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Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face
patch neurons
Irina Higgins 1,7✉, Le Chang2,3,7, Victoria Langston1, Demis Hassabis 1,4, Christopher Summerfield1,5,

Doris Tsao 2,6 & Matthew Botvinick 1,4

In order to better understand how the brain perceives faces, it is important to know what

objective drives learning in the ventral visual stream. To answer this question, we model

neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-

supervised generative model, β-VAE, which disentangles sensory data into interpretable

latent factors, such as gender or age. Our results demonstrate a strong correspondence

between the generative factors discovered by β-VAE and those coded by single IT neurons,

beyond that found for the baselines, including the handcrafted state-of-the-art model of face

perception, the Active Appearance Model, and deep classifiers. Moreover, β-VAE is able to

reconstruct novel face images using signals from just a handful of cells. Together our results

imply that optimising the disentangling objective leads to representations that closely

resemble those in the IT at the single unit level. This points at disentangling as a plausible

learning objective for the visual brain.
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It is well known that neurons in the ventral visual stream
support the perception of faces and objects1. Decades of
extracellular single neuron recordings have defined their

canonical coding principles at different stages of the processing
hierarchy, such as the sensitivity of early visual neurons to
oriented contours and more anterior ventral stream neurons to
complex objects and faces2,3. A sub-network of the infer-
otemporal (IT) cortex specialised for face processing is particu-
larly well studied3–5. Faces appear to be represented within such
patches using low-dimensional neural codes, where each neuron
encodes an orthogonal axis of variation in the face space3. An
important yet unanswered question is how such representations
may arise through learning from the statistics of the visual input.
The most successful computational model of face processing, the
active appearance model (AAM)6, is a largely handcrafted fra-
mework which cannot help answer this question. Can we find a
general learning principle that could match AAM in terms of its
explanatory power, while having the potential to generalise
beyond faces?

Recently, deep neural networks have emerged as popular
models of computation in the primate ventral stream7,8. Unlike
AAM, these models are not limited to the domain of faces, and
they develop their tuning distributions through data-driven
learning. Such contemporary deep networks are trained with
high-density teaching signals on multiway object recognition
tasks9, and in doing so form high-dimensional representations
that, at the population level, closely resemble those in biological
systems10–12. Such deep classifiers, however, currently do not
explain the responses of single neurons in the primate face patch
better than AAM6. Furthermore, deep classifiers and AAM differ
in their representational form. While deep classifiers develop
high-dimensional representations where information is multi-
plexed over many simulated neurons, AAM has a low-
dimensional code where single dimensions encode orthogonal
information. Hence, the question of whether there exists a
learning objective that leverages the power of deep neural net-
works while preserving the “gold standard” representational form
and explanatory power of the handcrafted AAM remains open.

An important further challenge for theories that rely on deep
supervised networks is that external teaching signals are scarce in
the natural world, and visual development relies heavily on
untutored statistical learning13–15. Building on this intuition, one
longstanding hypothesis1,16 is that the visual system uses self-
supervision to recover the semantically interpretable latent
structure of sensory signals, such as the shape or size of an object,
or the gender or age of a face image. While appearing deceptively
simple and intuitive to humans, such interpretable structure has
proven hard to recover in practice, since it forms a highly com-
plex non-linear transformation of pixel-level inputs. Recent
advances in machine learning, however, have offered an imple-
mentational blueprint for this theory with the advent of deep
self-supervised generative models that learn to “disentangle”
high-dimensional sensory signals into meaningful factors of
variation. One such model, known as the beta-variational auto-
encoder (β-VAE), learns to faithfully reconstruct sensory data
from a low-dimensional embedding whilst being additionally
regularised in a way that encourages individual network units to
code for semantically meaningful variables, such as the colour of
an object, the gender of a face, or the arrangement of a scene
(Fig. 1a–c)17–19. These deep generative models thus continue the
longstanding tradition from the neuroscience community of
building self-supervised models of vision20,21, while moving in a
new direction that allows strong generalisation, imagination,
abstract reasoning, compositional inference and other hallmarks
of biological visual cognition18,22–24.

In this work we compare the responses of single neurons in the
primate IT face patches and single units learnt by different
computational models when presented with the same face images.
Our goal is to answer the question of whether a general learning
objective can give rise to an encoding that matches the repre-
sentational form employed by the real neurons. This question has
so far been ignored in the literature, with most quantitative results
instead reporting measures of explanatory power3,6,8,11,25–28 that
are insensitive to the representational form15. Our results
demonstrate that the disentangling objective optimised by β-VAE
is a viable option for explaining how the ventral visual stream
develops the observed low-dimensional face representations3. We
find significantly stronger one-to-one correspondence between
the responses of single units learnt by β-VAE and the responses
of single IT neurons compared to all other baselines, including
deep classifiers and AAM. β-VAE also produces more accurate
reconstructions of novel faces than the alternative methods when
decoding from the activity of a handful of face-patch neurons.
Furthermore, β-VAE learns using a general self-supervised
objective without relying on high-density teaching signals like
deep classifiers, which makes it more biologically plausible.

Results
Single disentangled units explain the activity of single neurons.
If the computations employed in biological sensory systems
resemble those employed by this class of deep generative model to
disentangle the visual world, then the tuning properties of single
neurons should map readily onto the meaningful latent units
discovered by the β-VAE. Here, we tested this hypothesis,
drawing on a previously published dataset6 of neural recordings
from 159 neurons in macaque face area AM, made whilst the
animals viewed 2100 natural face images (Fig. 2a, see “Methods”).
We first investigated whether the variation in average spike rates
of any of the individual recorded neurons was explained by the
activity in single units of a trained β-VAE that learnt to
“disentangle” the same face dataset that was presented to the
primates. For illustration, in Fig. 1c we show faces that were
generated (or “imagined”) by such a β-VAE. Each row of faces is
produced by gradually varying the output of a single network unit
(we call these “latent units”), and it can be seen that they learnt to
encode fairly interpretable variables—e.g. hairstyle, age, face
shape or emotional variables, such as the presence of a smile. All
presented labels are the consensus choice among 300 human
raters. On average, across all 11 units discovered by the β-VAE,
32.1% of the participants agreed on a single distinct semantic
label per unit when presented with a choice of 17 options
including “none of the above” (significantly above the 11.82%
chance level, p= 0.00011; minimum agreement per unit 10.9%,
maximum agreement per unit 70.5%; see “Methods”), thus vali-
dating the human interpretability of the latents discovered by the
β-VAE. These individual β-VAE units were also able to explain
the response variance in single recorded neurons, as shown in
Fig. 2b. For example, neuron 117 is shown to be sensitive to
gender, and neuron 136 is shown to respond differentially to the
presence of a smile.

To quantify this effect, we used a metric recently proposed in
the machine learning literature, referred to as neural “alignment”
in this work for more intuitive exposition, which measures
the extent to which variance in each neuron’s firing rate can be
explained by a single latent unit29, but is insensitive to the
converse, i.e. whether a single unit predicts the response of many
biological neurons (Fig. 3a, see “Methods”). The alignment score
measures whether the representational form within a subset of the
neural population is similar to the representational form
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Fig. 1 Disentangled representation learning. a Latent traversals used to visualise the semantic meaning encoded by single disentangled latent units of a
trained model. In each row the value of a single latent unit is varied between −3 and 3, while the other units are fixed. The resulting effect on the
reconstruction is visualised. Each column represents a different model trained to disentangle a different dataset. Chair and face images in the leftmost two
traversals are reproduced with the permission of Lee et al.19. Traversals of 3D scenes are reproduced with the permission of Burgess et al.18. b Schematic
representation of a self-supervised deep neural network. The encoder maps the input image into a low-dimensional latent representation, which is used by
the decoder to reconstruct the original image. Blue indicates trainable neural network units that are free to represent anything. Pink indicates latent
representation units that are compared to neurons. CNN, convolutional neural network. FC, fully connected neural network. Face image reproduced with
permission from Gao et al.57. c Latent traversals of eight units of a β-VAE model trained to disentangle 2100 natural face images. The initial values of all
latent units were obtained by encoding the same input image.

Fig. 2 Responses of single neurons are well explained by single disentangled latent units. a Coronal section showing the location of fMRI-identified face
patches in two primates, with patch AM circled in red. Dark black lines, electrodes. Reproduced with permission from Chang et al.6. b Explained variance of
single neuron responses to 2100 faces. Response variance in single neurons is explained primarily by single disentangled units encoding different
semantically meaningful information (insets, latent traversals as in Fig. 1a, c). Source data are provided as a Source Data file.
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discovered by the model, which is a different yet complementary
goal to other measures commonly used in the literature8,28, which
instead measure the amount of linearly accessible information
shared by the neural and model representations at the population
level, while being insensitive to the representational form. High
alignment scores indicate that a neural population is intrinsically
low-dimensional, with the factors of variation mapping onto the
variables discovered by the latent units of the neural network15.

We first compared alignment scores between the β-VAE and
the monkey data to a theoretical ceiling which was obtained by
subsampling the neural data to match the intrinsic dimensionality
of the β-VAE latent representation (see “Methods”) and
computing its alignment with itself (Fig. 3b). The first surprising
observation is that neuron subsets do not reach the maximal
alignment score of 1 to the full set of 159 neurons, which points
to a significant amount of redundancy in the coding preferences
within the neural population. If all neurons encoded unique
information, then each neuron in the sampled subset would align
uniquely and one-to-one only to itself in the full neural
population, resulting in the perfect alignment score. Lower
alignment scores indicate that there are a number of other
neurons in the population with similar coding properties,
resulting in a few-to-one mapping. The second interesting
observation is that alignment scores in the β-VAE met the
ceiling provided by the neural subsets, with no reliable difference
between the two estimates obtained when the analysis was
repeated on multiple subsamples and with multiple network
instances (p= 0.4345, two-sided Welch’s t-test). This suggests
that each trained β-VAE instance was able to automatically
discover through learning a small number of disentangled units
with response properties that are equivalent to the equally sized
subsets of real neurons. Furthermore, when we repeated this
analysis while computing alignment against fictitious neural
responses obtained by linearly recombining the original neural
data, we found a significant drop in scores for both the β-VAE
and neural subsets (Fig. 3c, p= 3.2197e–29 for β-VAE,
p= 5.6624e–60 for neuron subsets; two-sided Welch’s t-test),
indicating that the individual disentangled units discovered by the
β-VAE map significantly better onto the responses of single

neurons recorded from macaque IT, rather than onto their linear
combinations. Indeed, the average β-VAE alignment scores from
Fig. 3c are almost as low as those of the random baseline matched
in sparsity to the trained β-VAE instances shown below.

The extent to which the β-VAE is effective in disentangling a
dataset into its latent factors can vary substantially with the way it is
regularised, as well as with randomness in its initialisation and
training conditions30. The parameter after which the network class is
named determines the weight of a regularisation term that aims to
keep the latent factors independent. Networks with higher values of β
thus typically give rise to more disentangled representations, as
measured by a metric known as the Unsupervised Disentanglement
Ranking (UDR, see “Methods”)31, a finding we replicate here.
However, we also found that networks with higher UDR scores
additionally had higher alignment scores with the neural data
(Fig. 3d), and that this relationship held for networks with the same
and different values of β (Fig. 3e). In other words, the better the
network was able to disentangle the latent factors in the face dataset,
the more those factors were expressed in single neurons recorded
from macaque IT.

All aspects of the disentanglement objective are important.
Next, we compared the β-VAE alignment scores with a number of
rival models. These baseline models were carefully chosen to dis-
ambiguate the role played by the different aspects of the β-VAE
design and training in explaining the coding of neurally aligned
variables in its single latent units (see “Methods”). We included a
state-of-the-art deep supervised network (VGG)32 that has previously
been proposed as a good model for comparison against neural data in
face recognition tasks33,34, other generative models, such as a basic
autoencoder (AE)35 and a variational autoencoder (VAE)36, as well
as baselines provided by ICA, PCA and a classifier which used only
the encoder from the β-VAE. We defined “latent units” as those
emerging in the deepest layers of these networks and, where
appropriate, used PCA or feature subsampling (e.g. for VGG raw) to
equate the dimensionality of the latent units (to ≤50) to provide a fair
comparison with the β-VAE. We also compared β-VAE to the “gold
standard” provided by the previously published AAM3, which

Fig. 3 Strong alignment between single neurons and disentangled units. a Schematic of alignment score29, 63. Green arrows, lasso regression weights
obtained from predicting neural responses from model units (thickness indicates weight magnitude). High alignment scores are obtained when per-neuron
regression weights have low entropy (one strong weight); high entropy (all incoming weights are of equal magnitude) results in low alignment scores. b β-
VAE alignment scores match the ceiling provided by subsets of neurons (p= 0.4345, two-sided Welsch’s t-test). Circles, alignment per model (n= 51) or
neuron subsets (n= 50). Boxplot centre is median, box extends to 25th and 75th percentiles, whiskers extend to the most extreme data that are not
considered outliers, outliers are plotted individually. Source data are provided as a Source Data file. c Alignment scores per model (n= 51) or neuron
subsets (n= 50) against artificial neural responses (linear recombination of original neural responses). Boxplot centre is median, box extends to 25th and
75th percentiles, whiskers extend to the most extreme data that are not considered outliers, outliers are plotted individually. Source data are provided as
a Source Data file. d Alignment scores correlate with the disentanglement quality of latent units obtained from 400 β-VAE models trained with different β
values (indicated by colour). UDR, Unsupervised Disentanglement Ranking31, measures the quality of disentanglement, higher is better. Red line, least
squares fit (r= 0.96, Pearson correlation). Source data are provided as a Source Data file. e Running correlation between UDR and alignment scores across
subsets of models. Models in each subset were trained with different β values, with the number of β values in each subset indicated on the x-axis.
Rightmost circle, Pearson correlation across 400 β-VAE models, spanning 40 β values as reported in (d). Leftmost circle, average across 40 Pearson
correlations, each calculated with 10 models with a single β value. Bars, standard deviation. Source data are provided as a Source Data file.
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produced a low-dimensional code that explained the responses of
single neurons to face images well3,6. Unlike the β-VAE, which relied
on a general learning mechanism to discover its latent units, AAM
relied on a manual process idiosyncratic to the face domain. Hence,
β-VAE provides a learning-based counterpart to the handcrafted
AAM units that could generalise beyond the domain of faces.
Although the baselines considered varied in their average alignment
scores (Fig. 4a), none approached those of the β-VAE, for which
alignment was statistically higher than every other model (all p-
values < 0.01, two-sided Welch’s t-test). Furthermore, high β-VAE
alignment scores could not be explained solely by the sparse nature of
disentangled representations, with the random baseline matched in
sparseness to the trained β-VAE instances obtaining significantly
lower alignment scores (Fig. 4a, teal). The alignment scores broken
down by individual neurons are plotted in Fig. 4b for the β-VAE and
its baselines.

We validated the findings above using a more direct metric for
the coding of latent factors in single neurons, which compared the
ratio between the maximum correlation between spike rates and
activations in each latent unit, and the sum of such correlations
over the model units (average correlation ratio in Fig. 5a, see
“Methods”). This ratio was higher for the β-VAE than for other
models, confirming the results with alignment scores (Fig. 5b).
Interestingly, different neurons did not tend to covary with the
same β-VAE latent unit. In fact, there was more heterogeneity
among β-VAE units that achieved maximum correlation with the
neural responses than among the equivalent units for other
models (Fig. 5c). Rich heterogeneity in response properties of
single neurons (or latent units) is exactly what would be desired
to enable a population of computational units to encode the rich
variation in the image dataset. This broad pattern of the results
also held when the models were presented with 62 novel face
identities that were never seen by the models during training (see
Figs. S1b and S2b, c).

Taken together, these results suggest that no one feature of the
β-VAE—its training objective (baselined by AE, VAE and
classifier), architecture and training data distribution (baselined
by VGG) or isolated aspects of its learning objective (baselined by
PCA, ICA and the sparse random model)—was sufficient to
explain the coding of neurally aligned latent variables in single

units. Rather, it was all of these design choices together that
allowed the β-VAE to learn a set of disentangled latent units that
explained the responses to single neurons so well.

Disentanglement discovers a subset of all face dimensions. So
far we have shown that the disentangled representational form in
the β-VAE is a closer match to the representational form of real
neurons compared to the alternatives presented by the baselines.
This, however, is not the whole story. A complementary question
to ask is to what degree the information captured by the β-VAE
representation overlaps with the information captured by the
neural population (see Fig. 6a). Past work demonstrated that at
lower dimensionality β-VAE representations can match the “gold
standard” AAM model in terms of how well they can explain
neural responses at the population level—a result reported in
Chang et al.6. Here we found that single β-VAE units are able to
account for more than 50% of the neuronal variance explained by
all 50 units of the highest scoring AAM baseline for around 10%
of all neurons (see Fig. 6b and Supplementary Fig. 3). This further
corroborates the results in Fig. 3b that suggest that the repre-
sentations discovered by β-VAE are equivalent to a similarly sized
subset of original neurons.

We also calculated how much of the total neural response
variance was explained by the models (encoding variance
explained), and how much variance in the model responses was
explained by the neurons (decoding variance explained) at the
population level (see Fig. 6c, d). While the absolute values
presented are artificially low due to the lack of noise normal-
isation (see “Methods”), our results are consistent with those
reported in Chang et al.6—β-VAE representations contain less
information in general than the other baselines (apart from the
Classifier and VGG raw), but the information that does get
preserved by the β-VAE overlaps with the information within the
neural population the most compared to the other baselines
(apart from AE). Taken together, the results presented in Fig. 6c,
d suggest that in terms of linearly decodable information overlap
with the neural population, the best models are AE and β-VAE
(closer to the bottom left quadrant in Fig. 6a, while the other
baselines are closer to the top left or right quadrants).

Fig. 4 Disentangled latent units align with single neurons better than baselines. a Alignment scores are significantly higher for the β-VAE than the
baseline models and the “gold standard” provided by the AAM (all p < 0.01, two-sided Welsch’s t-test; VGG (raw) p= 7.4220e–06, Classifier p= 0.0,
AAM p= 9.1757e–42, VAE p= 9.7811e–43, VGG (PCA) p= 1.9383e–35, PCA p= 0.0, AE p= 0.0, ICA p= 0.0). Circles, alignment per model (β-VAE,
n= 51; VGG (raw), n= 22; Classifier, n= 64; VAE, Variational AutoEncoder36, n= 50; AE, AutoEncoder35, n= 50; VGG (PCA)32, n= 41; PCA, n= 41; ICA,
n= 50; AAM, active appearance model3, n= 21). Red circle indicates VGG (raw) with all N= 4096 units from the last hidden layer. Teal boxplot—random
baseline with sparseness matched to the 51 β-VAE models. Boxplot centre is median, box extends to 25th and 75th percentiles, whiskers extend to the
most extreme data that are not considered outliers, outliers are plotted individually. Source data are provided as a Source Data file. b Per-neuron alignment
scores. Scores are discretised into equally spaced bins. Scores in each row are arranged in descending order. The results from single models, chosen to
have the median alignment score. VGG (raw) results are presented from the model that contained all N= 4096 units from the last hidden layer. Arrows
point to neurons from Fig. 2b within the β-VAE alignment scores. Source data are provided as a Source Data file.
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Disentangled units are sufficient to decode novel faces. Finally,
we conducted an analysis that sought to link the virtues of the β-
VAE as a tool in machine learning—its capacity to make strong
inferences about held out data, with its qualities emphasised here
as a theory of visual cognition—strong one-to-one alignment
between individual neural and individual disentangled latent
units. During training we omitted 62 faces that had been viewed
by the monkeys from the training set of the β-VAE, allowing us to
verify that these were reconstructed more faithfully by the β-VAE
than by other networks. Critically, in order to reconstruct these
faces, we applied the decoder of the β-VAE not to its latent units
as inferred by its encoder, but rather to the latent unit responses
predicted from the activity of a small subset of single neurons (as
few as 12) that best aligned with each model unit on a different
subset of data (Fig. 7a, see “Methods”). We found that such one-
to-one decoding of latent units from the corresponding single
neurons was significantly more accurate for the disentangled
latent units learnt by the β-VAE compared to the latent units
learnt by other baseline models (all p-values < 0.01, two-sided
Welch’s t-test) (Fig. 7b). Furthermore, we visualised the β-VAE
reconstructions decoded from just 12 matching neurons (Fig. 7c).
Qualitatively, these appeared both more identifiable and of higher
image quality than those produced by the latent units decoded
from the nearest rival model, the AE, and comparable to those of
the basic VAE (as validated by the subjective judgements
obtained from 300 human participants, see “Methods”). These
results suggest that both the small subset of just 12 neurons and
the corresponding 12 disentangled units carried sufficient infor-
mation to decode previously unseen faces—a stronger result than

past work which required a 1024-dimensional VAE representa-
tion to decode novel faces from fMRI voxels37.

Furthermore, it should be noted that the AE and VAE were
explicitly optimised for reconstruction quality resulting in better
reconstruction performance than β-VAE (which was optimised
for disentangling at the cost of reconstruction quality17) at
matched dimensionality during training (all p < 0.01, two-sided
Welsch’s t-test, see Supplementary Fig. 1a). Yet, both AE and VAE
required more than twice as many neurons as β-VAE for best
decoding from neural data. This, together with the results in
ref. 37, suggests that the representational form can matter more
than information content for improved decoding performance.

Discussion
The results we have presented here validate past evidence3,6 that the
code for facial identity in the primate IT is low-dimensional, with
single neurons encoding independent axes of variation. Unlike the
previous work3,6, however, our results demonstrate that such a code
can also be semantically interpretable at a single neuron level. In
particular, we show that the axes of variation represented by single
IT neurons align with single “disentangled” latent units that appear
to be largely semantically meaningful and which are discovered by
the β-VAE, a recent class of deep neural networks proposed in the
machine learning community that does not rely on extensive
teaching signals for learning. Given the strong alignment of single IT
neurons with the single units discovered through disentangled
representation learning, and the fact that disentangling can be done
through self-supervision without the need for an external teaching

Fig. 5 Disentangled latent units have better diversity and one-to-one correlation with neurons compared to baselines. a Schematic of average
correlation ratio and average unit proportion scores. A good computational model for explaining responses of single neurons should allow each neuron
(grey circle) to be decodable from a single latent unit (pink circle). Green lines are Lasso regression weights as in Fig. 3a. The response of each neuron
should correlate strongly with the response of only one latent unit (grey bars) as measured by the average correlation ratio (higher is better). Different
neurons should correlate strongly with diverse single latent units (red circles) as measured by the average unit proportion score (higher is better). b
Average correlation ratio scores are significantly higher for the β-VAE than the baseline models and the AAM model (all p < 0.01; AAM p= 3.4626e–07,
ICA p= 4.3804e–07, VGG (PCA) p= 2.9275e–15, PCA p= 1.8577e–15, VAE p= 5.7259e–13, AE p= 8.2339e–16, Classifier p= 7.8206e−55, VGG (raw)
p= 1.4072e–26, two-sided Welsch’s t-test). Circles, average correlation ratio score per model (β-VAE, n= 51; VGG (raw), n= 22; Classifier, n= 64; VAE,
Variational AutoEncoder36, n= 50; AE, AutoEncoder35, n= 50; VGG (PCA)32, n= 41; PCA, n= 41; ICA, n= 50; AAM, active appearance model3, n= 21).
Boxplot centre is median, box extends to 25th and 75th percentiles, whiskers extend to the most extreme data that are not considered outliers, outliers are
plotted individually. Source data are provided as a Source Data file. c Average unit proportion scores are significantly higher for the β-VAE than the baseline
models and the AAM model (all p < 0.01; Classifier p= 4.5163e–10, AE p= 1.4289e–04, VAE p= 4.1792e–14, ICA p= 1.1129e–19, VGG (PCA)
p= 1.7441e–19, PCA p= 3.5554e–19, AAM p= 1.8075e–09, VGG (raw) p= 1.2049e–08, two-sided Welsch’s t-test). Circles, average unit proportion score
per model (β-VAE, n= 51; VGG (raw), n= 22; Classifier, n= 64; VAE36, n= 50; AE35, n= 50; VGG (PCA)32, n= 41; PCA, n= 41; ICA, n= 50; AAM3,
n= 21). Boxplot centre is median, box extends to 25th and 75th percentiles, whiskers extend to the most extreme data that are not considered outliers,
outliers are plotted individually. Source data are provided as a Source Data file.
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signal, it is plausible that the ventral visual stream may also be
optimising the disentangling learning objective.

Our work extends recent studies of the coding properties of
single neurons in the primate face-patch area, reporting finding
one-to-one correspondences between model units and neurons,
as opposed to few-to-one as previously reported3. Moreover, we
show that disentangling may occur at the end of the ventral visual
stream (IT), extending the results recently reported for V138. Past
studies have proposed that the ventral visual cortex may

disentangle1,38 and represent visual information with a low-
dimensional code3,39,40. However, this work did not ask how
these representations emerge via learning. Here, we propose a
theoretically grounded41 computational model (the β-VAE) for
how disentangled, low-dimensional codes may be learnt from the
statistics of visual inputs17.

It is worth noting that, in general, the baselines, including
AAM, contain a larger number informative dimensions than β-
VAE. Furthermore, it has been demonstrated that when the larger

Fig. 6 Variance-explained results. a Schematic representation of linearly accessible information overlap between the population of neurons (green) and
model representation (blue) corresponding to the different combinations of magnitudes of the encoding and decoding scores. b Ratio of total neuron
population (n= 159) for which single β-VAE units explain more variance than X% of variance explained by the best baseline model (AAM, 50 units). See
Supplementary Fig. 3 for more details. Source data are provided as a Source Data file. c Encoding variance explained. No significant difference is found
between encoding variance explained by neuron subsets and AE, ICA, VAE, PCA and AAM (β-VAE p= 2.4689e–08, AAM p= 0.1211, VGG (PCA)
p= 2.5055e–07, PCA p= 0.0174, Classifier p= 2.6311e–17, ICA p= 0.0185, AE p= 0.0368, VAE p= 0.0176, VGG (raw) p= 8.4568e–18, two-sided
Welsch’s t-test). Circles, median explained variance across 159 neurons (β-VAE, n= 51; VGG (raw), n= 22; Classifier, n= 64; VAE, Variational
AutoEncoder36, n= 50; AE, AutoEncoder35, n= 50; VGG (PCA)32, n= 41; PCA, n= 41; ICA, n= 50; AAM, active appearance model3, n= 21). Boxplot
centre is median, box extends to 25th and 75th percentiles, whiskers extend to the most extreme data that are not considered outliers, outliers are plotted
individually. Source data are provided as a Source Data file. d Decoding variance explained. β-VAE variance explained is statistically significantly different
from all other models (all p < 0.01; AAM p= 7.6510e–07, VGG (PCA) p= 0.0, PCA p= 6.0566e–23, Classifier p= 0.0, ICA p= 2.8584e–20, AE
p= 0.0164, VAE p= 1.1390e–12, VGG (raw) p= 0.0, two-sided Welsch’s t-test). Circles, median explained variance across model units (β-VAE, n= 51;
VGG (raw), n= 22; Classifier, n= 64; VAE, Variational AutoEncoder36, n= 50; AE, AutoEncoder35, n= 50; VGG (PCA)32, n= 41; PCA, n= 41; ICA,
n= 50; AAM, active appearance model3, n= 21). Boxplot centre is median, box extends to 25th and 75th percentiles, whiskers extend to the most extreme
data that are not considered outliers, outliers are plotted individually. Source data are provided as a Source Data file.
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full set of AAM dimensions is used, it explains more neural
variance at the population level than the smaller full set of dis-
entangled β-VAE units6. Indeed, it is clear that the handful of
disentangled dimensions discovered by β-VAE in the current
study are not sufficient to fully describe the whole space of faces.
The reason why β-VAE discovers only a subset of the dimensions
necessary to describe faces fully stems from a known limitation of
the current methods for disentangled representation learning—
they rely on training on well-aligned large datasets for achieving
maximal interpretability and disentangling quality. Indeed,
applying β-VAE to a more suitable dataset of faces42 allows it to
recover at least double the number of disentangled dimensions
than the number found in the current study (see Supplementary
Information for more details, example latent traversals shown in
Fig. 1a, second from the right). The lack of appropriate levels of
scale and alignment for the dataset of 2100 faces used in this
study leaves room for improvements both in terms of latent
interpretability and the amount of population neural variance
explained to future work.

Saying this, an important aspect of our proposed learning
mechanism is that it generalises beyond the domain of faces17–19.
We believe that the difficulty in identifying interpretable codes in
the IT encountered in the past may have been due to the fact that
semantically meaningful axes of variation of complex visual
objects are more challenging for humans to define (and hence use
as visual probes) compared to simple features, such as visual
edges14. A computational model like the β-VAE, on the other
hand, is able to automatically discover disentangled latent units
that align with such axes, as was demonstrated for the domain of
faces in this work. Hence, we hope that the neuroscience com-
munity will be able to take advantage of any further advance-
ments in disentangled representation learning techniques within
the machine learning community to study neural responses in the
IT beyond the domain of faces. Using face perception as the test
domain for building the connection between neural coding in the
IT and disentangling deep generative models as was done in this
work has unique advantages. Specifically, both neural responses
and image statistics in this domain have been particularly well
studied compared to other visual stimulus classes. This allows for
comparisons with strong hand-engineered baselines3 using

relatively densely sampled neural data5. Furthermore, although
faces make up a small subset of all possible visual objects, and
neurons that preferentially respond to faces tend to cluster in
particular patches of the IT cortex5, the computational mechan-
isms and basic units of representation employed for face pro-
cessing may in fact generalise more broadly within the ventral
visual stream5,43. Indeed, face perception is seen by many to be a
“microcosm of object recognition”5. Hence, assuming that this is
the case, β-VAE and any future more advanced methods for
disentangled representation learning may serve as a promising
tools to understand IT codes at a single neuron level even for rich
and complex visual stimuli in the future.

One contribution of this paper is the introduction of novel
measures for comparing neural and model representations.
Unlike other often used representation comparison methods (e.g.
explained variance of neuron-level regressions8,11,25–27 or repre-
sentational similarity analysis (RSA)11,28) which are insensitive to
invertible linear transformations, our methods measure the
alignment between individual neurons and model units. Hence,
they do not abstract away the representational form and preserve
the ability to discriminate between alternative computational
models that may otherwise score similarly15. To summarise, while
the traditional methods compare the informativeness of repre-
sentations, our approach compares their representational form,
hence the two are complementary to each other.

While the development of β-VAE for learning disentangled
representations was originally guided by high-level neuroscience
principles44–46, subsequent work in demonstrating the utility of such
representations for intelligent behaviour was primarily done in the
machine learning community22–24,47. In line with the rich history of
mutually beneficial interactions between neuroscience and machine
learning48, we hope that the latest insights from machine learning
may now feed back to the neuroscience community to investigate the
merit of disentangled representations for supporting intelligence in
the biological systems, in particular as the basis for abstract
reasoning49, or generalisable and efficient task learning50.

Methods
Dataset. We used a dataset of 2162 natural grayscaled, centred and cropped
images of frontal views of faces without nuisance obstructions (e.g. facial hair or a

Fig. 7 Reconstructing novel faces from single neurons. a Responses of 159 neurons (grey circles) in face-patch area AM were recorded while two
primates viewed 62 novel faces. One-to-one match was found between each model unit (pink circles) and a corresponding single neuron. Linear regression
(blue arrow) was used to decode the responses of each individual model latent unit (pink circles) from the activations of its corresponding single neuron.
The pre-trained model decoder was used to reconstruct the novel face. Face image reproduced with permission from Chang et al.6. b Cosine distance
between real standardised latent unit responses and those decoded from single neurons are significantly smaller for β-VAE compared to baseline models
and the “gold standard” provided by the AAM model (all p < 0.05, single-sided Welsch’s t-test; AE p= 0.0195, VAE p= 1.0596e–14, PCA p= 4.0370e–25,
ICA p= 1.5758e–12, VGG (PCA) p= 5.0467e–24, Classifier p= 0.0, AAM p= 2.3216e–14, VGG (raw) p= 4.8840e–20). Circles, median cosine distance
per model (β-VAE, n= 51; VGG (raw), n= 22; Classifier, n= 64; VAE, Variational AutoEncoder36, n= 50; AE, AutoEncoder35, n= 50; VGG (PCA)32,
n= 41; PCA, n= 41; ICA, n= 50; AAM, active appearance model3, n= 21). Boxplot centre is median, box extends to 25th and 75th percentiles, whiskers
extend to the most extreme data that are not considered outliers, outliers are plotted individually. Source data are provided as a Source Data file. c β-VAE
can decode and reconstruct novel faces from 12 matching single neurons. The reconstructions are better than those from the closest baselines, AE and
VAE, which required 30 and 27 neurons for decoding, respectively. The β-VAE instance was chosen to have the best disentanglement quality as measured
by the UDR score; AE and VAE instances were chosen to have the highest reconstruction accuracy on the training dataset. Face images reproduced with
permission from Ma et al.53 and Phillips et al.55.
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head garment), under normal lighting conditions and without strong facial
expressions pasted on a grey 200 × 200 pixel background as described in6. The face
images were collated from multiple publicly available datasets: 72 images from AR
Face Database51, 48 images from CelebA52, 457 images from Chicago Face
Database53, 64 faces from CVL54, 563 images from FERET55, 45 images from
MR256 and 913 images from PEAL57 dataset. In all, 62 held out face images were
randomly chosen. These faces were among the 2100 faces presented to the pri-
mates, but not among the 2100 faces used to train the models. All models (apart
from VGG) were trained on the same set of faces, which were mirror flipped with
respect to the images presented to the primates. This ensured that the train and test
data distributions were similar, but not identical (see Supplementary Fig. 1a). To
train the Classifier baseline, we augmented the data with 5 × 5 pixel translations of
each face to ensure that multiple instances were present for each unique face
identity. The data were split into 80%/10%/10% train/validation/test sets.

Neurophysiological data. All neurophysiological data were re-used from
Chang et al.6. The data were collected from two male rhesus macaques (Macaca
mulatta) of 7–10 years old. The animals were pair-housed and kept on a 14h/10h
light/dark cycle. All procedures conformed to local and US National Institutes of
Health guidelines, including the US National Institutes of Health Guide for Care
and Use of Laboratory Animals. All experiments were performed with the approval
of the Caltech Institutional Animal Care and Use Committee (IACUC).

Face patches were identified by finding regions responding significantly more to
16 faces than to 80 non-face stimuli (bodies, fruits, gadgets, hands, and scrambled
patterns4) while passively viewing images on a screen in a 3T TIM (Siemens,
Munich, Germany) magnet. Feraheme contrast agent was injected to improve
signal/noise ratio. The results were confirmed across multiple independent scan
sessions.

For single-unit recording, tungsten electrodes (18–20Mohm at 1 kHz, FHC)
backloaded into plastic guide tubes set to reach approximately 3–5 mm below the
dura surface were used. The electrode was advanced slowly with a manual advancer
(Narishige Scientific Instrument, Tokyo, Japan). Extracellular action potentials
were isolated using the box method using an online spike sorting system (Plexon,
Dallas, TX, USA) from amplified neural signals. Spikes were sampled at 40 kHz. All
spike data were further re-sorted offline using Plexon spike sorting clustering
algorithm. Only well-isolated units were considered for further analysis. The image
stimuli were presented on a CRT monitor (DELL P1130). The intensity of the
screen was measured using a colorimeter (PR650, Photo Research) and linearised
for visual stimulation. Screen size covered 27.7 × 36.9 visual degrees and stimulus
size spanned 5.7°. The fixation spot size was 0.2° in diameter and the fixation
window was a square with the diameter of 2.5°. The monkeys were head fixed and
passively viewed the screen in a dark room. Eye position was monitored using an
infrared eye tracking system (ISCAN). Juice reward was delivered every 2–4 s if
fixation was properly maintained. Images were presented in random order. All
images were presented for 150 ms interleaved by 180 ms of a grey screen. Each
image was presented 3–5 times. The number of spikes in a time window of
50–350 ms after stimulus onset was counted for each stimulus and used to calculate
the face-selectivity index of each cell according to

FSI ¼ nface � nnon�face
nface þ nnon�face

ð1Þ

where n is the mean activity of a single neuron in response to either face or non-
face stimuli. Only neurons with high face selectivity (FSI > 0.33) were selected for
further analysis.

Artificial neurophysiological data. In order to investigate whether the responses
of β-VAE units encoded linear combinations of neural responses, we created
artificial neural data by linearly recombining the responses of the real neurons. We
first standardised the responses of the 159 recorded neurons across the 2100 face
images. We then multiplied the original matrix of neural responses with a random
projection matrix A. Each value Aij of the projection matrix was sampled from the
unit Gaussian distribution. The absolute value of the matrix was then taken, and
each column was normalised to sum to 1.

Neuron subsets. For fairer comparison with the models, which learnt latent
representations of size N∈ [10, 50] as will be described below, we sampled neural
subsets with 50 or fewer neurons. To do this, we first uniformly sampled five values
from N ∈ [10, 50] without replacement to indicate the size of the subsets. Then, for
each size value we sampled 10 random neuron subsets without replacement,
resulting in 50 neuron subsets in total.

Human participants. In order to validate the semantic meaningfulness of β-VAE
latent units shown in Figs. 1c and 2b, and the judged quality of model recon-
structions shown in Fig. 7c, we recruited 600 human participants (300 for each of
the two studies, age 30.81 ± 11.07 years, 117 females for identifying transformations
applied to faces, and age 30.75 ± 10.57 years, 123 females for comparing face
reconstructions). The participants were recruited through the Prolific crowd-
sourcing platform. The full details of our study design, including compensation
rates, were reviewed and approved by DeepMind’s independent ethical review

committee. All participants provided informed consent prior to completing tasks
and were reimbursed for their time.

β-VAE model. We used the standard architecture and optimisation parameters
introduced in17 for training the β-VAE (Fig. 8a). The encoder consisted of four
convolutional layers (32 × 4 × 4 stride 2, 32 × 4 × 4 stride 2, 64 × 4 × 4 stride 2 and
64 × 4 × 4 stride 2), followed by a 256-d fully connected layer and a 50-d latent
representation. The decoder architecture was the reverse of the encoder. We used
ReLU activations throughout. The decoder parameterised a Bernoulli distribution.
The model was implemented using TensorFlow 1.0 (e.g. see https://github.com/
google-research/disentanglement_lib). We used Adam optimiser with 1e−4
learning rate and trained the models for 1 mln iterations using batch size of 16,
which was enough to achieve convergence. The models were trained to optimise
the following disentangling objective:

Lβ�VAE ¼ EpðxÞ½EqϕðzjxÞ½log pθðxjzÞ� � βKLðqϕðzjxÞ jj pðzÞÞ � ð2Þ
where p(x) is the probability of the image data, q(z∣x) is the learnt posterior over
the latent units given the data, and p(z) is the unit Gaussian prior with a diagonal
covariance matrix. Note that due to the limited amount of training data (2100
images compared to typical dataset sizes approaching 1 mln images), we were not
able to achieve the best disentangling or reconstruction performance that this
model class if capable of in principle, resulting in fewer disentangled dimensions
discovered by each trained model, and choppier reconstruction quality. Saying this,
the reported models typically still converged on approximately the same disen-
tangled representation. All the results are reported using disentangled dimensions
discovered by single models—we never mix or combine disentangled dimensions
across models.

Baseline models. We compared β-VAE to a number of baselines to test whether
any individual aspects of β-VAE training could account for the quality of its learnt
latent units. To disambiguate the role of the learning objective, we compared β-
VAE to a traditional autoencoder (AE)35 and a basic variational autoencoder
(VAE)36,58. These models had the same architecture, training data, and optimi-
sation parameters as the β-VAE (Fig. 8a), and were also implemented in Tensor-
Flow 1.0, but their learning objectives were different. The AE optimised the
following objective that tried to optimise the quality of its reconstructions:

LAE ¼ EpðxÞ jjf ðx; θ; ϕÞ � xjj2 ð3Þ
where f(x; θ, ϕ) is the image reconstruction produced by putting the original image
through the encoder and decoder networks parameterised by ϕ and θ, respectively.
The VAE optimised the variational lower bound on the data distribution p(x):

LVAE ¼ EpðxÞ½EqϕðzjxÞ½log pθðxjzÞ� � KLðqϕðzjxÞ jj pðzÞÞ � ð4Þ
where q(z∣x) is the learnt posterior over the latent units given the data, and p(z) is
the isotropic unit Gaussian prior.

To test whether the supervised classification objective could be a good
alternative to the self-supervised disentangling objective, we compared β-VAE to
two classifier neural network baselines. One of these baselines, referred to as the
Classifier in all the figures and the text, shared the encoder architecture, the data
distribution and the optimisation parameters with the β-VAE (Fig. 8b), but instead
of disentangling, it was trained to differentiate between the 2100 faces using a
supervised objective. In particular, the four convolutional layers and the fully
connected layer of the encoder fed into an N-dimensional representation, which
was followed by 2100 logits that were trained to recognise the unique 2100 face
identities. In order to avoid overfitting, we used early stopping. The final models
were trained for between 300k and 1mln training steps. This model was also
implemented in TensorFlow 1.0.

The other classifier baseline was the VGG-Face model32 (referred to as the VGG
in all the figures and the text), a more powerful deep network developed for state-
of-the-art face recognition performance and previously chosen as an appropriate
computational model for comparison against neural data in face recognition
tasks33,34,59 (Fig. 8c). Similarly to other works6,33,34,59, we used a standard pre-
trained MatLab implementation (http://www.vlfeat.org/matconvnet/pretrained/) of
the VGG network, trained to differentiate between 2622 unique individuals using a
dataset of 982,803 images32. Note that the data used for VGG training were
unrelated to the 2100 face images presented to the primates. The VGG therefore
had a different architecture, training data distribution and optimisation parameters
compared to the β-VAE. The model consisted of 16 convolutional layers, followed
by 3 fully connected layers (see32 for more details). The last hidden layer before the
classification logits contained 4096 units. Following the precedent set by refs. 6

and59, we used PCA to reduce the dimensionality of the VGG representation by
projecting the activations in its last hidden layer in response to the 2100 test faces
to the top N principal components (PCs) (Fig. 8c, referred to as VGG (PCA) in
figures). Alternatively, we also randomly subsampled the units in the last hidden
layer of VGG (without replacement) to control for any potential linear mixing of
their responses which PCA could plausibly introduce (Fig. 8c, referred to as VGG
(raw) in figures).

To rule out that the responses of single neurons could be modelled by simply
explaining the variance in the data, we compared β-VAE to N PCs produced by
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applying principal component analysis (PCA) to the 2100 faces using sklearn 0.2
PCA package. To rule out the role of simply finding the independent components
of the data during β-VAE training, we compared β-VAE to the N independent
components discovered by independent component analysis (ICA) applied to the
2100 face images using sklearn 0.2 FastICA package.

Finally, we also compared β-VAE to the active appearance model (AAM).
Linear combinations of small numbers of its latent units (six on average) was
previously reported to explain the responses of single neurons in the primate AM
area well3,6. We re-used the AAM latent units from6. These were obtained by
setting 80 landmarks on each of the 2100 facial images presented to the primates.
The positions of landmarks were normalised to calculate the average shape
template. Each face was warped to the average shape using spline interpolation.
The warped image was normalised and reshaped to a 1-d vector. PCA was carried
out on landmark positions and shape-free intensity independently. The first N/
2 shape PCs and the first N/2 appearance PCs were concatenated to produce the N-
dimensional AAM representations (Fig. 8d).

Hyperparameter sweep. To ensure that all models had a fair chance of learning a
useful representation, we trained multiple instances of each model class using
different hyperparameter settings. The choice of hyperparameters and their values
were dependent on the model class. However, all models went through the same
model selection pipeline: (1) K model instances with different hyperparameter
settings were obtained as appropriate; (2) S⊆ K models with the best performance
on the training objective were selected; (3) models that did not discover any latent
units that shared information with the neural responses were excluded, resulting in
M⊆ S models retained for the final analyses. These steps are expanded below for
each model class.

For the β-VAE model, the main hyperparameter of interest that affects the
quality of the learnt latent units is the value of β. The β hyperparameter controls
the degree of disentangling achieved during training, as well as the intrinsic
dimensionality of the learnt latent representation17. Typically, a β > 1 is
necessary to achieve good disentangling, however, the exact value differs for
different datasets. Hence, we trained 400 models with different values of β by
uniformly sampling 40 values of β in the [0.5, 20] range. Another factor that

affects the quality of disentangled representation is the random initialisation
seed for training the models30. Hence, for each β value, we trained 10 models
from different random initialisation seeds, resulting in the total pool of 400
trained β-VAE model instances to choose from. All β-VAE models were
initialised to have N= 50 latent units, however, due to the variability in the
values of β, the intrinsic dimensionality of the trained models varied between 10
and 50.

In order to isolate the role of disentangling within the β-VAE optimisation
objective from the self-supervision aspect of training, we kept as many choices as
possible unchanged between the β-VAE and the AE/VAE baselines: the model
architecture, optimiser, learning rate, batch size and number of training steps. The
remaining free hyperparameters that could affect the quality of the AE/VAE learnt
latent units were the random initialisation seeds, and the number of latent units N.
The latter was necessary to sweep over explicitly, since AE and VAE models do not
have an equivalent to the β hyperparameter that affects the intrinsic dimensionality
of the learnt representation. Hence, we trained 100 model instances for each of the
AE and VAE model classes, with five values of N sampled uniformly without
replacement from N∈ [10, 50], each trained from 20 random initialisation seed
values.

For the Classifier baseline, we used the following hyperparameters for the
initial selection: five values of N ∈ [10, 50] sampled uniformly without
replacement, as well as a number of learning rate values {1e−3, 1e−4, 1e−5, 1e
−6, 1e−7} and batch sizes {16, 64, 128, 256}, resulting in 100 model instances.
We trained the models with early stopping to avoid overfitting, and used the
classification performance on the validation set to choose the settings for the
learning rate and batch size. We found that the values used for training β-VAE,
AE and VAE (learning rate 1e−4, batch size 16) were also reasonable for training
the Classifier, achieving >95% classification accuracy. Hence, we trained the final
set of 450 Classifier model instances with fixed learning rate and batch size, five
values of N ∈ [10, 50] sampled uniformly without replacement and 50
random seeds.

We used sklearn 0.2 FastICA algorithm60 to extract ICA units, which is
dependent on the random initialisation seed. Hence, we extracted N ∈ [10, 50]
independent components with 10 random initialisation seeds each, resulting in 41
ICA model instances.

Fig. 8 Schematic of model architectures. Blue, trainable neural network units free to represent anything. Pink, latent representation units used for
comparison with neurons in response to 2100 face images. Grey, units representing class probabilities. CNN, convolutional neural network. FC, fully
connected neural network. N, number of latent units. a Self-supervised models — β-VAE17, autoencoder (AE)35 and variational autoencoder (VAE)36, 58.
Models were trained on the mirror flipped versions of the 2100 faces presented to the primates. Face image reproduced with permission from Gao et al.57.
b Classifier baseline. Encoder network, same as in (a). Model trained to differentiate between unique 2100 face identities using mirror flipped versions of
the 2100 faces augmented with 5 × 5 pixel translations. Face image reproduced with permission from Gao et al.57. c VGG baseline32. Encoder network has
larger and deeper CNN and FC modules than in (a) and (b). Representation dimensionality is reduced to match other models either by a projection on the
first N principal components (PCs) (VGG (PCA)), or by taking a random subset of N units without replacement (VGG (raw)). VGG was trained to
differentiate between 2622 unique faces using a face dataset32 unrelated to the 2100 faces presented to the primates. Face image is representative of the
images used to train the model and is reproduced with permission from Liu et al.52. d Active appearance model (AAM)3. Keypoints were manually placed
on the 2100 face images. First N/2 PCs over the keypoint locations formed the “shape” latent units. First N/2 PCs over the shape-normalised images
formed the “appearance” latent units. Figure adapted with permission from Chang et al.3.
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The remaining baseline models relied on using a single canonical model
instance (VGG and AAM) and/or on a deterministic dimensionality reduction
process (PCA, AAM, VGG). Hence, the random seed hyperparameter did not
apply to them. In order to make a fairer comparison with the other baselines, we
therefore created different model instances by extracting different numbers of
representation dimensions with N∈ [10, 50], resulting in 41 PCA and VGG (PCA)
model instances, and 21 AAM instances (since N needs to split evenly into shape-
and appearance-related units). For the VGG (raw) variant, we first uniformly
sampled five values from N∈ [10, 50] without replacement to indicate the size of
the hidden unit subsets. Then, for each size value we sampled 10 random hidden
unit subsets without replacement, resulting in 50 VGG (raw) model instances
in total.

Model selection based on training performance. For each model class, apart
from the deterministic baselines (PCA, AAM and VGG), we selected a subset of
model instances based on their training performance. For the β-VAEs, we used the
recently proposed Unsupervised Disentanglement Ranking (UDR) score31 imple-
mented in MatLab R2017b to select 51 model instances with the most disentangled
representations (within the top 15% of UDR scores) for further analysis. For AE
baseline, we selected 50 model instances with the lowest reconstruction error per
chosen value of N. For the VAE baseline we selected 50 model instances with the
highest lower bound on the training data distribution per chosen value of N.
Finally, for the Classifier baseline, we selected 81 models which achieved >95%
classification accuracy on the test set.

Filtering out uninformative models. To ensure that all models used in the final
analyses shared at least some information with the recorded neural population, we
performed the following filtering procedure. First, we trained Lasso regressors
(MatLab R2017b) as per Variance Explained section below, to predict the responses
of each neuron across the 2100 faces from the population of latent units extracted
from each trained model. We then calculated the mean amount of variance
explained (VE) averaged across all neurons for each of the models. We filtered out
all models where VE<VE� SD ðVEÞ, with VE and SD(VE) represent the mean
and standard deviation of VE scores across all models, respectively.

The full-model selection pipeline resulted in 51 β-VAE model instances, 50 AE,
VAE and ICA model instances, 41 PCA and VGG (PCA) model instances, 22 VGG
(raw) model instances, 21 AAM model instances and 64 Classifier model instances
that were used for further analyses.

Human psychophysics: identifying transformations applied to faces. While
there is no readily available metric via which we can quantify the interpret-
ability of β-VAE latent units, we designed a psychophysical study to test the null
hypothesis that people cannot agree upon the variable coded by each latent unit.
To validate the semantic meaningfulness of β-VAE latent units we asked 300
participants to select which of the 17 provided options best described the
transformation generated by traversing a single latent unit. The following label
options were presented to the participants: age, chin size, ethnicity, eye dis-
tance, eye size, eye slant, eyebrow position, face length, face shape, forehead
size, fringe/bangs, gender, hair density, hair length, nose size, smiling and none
of the above. Since all well-disentangled β-VAE models learnt approximately
the same representation, we found corresponding units in two trained and well-
disentangled β-VAE models and presented traversals from the two corre-
sponding units applied to two different faces for the participants to label. The
participants were presented with the following instructions: “You will be asked
to identify 11 transformations applied to faces. For each transformation, you
will be provided with two examples containing two different faces, each one
transformed in the same way. You will be asked to make a judgement of what
the transformation is, and select an answer from the drop-down list that best
matches your guess.”. Each face transformation was generated by traversing the
value of one chosen unit of a pre-trained β-VAE between −3 and 3, while
keeping all other units fixed to their inferred values. The participants were
asked to describe the resulting transformation of the reconstructed face using
one of the 16 label options extracted from the list of 46 descriptive face attri-
butes compiled in consultation with sketch artists in order to produce reliable
and identifiable sketches of faces61. The full set of 46 attributes was not used,
because it would have been too long and confusing for the participants to parse.
Furthermore, many of the attributes in the list were not applicable to the
current study (e.g. eye colour). To select the subset of attributes to use in this
study, we recruited 6 pilot participants and asked them to match the traversals
to the most appropriate descriptors selected from the full list of 46 attributes,
and used the union of these as the final set. We also re-worded some of the
attribute names to make them more appropriate for labelling transformations
(e.g. we changed “small eyes” to “eye size”). The participants were presented
with three worked examples before being asked to make the judgements. The
presentation order of the latent traversals to be judged was randomised.

The experiment took on average 670 ± 430 s to complete. For each latent unit,
we calculated the distribution of labels chosen by the participants over all
labelling options. To measure how semantically meaningful each latent was, we

calculated the entropy of the resulting distribution (being further away from the
maximum entropy indicates better consensus by the participants on the
semantic meaning of the latent), as well as the maximum proportion of
participants who agreed on the label for each latent. We found that 6/11 latents
had an agreement of >30% (significantly above the 11.82% agreement expected
by chance, p= 0.001), with the observed entropy unlikely under the uniform
prior distribution (p= 0.0001, see Supplementary Fig. 2). Note that for some of
the latent units, we found that the participants’ label choices were split between
closely related concepts, e.g. eye distance and eye size; hair density and hair
length; face length, face shape and forehead size; gender and hair length; and age
and hair density.

Human psychophysics: comparing face reconstructions. We measured the
subjective quality of VAE, AE and β-VAE reconstruction of novel faces from single
neurons by asking 300 participants to rank the three reconstructions as “Best”,
“OK” or “Worst” using a randomised block design. Out of the 62 novel faces used
in this study, we had to remove 5 due to legal requirements. The participants were
presented with the following instructions: “We would like to compare the quality of
face image reconstructions produced by three different systems. You will be pre-
sented with 57 face images, each one with three reconstructions by three different
systems. The order in which the reconstructions are presented is random, so its
position (left, middle or right) does not indicate which system it came from. For
each image, we would like you to rate how much the three reconstructions
resemble the original. We recommend that you make your judgement on the first
holistic impression.”.

The experiment took on average 1070 ± 725 s to complete. Friedman test62 with
α= 0.05 significance level (Python 3.6 scipy stats.friedmanchisquare
implementation) was applied to the collected ranking scores, and the null
hypothesis that all three models were the same in terms of their reconstruction
quality was rejected. Post hoc pairwise comparisons across all 57 images revealed no
statistically significant difference between β-VAE and VAE reconstructions, while
significant differences were found between AE and the other two models. Post hoc
pairwise comparisons for each image are presented in Supplementary Fig. 3.

Variance explained. We used Lasso regression to predict the response of each
neuron nj from model units. We used 10-fold cross-validation using standardised
units and neural responses to find the sparsest weight matrix that produced mean
squared error (MSE) results between the predicted neural responses n̂j and the real
neural responses nj no more than one standard error away from the smallest MSE
obtained using 100 lambda values. The learnt weight vectors were used to predict
the neural responses from model units on the test set of images. Variance explained
(VE) was calculated on the test set according to the following:

VEj ¼ 1�∑iðn̂ij � nijÞ2
∑iðnij � njÞ2

ð5Þ

where j is the neuron index, i is the test image index, and nj is the mean response
magnitude for neuron j across all test images. In order to speed up the Lasso
regression calculations, we manually zeroed out the responses of those model units
that did not carry much information about the face images. We defined units as
“uninformative” if their standardised responses had low variance σ2 < 0.01 across
the dataset of 2100 faces. We verified that this did not affect the sparsity of the
resulting Lasso regression weights.

Note that the proportion of explained variance for each neuron is typically
normalised by the neuron’s Spearman-Brown corrected split-half self-consistency
over image presentation repetitions (e.g. see Yamins et al.10). This data, however,
was not available to us, hence our encoding-explained variance results are
artificially lower than the typically reported values due to noise. Indeed, Chang
et al.6 used a different classification-based method to quantify how well β-VAE,
AAM and VGG can explain the responses of the same 159 neurons. Their
approach did not require noise normalisation, and the results reported show strong
performance across models. Our variance explained that the results are consistent
with those reported in Chang et al.6.

Alignment score. Two versions of the same measure were simultaneously
and independently proposed in the machine learning literature, referred to as
“completeness”29 or “compactness”63. We refer to the same measure as
“alignment” for more intuitive exposition in this work.

This score measures how well the responses of single neurons are explained by
single model units. Perfect score of 1 is achieved if each neuron that is well
explained, is only explained well by the activity of a single model unit. If more than
one model unit is necessary to explain the activity of a single neuron, this score is
reduced. However, if the activity of a neuron cannot be explained at all by any of
the model units, the score is unaffected.

First, we obtained the matrix R necessary for calculating the score by training
Lasso regressors to predict the responses of each neuron from the population of
model latent units. When calculating completeness against the original neural
responses, we followed the same procedure as per the variance explained
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calculations. When calculating completeness against the artificial (linearly
recombined) neural responses, we did not zero out the responses of the
“uninformative” units, since in this case this procedure affected the sparsity of the
resulting Lasso regression weights. Instead, in order to speed up calculations, we
reduced the number of cross-validation splits from ten to three. The completeness
score Cj for neuron j was calculated according to the following:

Cj ¼ ρjð1�HðpjÞÞ ð6Þ

HðpjÞ ¼ �∑
d
pdj logD pdj ð7Þ

pdj ¼
Rdj

∑d Rdj
ð8Þ

ρj ¼
∑dRdj

∑djRdj
ð9Þ

where j indexes over neurons, d indexes over model units, and D is the total
number of model units. The overall completeness score per model is equal to the
sum of all per-neuron completeness scores C=∑jCj. See ref. 29 for more details.

Unsupervised Disentanglement Ranking (UDR) score. The UDR score31

measures the quality of disentanglement achieved by trained β-VAE models by
performing pairwise comparisons between the representations learnt by models
trained using the same hyperparameter setting but with different seeds. The
measure relies on the assumption that for any particular dataset, well-
disentangled β-VAE models will converge on the same representation up to
permutation, subsetting (different models may discover subsets of all disen-
tangled dimensions), and sign inverse (for example, some models may learn to
represent age from young to old, while others may represent it from old to
young). This approach requires no access to labels or neural data. We used the
Spearman version of the UDR score described in ref. 31. For each trained β-VAE
model, we performed 9 pairwise comparisons with all other models trained with
the same β value and calculated the corresponding UDRij score, where i and j
index the two β-VAE models. Each UDRij score is calculated by computing the
similarity matrix Rij, where each entry is the Spearman correlation between the
responses of individual latent units of the two models. The absolute value of the
similarity matrix is then taken ∣Rij∣ and the final score for each pair of models is
calculated according to

1
da þ db

∑
b

r2a � IKLðbÞ
∑aRða; bÞ

þ∑
a

r2b � IKLðaÞ
∑bRða; bÞ

� �
ð10Þ

where a and b index into the latent units of models i and j, respectively, ra ¼
max

a
Rða; bÞ and rb ¼ max

b
Rða; bÞ. IKL indicate the “informative” latent units

within each model, and d is the number of such latent units. The final score for
model i is calculated by taking the median of UDRij across all j.

Average correlation ratio and average unit proportion. For each neuron,
we calculated the absolute magnitude of Pearson correlation with each of the
“informative” model units. We then calculated the ratio between the highest cor-
relation and the sum of all correlations per neuron. The ratio scores were then
averaged (mean) across the set of unique model units with the highest ratios, and
this formed the average correlation ratio score per model. The number of unique
model units with the highest ratios divided by the total number of informative
model units formed the average unit proportion score.

Decoding novel faces from single neurons. We first found the best one-to-one
match between single model units and corresponding single neurons. To do this,
we calculated a correlation matrix Dij= Corr(zi, rj) between the responses of
each model unit zi and the responses of each neuron rj over the subset of 2100
face images that were seen by both the models and the primates, where Corr
stands for Pearson correlation. We then used MATLAB R2017b implementation
of Kuhn-Munkres64,65 algorithm (matchpairs) to find the best one-to-one
assignment between each model unit and a unique neuron based on the lowest
overall (1− Dij) score across all matchings. We used the resulting one-to-one
assignments to regress the responses of single latent units from the responses of
their corresponding single neurons to the held out 62 faces, using the same
subset of 2100 face images that were seen by both the models and the primates
for estimating the regression parameters. We standardised both model units and
neural responses for the regression. The resulting predicted latent unit responses
were fed into the pre-trained model decoder to obtain reconstructions of the
novel faces. We calculated the cosine distance between the standardised pre-
dicted and real latent unit responses for each face (after filtering out the
“uninformative” units), and presented the mean scores across the 62 held out
faces for each model.

Statistical tests. We used a MATLAB R2017b implementation of Welsch’s t-test
(ttest2) for all pairwise model comparisons, with unequal variance and α= 0.01.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The unprocessed responses of all models to the 2162 face images generated in this study
have been deposited in the figshare database (https://doi.org/10.6084/
m9.figshare.c.5613197.v2). This includes AAM, VGG (PCA), VAE and β-VAE responses
previously published in Chang et al.6. The figshare database also includes the anonymised
psychophysics data, a file describing how the semantic labels used in one of the
psychophysics study were obtained from the larger list of 46 descriptive face attributes
compiled in Klare et al.61, and the two sample forms used for data collection on Prolific.
The raw neural data supporting the current study were previously published in
Chang et al.6 and are available under restricted access because of the complexity of the
customised data structure and the size of the data; access can be obtained by contacting
Le Chang (stevenlechang@gmail.com) or Doris Tsao (tsao.doris@gmail.com). The face
image data used in this study are available in the corresponding databases: FERET face
database55 (https://www.nist.gov/itl/iad/image-group/color-feret-database), CVL face
database54 (http://lrv.fri.uni-lj.si/facedb.html), MR2 face database56 (http://
ninastrohminger.com/the-mr2), PEAL face database57, AR face database51 (http://
www2.ece.ohio-state.edu/aleix/ARdatabase.html), Chicago face database53 (https://
www.chicagofaces.org) and CelebA face database52 (http://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html). Source data are provided with this paper.

Code availability
The code that supports the findings of this study is available upon request from Irina
Higgins (irinah@google.com) due to its complexity and partial reliance on proprietary
libraries. Open-source implementations of the β-VAE model, the alignment score and
the UDR measure are available at https://github.com/google-research/
disentanglement_lib.
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