Table 3 Performance of DLP in comparative test data set compared to experts (all fundus only, n = 922).

From: Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks

Diseases/conditions

ID

Average expert

 

DLP

F1

Sensitivity

Specificity

Subset accuracyb,%

F1

Sensitivity

Specificity

AUC (95% CI)

Subset accuracy, %

Non-referable

0

0.875

0.941

0.990

 

0.989

0.977

1.000

0.9955 (0.9877–1.0000)

 

Referable DR

1

0.951

0.935

0.993

 

0.970

0.953

0.997

0.9942 (0.9894–0.9989)

 

RVO

2

0.954

0.951

0.996

 

0.970

0.976

0.996

0.9984 (0.9964–1.0000)

 

RAO

3

0.942

0.929

0.999

 

1.000

1.000

1.000

1.0000 (1.0000–1.0000)

 

Rhegmatogenous RD

4

0.980

0.989

0.999

 

0.971

0.971

0.999

0.9996 (0.9991–1.0000)

 

Posterior serous/exudative RD

5

0.955

0.941

0.999

 

0.964

1.000

0.998

0.9989 (0.9976–1.0000)

 

Maculopathy

6

0.951

0.955

0.996

 

0.965

0.958

0.998

0.9967 (0.9929–1.0000)

 

ERM

7

0.957

0.946

0.998

 

0.962

0.981

0.997

0.9974 (0.9940–1.0000)

 

MH

8

0.957

0.945

0.999

 

0.939

0.939

0.998

0.9712 (0.9154–1.0000)

 

Pathological myopia

9

0.962

0.952

0.998

 

0.992

0.984

1.000

0.9999 (0.9997–1.0000)

 

Optic nerve degeneration

10

0.961

0.950

0.998

 

0.972

1.000

0.997

0.9996 (0.9988–1.0000)

 

Severe hypertensive retinopathy

11

0.895

0.885

0.997

 

0.852

1.000

0.990

0.9961 (0.9919–1.0000)

 

Disc swelling and elevation

12

0.963

0.955

0.998

 

0.970

1.000

0.997

0.9997 (0.9993–1.0000)

 

Dragged disc

13

0.932

0.882

1.000

 

0.970

0.941

1.000

0.9849 (0.9553–1.0000)

 

Congenital disc abnormality

14

0.860

0.891

0.998

 

0.952

0.909

1.000

0.9880 (0.9643–1.0000)

 

Pigmentary degeneration

15

0.989

0.978

1.000

 

1.000

1.000

1.000

1.0000 (1.0000–1.0000)

 

Peripheral retinal degeneration and break

16

0.966

0.948

1.000

 

1.000

1.000

1.000

1.0000 (1.0000–1.0000)

 

Myelinated nerve fiber

17

0.996

1.000

1.000

 

1.000

1.000

1.000

1.0000 (1.0000–1.0000)

 

Vitreous particles

18

1.000

1.000

1.000

 

0.966

1.000

0.999

1.0000 (1.0000–1.0000)

 

Fundus neoplasm

19

0.918

0.933

0.999

 

1.000

1.000

1.000

1.0000 (1.0000–1.0000)

 

Hard exudates

20

0.959

0.994

0.997

 

0.946

1.000

0.995

0.9998 (0.9994–1.0000)

 

Yellow-white spots/flecks

21

0.931

0.926

0.995

 

0.898

0.971

0.985

0.9929 (0.9868–0.9989)

 

Cotton-wool spots

22

0.962

0.934

0.999

 

0.982

0.966

1.000

0.9989 (0.9974–1.0000)

 

Vessel tortuosity

23

0.797

0.741

0.998

 

0.867

0.765

1.000

0.9917 (0.9816–1.0000)

 

Chorioretinal atrophy/coloboma

24

0.951

0.922

0.999

 

0.958

1.000

0.995

0.9980 (0.9958–1.0000)

 

Preretinal hemorrhage

25

0.949

0.958

0.998

 

0.970

0.970

0.999

0.9932 (0.9799–1.0000)

 

Fibrosis

26

0.947

0.935

0.998

 

0.976

1.000

0.998

0.9992 (0.9980–1.0000)

 

Laser spots

27

0.973

0.951

1.000

 

0.964

0.930

1.000

0.9913 (0.9803–1.0000)

 

Silicon oil in eye

28

0.987

0.981

1.000

 

1.000

1.000

1.000

1.0000 (1.0000–1.0000)

 

Blur fundus

29

0.833

0.750

1.000

 

0.750

0.750

0.999

0.9499 (0.8525–1.0000)

 

Referablea, frequency-weighted average

 

0.954

0.943

0.998

 

0.964

0.972

0.998

0.9964

 

Total

    

92.45

     

92.19

  1. aReferable refers to bigclass 1–29.
  2. bSubset accuracy measures the scale of samples having identical labels between DLP prediction and the ground-truth labels.