell transformation
leads to a large increase in mammaglobin expression31. This is
consistent with our data, which shows mammaglobin expression
in plasma exclusively in patients with breast cancer for both our
discovery and validation cohorts, with increased expression at
later stages (Fig. 6a and Supplementary Fig. 12). Moreover,
mammaglobin expression in plasma is specific to certain breast
cancer subtypes in our cohort: expression is observed in the
plasma of patients with HR+ breast cancer, but not in TNBC,
consistent with expression in matched tumor tissue and previous
studies32.

Among the lung cancer DCB genes, many are associated
with surfactant proteins (e.g., SFTA3, SFTPA2, SLC34A2, and
BPIFA1), which function to lower surface tension at the air/liquid
interface in alveolar cells. Interestingly, we observed that these
lung markers are subtype-specific: they are detected in both
plasma and matched tumor tissue samples from patients with
lung adenocarcinoma (a type of tumor that originates from
glandular epithelial cells in the smaller airways of the lung), but
not in samples from patients with squamous cell carcinoma. The
presence of these markers in the blood may benefit from the
secretory nature of these cell types and their proximity to the
blood/air interface, increasing the likelihood that these transcripts
are released into the circulation during cell death or cell signaling.
Surfactant-coding mRNAs have been previously identified as
blood-borne biomarkers for subtype-specific detection of lung
cancer33, and there is substantial evidence in the literature that
they are differentially expressed in lung adenocarcinoma
tissue34–36, suggesting an opportunity to leverage the vast litera-
ture around tumor tissue expression to identify additional
subtype-specific cfRNA biomarkers.

We have also identified other types of DCBs that are not
specific to a single tissue or cancer type. These comprise half of
the DCBs identified in our study and are found in both breast and
lung cancer patients within our cohort. AGR2 and TFF1, for
example, are both estrogen-responsive gene elements that have
been associated with a variety of different cancers. TFF1 has been
reported as a blood-borne biomarker for breast cancer37, while
AGR2 has been previously reported as a prognostic marker for
both breast cancer and lung adenocarcinoma38,39. Further studies
of circulating RNA in different cancers, as well as cancers iden-
tified at earlier stages, will be needed to determine the value of
these markers for cancer screening. On their own, they may
represent binary markers of cancer status, while the presence of
tissue-specific markers in the same sample will help predict
tumor TOO.

Our results suggest that tumor-derived signals are amplified in
cfRNA due to increased expression of these markers in tumor
tissue. We introduce the notion of “tumor content” as a measure
that accounts for both tumor shedding rate and tumor tissue
expression that is more predictive of DCB detection in plasma
than either metric alone. The ability to measure the tumor con-
tent of DCB genes through the analysis of cfRNA led to the
amplification of cancer-specific signal by orders of magnitude
compared to tumor fraction alone (Fig. 5). Moreover, the lack of
appreciable levels of DCB genes in non-cancer plasma means that
this amplification of tumor-specific signal does not lead to a
concomitant increase in noise, enabling high specificity. In some
cases, this increase in signal-to-noise may enable detection for
patients with cancer with low tumor fraction that might otherwise
be missed by cfDNA-based detection approaches.

Future studies of cfRNA and cfDNA from cancer patients with
low tumor shedding but high tissue expression of DCB genes will
be needed to directly address the potential increase in sensitivity
afforded by a multianalyte test. Although we did not directly test
complementarity with cfDNA-based detection on a sample-by-
sample basis, our study identified cfRNA biomarkers that are
specific to HR+ breast cancer and lung adenocarcinoma, for
which cfDNA has lower sensitivity compared to other breast and
lung cancer subtypes40,41. Ultimately, it may be possible to sup-
plement detection by cfDNA-based approaches through targeted
enrichment of DCB transcripts.

There are several questions that must be addressed before the
value of cfRNA for cancer screening in a clinical setting can be
fully assessed. First, the sensitivity of cfRNA for cancer detection
in early-stage cohorts will need to be established. This should be
approached using a targeted assay, such as hybrid capture or
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amplicon sequencing, which will allow more sensitive quantifi-
cation of DCB genes that may have been missed in our cohort due
to the low conversion efficiency of a whole-transcriptome
approach. Future efforts should also be aimed at identifying
additional DCB genes to further increase cancer detection sen-
sitivity. Biomarkers can be identified empirically based on
expression in TCGA tumor tissue for target cancers and filtered
to remove biomarkers that are detected in the non-cancer tran-
scriptome. Feature selection methods may also be expanded to
include cancer-specific isoforms, fusions, and variants. Finally,
assessment of cfRNA in larger non-cancer cohorts, and in
patients with other breast-related or lung-related diseases, will be
needed to establish the specificity of these markers in a screening
population.

We now have a comprehensive picture of the types of plasma
cfRNA in non-cancer individuals and have identified a class of
cancer-specific cfRNA biomarkers in low-noise regions of the
cell-free transcriptome. A subset of these cancer biomarkers are
also subtype-specific, providing a potential strategy for both
cancer detection and tissue-of-origin prediction. Beyond the
individual biomarkers identified in this study for breast and lung
cancer, we have created a workflow and computational frame-
work for the identification of cfRNA biomarkers that is applicable
to a variety of cancers. Ultimately, we hope cfRNA can enable the
early detection of a variety of cancers to reduce cancer mortality.

Methods
Study design and sample selection criteria. The protocol was reviewed and
approved by the Institutional Review Board (IRB) or Independent Ethics Com-
mittee (IEC) for each of the 142 participating sites (the full list can be found at
http://clinicaltrials.gov/ct2/show/NCT02889978). IRB Approval Letters, IRB Ros-
ters, and Informed Consent Forms for each site are available in the Trial Master
File and are available upon request. Informed written consent was obtained for
each participant prior to sample collection. The Informed Consent Form contains
the following statement: “The results of the study may be published in scientific
journals and presented at medical meetings. The study doctor, study staff, and
sponsor may make data, results, or biological samples from the study available in
publicly accessible databases or provide them to other researchers for use in other
research projects. If the data, results, or biological samples from this study are made
public or provided to other researchers, information that directly identifies you will
not be used.”

The primary outcome of this study was to collect and study clinically-annotated
biospecimens, specifically peripheral blood, and contemporary tumor tissue when
available, to characterize cfRNA profiles from deep sequencing and to estimate the
population heterogeneity in two arms of the study (cancer vs. non-cancer). For the
discovery cohort, we selected a subset of stage III breast and lung cancer samples
from the CCGA study (NCT02889978). Stage III samples were selected to
maximize signal in the blood while avoiding confounding signal from potential
secondary metastases. We required that the selected patients had at least 2 tubes of
unprocessed grade 1–2 plasma (no hemolysis), with 6–8 mL of plasma per patient.
We further required that selected patients had matched cfDNA sequencing data
from previous GRAIL studies. We also selected an equal number of non-cancer
samples matched for age, sex, and ethnicity to the cancer samples. Based on these
criteria, a total of 172 patients were selected: 79 were diagnosed with stage III breast
(n= 47) or lung (n= 32) cancer at the time of blood draw, plus 93 age-matched
individuals without cancer. A subset of the patients with cancer also had matched
breast (n= 40) and lung (n= 12) tumor tissue. For the validation cohort, we
obtained 38 breast and 18 lung cancer samples from Discovery Life Sciences, and
38 age-matched non-cancer samples were included as controls of expression in
patients without cancer.

Sample collection. Whole blood was collected in Streck Cell-free DNA BCT®

tubes, which were shipped and stored at ambient temperature prior to plasma
separation. Whole blood was centrifuged at 1600 × g for 10 min at 4 °C to separate
plasma. The plasma layer was transferred to a separate tube and centrifuged at
15,000 × g for 12 min at 4 °C to further remove cellular contaminants. Double-spun
plasma was stored at −80 °C and thawed at room temperature before extraction to
avoid the formation of cryoprecipitates.

Sample processing. Cell-free nucleic acids were extracted from 8mL of frozen
plasma using the circulating miRNA protocol from the QIAamp Circulating
Nucleic Acids kit (Qiagen, 55114). The reagent volumes were doubled to account
for the increase in plasma volume compared to the manufacturer’s recommended
volume. When less than 8 mL of plasma was available, the volume was

supplemented with Dulbecco’s phosphate-buffered saline (PBS). The extracted
material was DNase treated using the RNase-free DNase Set (Qiagen, 79254)
according to the manufacturer’s instructions and quantified using the High Sen-
sitivity RNA Fragment Analyzer kit (Agilent, DNF-472).

The whole-transcriptome assay was performed as follows. For each sample,
0.12 pg of External RNA Controls Consortium (ERCC) RNA reference standard
was spiked into purified cfRNA as an in-line control for library preparation.
Reverse transcription and adapter ligation were performed using the TruSeq RNA
Exome kit (Illumina, 20020189) with the following modifications. We used custom
adapters containing 8 base pair (bp) non-random UMIs. We also limited post-
ligation amplification to 6 cycles of PCR and carried the entire yield into the
depletion step. Libraries were depleted of abundant sequences using the
AnyDeplete kit for Human rRNA and Mitochondrial RNA (Tecan, 9132), which
was supplemented with depletion probes targeting HB subunits (HBA1, HBA2,
HBB, HBD), components of the major histocompatibility complex (B2M, CD74),
and the RNA component of the signal recognition particle (RN7SL). For targeted
enrichment, the reverse transcription and adapter ligation steps were performed
using the same protocol employed for the whole-transcriptome assay. Fifteen cycles
of post-ligation PCR were performed, and up to 3.5 µg of material were used as
input for targeted enrichment using the TruSeq RNA Enrichment protocol and a
custom double-stranded probe panel manufactured by Twist Bioscience (South San
Francisco, CA). Whole-transcriptome and targeted RNA-seq libraries were
sequenced on a HiSeqX flowcell to a depth of 750 million and 100 million paired-
end reads per sample, respectively.

Sequencing data processing. Raw reads were aligned to GENCODE v19 primary
assembly with all transcripts using STAR version 2.5.3a. Duplicate sequence reads
were detected and removed based on genomic alignment position and non-random
UMI sequences. A majority of paired-end reads had UMI sequences exactly
matching expected sequences. A subset of reads contained errors in the UMI
sequence, and a heuristic error correction was applied. If the UMI was within a
Hamming distance of 1 from an expected UMI, it was assigned to that UMI
sequence. In cases where the Hamming distance exceeded 1, or multiple known
sequences were within a Hamming distance of 1, the read with the UMI error was
discarded. Sets of reads sharing alignment position and corrected UMIs were error
corrected via multiple sequence alignment of member reads and a single consensus
sequence/alignment was generated. Read alignments were compared to annotated
transcripts in gencode v19.

All downstream analyses relied on the use of “strict RNA reads,” defined as read
pairs where at least 1 read overlapped an exon-exon junction (Supplementary
Fig. 8). These reads are unique to RNA and help to filter DNA-derived background.
Gene expression was normalized in RPM (reads per million mapped reads):

RPM ¼ Number of collapsed strict readsmapped to a gene ´ 106

Total number of collapsed strictmapped reads from library
ð1Þ

Sequenced samples were screened and those exhibiting low quality-control
metrics were excluded from subsequent analysis. One assay metric and 3 pipeline
metrics were chosen as “red flags” and were used to exclude samples with poor
metrics. The assay metric measured whether samples had sufficient material for
sequencing (1.6 nM), and the pipeline metrics were sequencing depth, RNA purity,
and cross-sample contamination.

Statistical analysis
Tissue deconvolution. We used tissue deconvolution to estimate the relative con-
tribution of each tissue type for cfRNA samples. Tissue deconvolution was per-
formed by solving the following function:

y ¼ Xβþ ϵ ð2Þ

y 2 Rn;X 2 Rn ´ p; β2Rp; ϵ2Rn ð3Þ

minβ k Xβ� y k2� �
; s:t:

∑iβi ≤ 1

βi ≥ 0;8i

�
ð4Þ

where y is the observed expression data for n signature genes in a cfRNA sample, X
denotes a median gene expression of the signature matrix for p tissue types, β is the
fractional contribution of the tissue type toward the observed cfRNA sample, ε is
the normally distributed error, and i is the index of different tissue types. Because
there might be other tissue types that were not included in X, we allow the sum-
mation of βi to be less than 1 and define the unexplained fraction (1− Σβi) as the
remainder. To obtain the relative contributions of the tissue types, these equations
were solved by quadratic programming to minimize the least-square error sub-
jected to the above constraints.

To identify the signature genes for different tissues, we downloaded the gene
expression matrix (htseq-count level) and sample annotations from the GTEx
Portal website (www.gtexportal.org/home/datasets, GTEx analysis V4). We first
normalized the gene expression in RPM and calculated the median RPM among all
samples within each tissue type. Tissue specificity score (TSS) was calculated for
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each gene. The TSS for gene j is defined as

TSSj ¼ max
i

xij=∑xij
� �

ð5Þ

ij ¼ argmax
i

xij=∑xij
� �

ð6Þ
where xij is the median gene expression (in RPM) of gene j in tissue i. When gene j
is tissue-specific, ij is the index of the tissue type for which gene j is specific. For
each tissue type, we selected the top 20 genes with the highest TSS as signature
genes for tissue deconvolution.

Strict counts for cfRNA samples were compiled into gene expression matrices
and normalized to RPM. We implemented quadratic programming using existing
R programs and packages (quadprog, v1.5-7). Analysis and plots were generated
using the R programming language (v3.6.2). As a consistency check, we also
performed tissue deconvolution against the tissue RNA-seq samples using the same
method as described above.

Dark channel feature selection. The dark channel genes were identified by 2 criteria:
(1) The median expression (in RPM) of this gene in the non-cancer group is 0, and
(2) the standard deviation of this gene is less than 0.1 RPM. The DCB for each
cancer type were identified using 3 criteria: (1) There are at least 2 samples in the
specified cancer group for which the gene is detected, (2) the RPM for the gene in
the second-highest sample is greater than 0.1, and (3) the gene is differentially
expressed in the specified cancer group compared to the non-cancer group (P <
0.02 for lung cancer and P < 0.2 for breast cancer). The P value of 2-group dif-
ferential expression was calculated by the edgeR (v3.26.3) package.

Annotation of tissue-specific genes was performed. The tissue-specific gene files
for lung and breast tissues were downloaded from the Human Protein Atlas
website (www.proteinatlas.org, version 18.1) and divided into 3 categories: (1)
Tissue Enriched: At least 4-fold higher mRNA levels in a particular tissue as
compared to all other tissues, (2) Group Enriched: At least 4-fold higher mRNA
levels in a group of 2 to 5 tissues, and (3) Tissue Enhanced: At least 4-fold higher
mRNA levels in a particular tissue as compared to average levels in all tissues. All 3
categories were included in our definition of tissue-specific genes.

HeteroDE. HeteroDE is an R package we developed to identify biomarker genes
from highly heterogeneous plasma cfRNA samples. It models the abundance of
RNA transcripts in plasma using a negative binomial generalized linear model
(NB-GLM):

Ki;j � NB μi;j; αi

� �
ð7Þ

logðμi;jÞ ¼ γi þ xi;jβi ð8Þ
where i denotes a gene and j denotes a patient, Ki,j is the read count for gene i in the
cfRNA of patient j, μi,j is the expected read count for gene i in the cfRNA of patient
j, αi is the dispersion for gene i, γi is the intercept of the NB-GLM, xi,j is the tumor
content (defined as the log10 transformed product of the tumor fraction in the
matched cfDNA multiplied by the gene expression in the matched tumor tissue),
and βi is the coefficient for the tumor content. Tumor content was used as the
covariate in the model to account for the influence from both the gene expression
in the tumor tissue and the tumor shedding rate. The tumor content for the non-
cancer group was set to zero assuming the amount of RNA shedding from healthy
lung or breast tissue into the blood is negligible, which is supported by Fig. 2. The
tumor fraction was estimated from cfDNA mutation data. The P value of the NB-
GLM was computed using the glm.nb function in the MASS package (v7.3-51.4) in
R. The P value cut-off was set to 0.05 for the biomarker candidates.

HeteroDE also removes 2 types of false positives prevalent in highly
heterogeneous samples. For the first type of false positive, the gene expression
follows a bimodal distribution in both control and cancer groups due to genetic
heterogeneity. The bimodal distribution disobeys the assumption of negative
binomial distribution of the GLM and leads to spuriously low P values. For the
second type of false positive, a single influential outlier inflates the slope and P
value of the GLM. To reduce the false discovery rate, heteroDE includes 2
additional modules after the GLM step:

(1) HeteroDE checks if the gene expression of the identified biomarker follows
the bimodal distribution. RNA-seq data has typically been modeled by a Poisson or
negative binomial function42. We observe that the bimodal genes normally have
one group of samples with minimal expression and the other group of samples with
relatively high expression. We use the Poisson distribution to model the group with
minimal expression and negative binomial distribution to model the group with
relatively high expression43. To simplify the computational complexity, we
approximated the negative binomial distribution to a Normal distribution. For a
study with n samples in the non-cancer group, each gene’s expression profile is
defined as x(x1, …., xn) which is assumed to be a random sample of a random
variable x whose density function can be written as:

p xijθð Þ ¼ π1Poisson xijλ1ð Þ þ π2N xijμ2; σ2
� � ð9Þ

where π1 and π1 is the proportion of samples in component 1 and 2, respectively,
and θ is the set of all parameters. The parameter estimation was carried out via the

expectation-maximization algorithm. A bimodal gene is identified when π1 is >0.1
and <0.9. If an identified biomarker gene has bimodal distribution in both non-
cancer and cancer groups, it is flagged as false positive.

(2) HeteroDE checks if a single outlier sample is influencing the P value of the
NB-GLM. The Cook’s distance for each sample was calculated using the Cook’s
distance function in R. The NB-GLM is performed for a second time without the
sample with the largest Cook’s distance. If the resulting P value is no longer
significant, this identified biomarker was flagged as a false positive.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequencing data have been deposited at the European Genome-phenome Archive
(EGA) which is hosted at the European Bioinformatics Institute and the Centre for
Genomic Regulation and is available under restricted access under accession number
EGAS00001004704. Data access can be obtained through a request to the GRAIL
Data Access Committee [https://www.ebi.ac.uk/ega/dacs/EGAC00001001769]. Access
to the data will be restricted to non-commercial entities. Tissue-specific gene files
for lung and breast tissues were downloaded from the Human Protein Atlas website
(www.proteinatlas.org, version 18.1), tissue deconvolution was performed using gene
expression data downloaded from the GTEx Portal website (www.gtexportal.org/home/
datasets, GTEx analysis V4), and TCGA tumor tissue expression data are publicly
available through the TCGA portal [https://portal.gdc.cancer.gov]. The remaining data
are available within the article, Supplementary Information, or available from the authors
upon request.

Code availability
All code and scripts are available at https://github.com/grailbio-publications/
Larson_cfRNA_DarkChannelBiomarkers44.
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