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Integrative analysis of non-small cell lung cancer
patient-derived xenografts identifies distinct
proteotypes associated with patient outcomes
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Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. Only a

fraction of NSCLC harbor actionable driver mutations and there is an urgent need for patient-

derived model systems that will enable the development of new targeted therapies. NSCLC

and other cancers display profound proteome remodeling compared to normal tissue that is

not predicted by DNA or RNA analyses. Here, we generate 137 NSCLC patient-derived

xenografts (PDXs) that recapitulate the histology and molecular features of primary NSCLC.

Proteome analysis of the PDX models reveals 3 adenocarcinoma and 2 squamous cell car-

cinoma proteotypes that are associated with different patient outcomes, protein-

phosphotyrosine profiles, signatures of activated pathways and candidate targets, and in

adenocarcinoma, stromal immune features. These findings portend proteome-based NSCLC

classification and treatment and support the PDX resource as a viable model for the devel-

opment of new targeted therapies.
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Lung cancer is the most frequently diagnosed and leading
cause of cancer-related death worldwide, accounting for 13%
of all cancers and 20% of all cancer deaths1. Non-small cell

lung carcinoma (NSCLC) accounts for 85% of lung cancers, with
adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC)
being the predominant histological types, accounting for
approximately 60% and 30% of NSCLC cases, respectively2,3.

Initial surveys of NSCLC genomes have led to the identification
of oncogenic gene alterations, predominantly in LUAD, which have
been particularly useful in guiding therapeutic decisions in
advanced-stage NSCLC. Several targeted therapies are now
approved for patients with specific genetic alterations in driver
genes such as epidermal growth factor receptor (EGFR) kinase
domain mutations and anaplastic lymphoma kinase (ALK) and
ROS1 rearrangements4,5. However, most NSCLC tumors lack
actionable mutations. Identifying actionable targets for the majority
of NSCLC, and especially those with more aggressive disease is a
major motivation behind multi-omics profiling of NSCLC.
Transcriptome-based molecular profiling of LUAD and LUSC have
identified subgroups with prognostic value6,7. Multi-omic approa-
ches have also been useful to identify the DNA alterations and
methylation patterns associated with transcriptome subtypes8–10.
However, despite these efforts, no actionable targets have been
identified from these studies and our biological understanding of
the heterogeneity between lung cancers remains quite limited.

In light of the limitations that have emerged from these
genomic studies and the sometimes unpredictable relationships
between DNA copy number, RNA expression, and protein levels,
recent efforts have focused on mass spectrometry (MS)-based
profiling of NSCLC proteomes11–14. While profiling of primary
patient tumors provides invaluable information, it has limitations
in not being able to readily distinguish between the biologic
complexities of tumor epithelia and stroma, as both populations
are molecularly indistinguishable in homogenized tissue samples.
Thus, many novel biological insights may still be lacking for these
cell populations. PDXs have emerged as powerful resources to
overcome some of these limitations. In PDX models, human
stroma becomes replaced by host murine components. Despite
significant sequence conservation between the species, there is the
potential to distinguish human tumor epithelial and murine
stromal proteins based on recognition of species-specific poly-
peptide sequences. PDXs, including from NSCLC, also provide a
resource enriched in the more aggressive forms of cancer,

where there is the greatest urgency to develop clinically mean-
ingful insights. NSCLC patients whose resected tumors engraft to
form a PDX have worse overall survival than patients whose
tumors fail to engraft15–18. The engrafted patient tumors retain
the phenotypic features of the primary tumors, including histol-
ogy, mutational landscape, RNA and protein expression19–24. We
previously measured high correlations (rs > 0.67) between 11 PDX
and their matched patient NSCLC for individual profiles of their
DNA copy number, mRNA and protein abundances25. In another
study comparing 36 matched PDX-primary NSCLC we demon-
strated retention of >90% of SNP mutations and the close reca-
pitulation in PDX models of gene expression, methylation, and
protein-phosphotyrosine (pY) profiles26. These observations
indicate a high degree of conservation of molecular features
between primary and PDX tumors, suggesting they are valid
models suitable for pre-clinical studies.

In this study, we establish a large cohort of 137 NSCLC PDX
models and profile gene expression, gene copy number variation,
DNA methylation, exome mutations, proteome and pY-proteome
(Fig. 1). DNA copy number variation and exome sequences of
PDXs represent that of primary tumors. Gene expression and
methylation signatures defined in primary tumors effectively
stratifiy the PDXs. Unsupervised MS-based proteome analysis
identifies 3 LUAD and 2 LUSC proteotypes, which are associated
with distinct pY-proteome profiles and patient survival. Inter-
rogation of the proteotypes reveals features of active pathways.
Proteotype markers effectively stratify unrelated cohorts12,14 of
primary tumors according to proteotype. Proteotype signatures
also effectively stratify Cancer Dependency Map (DepMap)
NSCLC cell lines in which gene knockout/down sensitivities
aligned with proteotype-defined candidate targets27,28 (Fig. 1).
Two of the identified LUAD proteotypes have distinctive stromal
proteomes, which suggests that distinct molecular signaling by
these proteotypes specifies tailored stromal microenvironments.
These insights into lung cancer biology suggest that the further
characterization of NSCLC proteotypes in NSCLC models
including our PDX collection may be an approach to test emer-
ging therapeutic hypotheses.

Results
Generation of Stable NSCLC PDX Models. A total of 500
NSCLC patient samples, 443 primary resected and 57 endobronchial
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Fig. 1 A roadmap to cancer proteotype discovery and utility. A subset of 137 of 500 primary NSCLC tumors engrafted to yield PDX models. PDXs
represent the most aggressive subset of NSCLC and were profiled for gene expression, gene copy number variation, DNA methylation, exome mutations,
proteome and phosphotyrosine(pY)-proteome. Proteome profiling revealed proteotypes associated with patient survival differences. Proteotypes display
distinctive active pathway features and associated candidate therapeutic targets. Signatures comprising proteotype markers effectively stratify orthogonal
NSCLC primary tumors12,14 as well as NSCLC DepMap cell lines25, which enables a degree of candidate target validation and prioritization based on
alignment with DepMap sensitivities26.
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ultrasound (EBUS) biopsy from recurrent cases, were implanted
into non-obese diabetic severely compromised immunodeficient
(NOD-SCID) mice (Fig. 2A; Supplementary Table 1). This resulted
in formation of 163 PDX at P0 (passage 0 designates initial implant
with patient tumor fragment). A subset of 137 PDX tumors were
successfully serially passaged at least three times (P2), while 26 were
unstable beyond P0. Thus, the overall engraftment rate for stable
PDX formation was 27% (137/500). The engraftment rate was
higher for resected specimens (125/443; 28%) than EBUS samples
(12/57; 21%) (Supplementary Table 1). Consistent with previous
reports, the engraftment rate was higher for LUSC (55%, 65/119)
than LUAD (17%, 58/336)15,29. Of the 500 implanted patient
tumors, 57 (11%) formed lymphoma in P0 mice. We reported
previously that P0 lymphomas were of human origin and likely
represent transformed tumor infiltrating lymphocytes30. From the
resected cohort, the ability of patient tumors to form a stable PDX is
associated with significantly worse overall patient survival (OS)
(Fig. 1B). Non-stable engrafting tumors (XG, P0) had the second

worst OS followed by non-engrafting tumors (NO-XG). Lastly,
patients with engraftment outgrowth as lymphoma had similar OS
as that of patients with non-engrafting tumors (Fig. 2B). Clinical
and demographics of patients contributing to PDX generation are
summarized in Supplementary Tables 2 and 8.

NSCLC PDX models represent primary tumor transcriptome
and genome features. LUAD and LUSC were characterized by
gene expression subtypes6,7 that were validated in datasets of The
Cancer Genome Atlas (TCGA)9,10. The TCGA signature algo-
rithms were applied to our PDX gene expression profiles, the 3
known subtypes of LUAD (Terminal Respiratory Unit, Proximate
Proliferative and Proximate Inflammatory) and 4 LUSC subtypes
(Classical, Secretory, Basal and Primitive) (Fig. 2C, D). The PDX
models represent all of the transcriptome-based subtypes in
comparable proportions to patients in TCGA cohorts6,31 (Sup-
plementary Fig. 1A, B). Principal component analysis (PCA) of
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the methylation profiles of 47 LUAD and 55 LUSC PDX models
showed strong separation of tumors into histological subtypes
(Supplementary Fig. 1C). TCGA methylation datasets using the
top 4,000 most variable CpGs and unsupervised clustering indi-
cated 3 LUAD and 4 LUSC methylation groups9,10. Using the
same strategy, we identified 3 LUAD and 4 LUSC subgroups
among the PDXs (Fig. 2E, F). The data suggests that DNA
methylation signatures are also conserved and represented in the
PDX models. Although the frequency of methylation-based
subtypes was on par with that of primary LUAD, in LUSC the
C1 subtype was under-represented by 50% and the C2 subtype
was over-represented by 100% in comparison to a patient
population13. These suggest that biological aspects related to these
subtypes might influence engraftment.

To examine the frequency of DNA alterations, PDX models
were profiled for mutations and copy number. We observed that
alterations frequently identified in LUAD and LUSC primary
tumors are represented in the PDX models but in some cases
were over- or under-represented compared to the frequencies
seen in patient tumor populations32 (Fig. 3A, B) (Supplementary
Data 1). For instance, KRAS mutations are over-represented in

LUAD PDXs at 50% frequency compared to 30% in patient
primary tumors, whereas EGFR sensitizing mutations in exon
18–21 are under-represented32 (Fig. 3A; Supplementary Data 1).
These findings are consistent with mutant KRAS being associated
with better and mutant EGFR poorer engraftment rates,
respectively, and poorer and better prognoses, respectively9,31,33.
NFE2L2, FAT1 and NOTCH1 mutations were over-represented in
LUSC PDXs compared to primary tumors32, suggesting such
alterations might favor a more aggressive cancer phenotype and
PDX formation. CNV in LUAD and LUSC PDX tumors mirrors
closely primary tumors, (Fig. 3C, D; Supplementary Data 1).
Overall, these analyses revealed that the NSCLC PDX models
retain genomic features that resemble primary tumors including
some that may be related to aggressiveness and engraftment.

Proteome profiling of NSCLC PDX tumors. Tandem mass tag
(TMT)-based quantitative MS analysis of PDX tumors was
undertaken (Supplementary Fig. 2A). For data quality assurance,
a replicate sample pair in the same experimental group and two
pairs of replicates samples split into different experimental groups
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were analyzed. The technical replicates provided a readout for
fidelity of the normalization method and technical robustness. A
strong linear relationship between the replicates was seen for each
pair (R2 ≥ 0.94) (Supplementary Fig. 2E). PCA verified that
samples did not cluster based on experimental group or isobaric
labels (Supplementary Fig. 2F, G). MS analysis of 133 PDX
samples uncovered a total of 13284 proteins using a strict false
discovery rate (FDR) of 0.01 of which 6830 were identified as
human, 4423 as mouse, and 2031 that did not contain unique
human or mouse peptides and therefore were assigned as human/
mouse (Fig. 4A). To assess tumor-stroma composition, the frac-
tion of total ion intensity corresponding to human, mouse, and
human/mouse proteins was determined for each PDX sample
(Fig. 4B) (Supplementary Data 1). This provided an opportunity
to correct for discrepancies in tumor (i.e., human) cell compo-
sition across samples, which ranged between 20–70% (Fig. 4B;
Supplementary Data 1). This ensured that measured changes in
protein abundance reflects proteome remodeling in tumor cells
and not differences in tumor cellularity.

To address the postulate that the proteome is largely unpredict-
able based on abundance of genes and transcripts, pairwise
correlations were made between CNV, mRNA and protein25. These
analyses were applied for genes/gene products represented at the

protein level, and by using only human proteins that were quantified
in all samples. The resulting Spearman’s Rho values were positive
but low in magnitude. The median Spearman’s Rho was 0.33 for
CNV-mRNA, 0.22 for CNV-Protein, and 0.3 for mRNA-Protein
(Supplementary Data 1; Supplementary Fig. 2B–D).

Unsupervised hierarchical clustering based on human/tumor
proteins identified in at least 70% of 133 PDX tumors revealed
three major clusters: one comprised mainly LUSC, a second
comprising LUSC together with most of the large cell
neuroendocrine carcinoma (LCNEC) samples, and a third
comprised of mainly LUAD (Fig. 4C). Technical replicates,
primary/recurrent pairs, and different PDX passages from the
same primary sample consistently clustered together (Fig. 4C).
These results suggest a high degree of consistency and accuracy in
the proteomic platform, and minimal proteome remodeling
during metastasis and serial passage of PDX tumors.

Non-murine proteins detected in at least 70% of samples were
compared between all LUAD and LUSC samples (FDR < 0.001)
(Fig. 4D). Supporting that our data captures accurate proteomic
signatures of histology34, markers of LUAD, TTF-1 (NKX2.1),
Napsin A (NAPSA) and KRT7 have significantly higher
expression in LUAD, whereas markers of LUSC, TP63, CK5/6
(KRT5/6 A) and SOX2 have significantly higher expression in
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LUSC (Fig. 4E, F). Other significantly upregulated proteins that
distinguished LUAD from LUSC (Supplementary Data 2),
included MUC1, SLC34A2 and AGR2 for LUAD and KRT3,
ADH7 and GBP7 for LUSC (Fig. 4E, F).

LUAD and LUSC proteotypes associated with differences in
patient survival and protein-phosphotyrosine signatures. The
subset of PDX human tumor proteome proteins identified in at
least 70% of cases, was subjected to unsupervised consensus
clustering. Among the 58 LUAD samples, which included two
technical repeats, consensus clustering revealed 3 groups with
high stability (Fig. 5A; Supplementary Fig. 3A–D). PCA of tumor/
human proteome identified in all PDXs further supports the
identification of three distinct proteotypes (Supplementary
Fig. 3E), designated LUAD1, LUAD2 and LUAD3. Similar ana-
lysis with 62 LUSC samples identified 2 groups designated LUSC1
and LUSC2 (Fig. 5B; Supplementary Fig. 3F–J). Tumor clinical
and genomic attributes were assessed for association with pro-
teotypes. The proteotypes showed no association with sex or
smoking (Fig. 5A, B). Although modest associations were
observed among proteotypes and certain clinical and/or genomic
features, altogether, these associations show that no single attri-
bute can predict tumor proteotype (Supplementary Table 3).

Patient 5-year-OS was significantly different between LUAD1
and LUAD3 proteotypes, while LUAD1 and LUAD2 have similar
OS (Fig. 5C; Supplementary Table 4). The 5-year OS of LUSC2 is
significantly worse than LUSC1 (Fig. 5D; Supplementary Table 4).
Stage, a known prognostic factor35, shows a significant difference
in 5-year-OS among LUAD but not LUSC (Supplementary
Tables 5 and 6). Multivariate survival analysis with stage failed to
show a significant survival difference between proteotypes,
although the trend remains the same (Supplementary Tables 5
and 6). The loss of significance may be due to small sample size of
different stages.

Deregulated protein tyrosine kinase signaling is a major hallmark
of cancer and represents a major drug target class36,37. The subset of
the proteome modified by tyrosine phosphorylation is a product of
activated protein-tyrosine kinases and phosphatases, which are
expressed at highly variable levels in cancer38. To profile protein pY
in the PDX models, pY-peptides from trypsin-digested samples were
purified by using an affinity enrichment method involving capture
with immobilized Superbinder SH2 domain variants39,40. MS
analysis of pY peptides showed a normal distribution based on
numbers of pY peptides and maximum signals detected per sample
(Supplementary Fig. 2H, I). Each LUAD and LUSC proteotype
presented a distinctive pY profile, suggesting proteotypes differ in
cell regulation processes controlled downstream of activated
protein-tyrosine kinases and phosphatases (Fig. 5G, H; Supplemen-
tary Data 3). Notably, LUAD3 among LUADs and LUSC2 among
LUSC, the proteotypes with the worst survival in each histological
group, had the highest level of enriched pY sites (Fig. 5G, H).

Proteotypes feature biological pathway vulnerabilities and
candidate actionable targets. Ingenuity pathway analysis (IPA) of
significant differentially expressed proteins identified multiple enri-
ched pathways for each proteotype (Supplementary Data 2). Top
selected active pathways are shown in Fig. 6A, B. LUAD1 showed
enrichment for many pathways including those involved in amino
acid catabolism, aerobic metabolism, signaling by EGF, and TCA
cycle (Fig. 6A). LUAD2 was associated with the fewest number of
pathways, which included enhanced signaling of PTEN, BAG2, and
apelin (Fig. 6A). LUAD3 was enriched for leukocyte extravasation
and regulation of epithelial to mesenchymal transition (EMT) by
growth factors, as well as signaling by integrins, Rho, and MAPK
(Fig. 6A). LUSC1 was strongly enriched for spliceosome cycle,

pathways involved in translation, and DNA repair pathways
(Fig. 6B). LUSC2 had enriched and active pathways such as VEGF
and sonic hedgehog signaling (Fig. 6B).

Additional pathways characterized by proteotype-enriched pY-
proteins, were identified (Supplementary Data 3), where the five
most significant are shown in Fig. 6C, D. These included lower
activity of integrin and leukocyte extravasation in LUAD1;
increased activity of EGF and p70S6K in LUAD3 (Fig. 6C); and
increased activity of cytoskeletal pathways such as actin
cytoskeleton and ILK signaling in LUAD2 (Fig. 6C). Synaptogen-
esis and signaling pathways involving JAK family kinases were
enriched for LUSC proteotypes (Fig. 6D; Supplementary Data 3).

In order to identify protein signatures that could be used to
define the proteotype of primary tumors, we considered only
significantly differentially expressed proteins as defined by having
a more than 4-fold difference (≥4-fold, FDR < 0.05) between
proteotypes, and detected in at least 50% of cases (Supplementary
Fig. 4; Supplementary Data 2). This threshold was established
based on published evidence that measurements of proteins with
this magnitude of change were found reproducible and reliable,
and with a high correlation rate between MS and western blot
signals (Pearson’s r= 0.8–1)41. For LUAD1 we identified 16
markers (Supplementary Fig. 4) including AGR2/3 and
MUC5AC/B, which are highly expressed in mature secretory
cells from the lung and gut42 and NAPSA and SLC34A2, which
are associated with surfactant metabolism in lung alveoli43.
Therefore, most of the markers were associated with mature cell
identity or mature cell function, particularly from the endoderm
lineage. We identified 12 markers for LUAD3 (Supplementary
Fig. 4), including DCBLD2, MCAM and VIM, which are
considered EMT markers that are usually associated with tumor
dedifferentiation and poor prognosis in NSCLC44–46. This is
consistent with enrichment of the EMT pathway and worse OS in
LUAD3 (Fig. 6A). Remarkably, in LUAD2 we identified 26
markers (Supplementary Fig. 4) including KRT5/6A, SERPINB3/
4/5/13, DSG3, TRIM29 and LYPD3, which are related to
squamous differentiation47–49. The expression of these markers
was comparable to LUSC indicating a squamous-like aspect of the
LUAD2 proteotype (Supplementary Fig. 4). Consistent with this
observation, the majority of LUAD samples that clustered with
LUSC comprise the LUAD2 proteotype (Fig. 4C). LUSC1 did not
have many reliable markers that were expressed 4-fold higher
than LUSC2 and hence the fold-change cut-off was reduced to 3
fold for this proteotype (Supplementary Fig. 4). Among these,
SCGN, CHGA and CADM1 are known neuroendocrine tumor
markers50–52, suggesting this proteotype is neuroendocrine-like.
Consistent with this observation, the majority of LUSC samples
that clustered together with LCNEC are LUSC1 (Fig. 4C).
LUSC2 showed high expression of 43 markers, many of which,
including KRT6A/B/4/13, SERPINB3/4/13, DSG3, CSTA and
GBP6 are related to squamous cell differentiation47–49,53,54. These
findings suggest that LUSC2 is a proteotype of what is classically
identified as LUSC, whereas LUSC1 may be a smaller group that
is neuroendocrine-like.

To validate the proteotypes in unrelated cohorts we inter-
rogated >100 LUAD primary tumor proteomes from Gillette et al.
who identified 4 subtypes by multi-omic analysis12, and >100
LUSC primary tumor proteomes from Stewart et al. who
described two major groups Redox and Inflamed, and a minor
Mixed group14. Our defined proteotype signature proteins,
identified in at least 70% of the cohort, were used for
unsupervised hierarchical clustering (Supplementary Fig. 5A, B).
Interestingly, this stratified the LUAD and LUSC patients into
groups corresponding to our proteotypes (Supplementary
Fig. 5A–D), and with considerable overlap with the subtypes
identified in the original studies (Supplementary Table 7).
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The proteotype protein signatures were also able to effectively
categorize 34/34 LUAD and 9/12 LUSC cell lines previously
characterized at the proteome level as part of the DepMap
project27. The LUAD cell lines clustered into groups correspond-
ing to LUAD1 (8 lines), LUAD2 (13 lines), and LUAD3 (13)
(Supplementary Fig. 6A, B), and the LUSC cell lines clustered into
groups corresponding to LUSC1 (6 lines) and LUSC2 (3 lines)
(Supplementary Fig. 6C, D). Genetic and pharmacological
sensitivities associated with the cell lines grouped by proteotype
were defined by using DepMap data28 (Supplementary Data 4).
This analysis revealed proteotype-specific sensitivities (Supple-
mentary Data 4), including a top set of candidate actionable
targets and molecules based on the effect size of their inhibition
on cell line viability (Supplementary Fig. 6E, F). We further
identified sensitivities that matched significantly differential
proteins of the proteotypes (Supplementary Data 4). Pathway
analysis of these matched targets showed the LUAD1 lines
to be sensitive to losing components of the TCA cycle,

LUSC1 spliceosome and LUSC2 ribosome biogenesis. This was
consistent with the enrichment of high activity of TCA cycle in
LUAD1 and higher enrichment and activity of spliceosome in
LUSC1 (Supplementary Data 4). Ribosome components were
expressed lower in LUSC2, which might be why LUSC2 cell lines
are sensitive to losing components of ribosome biogenesis.

Proteotypes demonstrate recurrent genomic alterations. To
assess proteotype-associated genome alterations the frequencies
of mutation and CNVs were assessed (Fig. 7A, B) (Supplementary
Data 1). LUAD1 enriched for alterations in EGFR, MN1 and
MYH9, LUAD2 enriched for BRCA2, while LUAD3 did not
enrich for known cancer drivers. LUSC1 enriched for alterations
in DUSP22, KSR2, ATXN2 and RAD50 and LUSC2 enriched for
KEAP1. The enrichment of these cancer driver alterations in
proteotypes might explain some of the differences seen at the
proteome level. For instance, enrichment of EGFR alterations in
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LUAD1 is consistent with the activation of EGF signaling path-
way noted for LUAD1 (Figs. 6A and 7A). Interestingly, subtypes
enriched in EGFR alterations in other studies31,55 and LUAD1
herein are subtypes with relatively better clinical outcomes. EGFR
tyrosine kinase inhibitors (TKIs) are currently restricted to cases
with EGFR hotspot mutations. We observed that cases with

hotspot mutations do not always have high EGFR expression nor
increased activated pY sites compared to cases without mutations
(Fig. 6C). Herein, we demonstrate that a PDX with WT ampli-
fication and high EGFR protein expression and pY enrichment
but no oncogenic hot spot mutation significantly responded to
treatment with the EGFR TKI Afatinib (p-value= 2.3E-15)
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(Fig. 7E). This is an example wherein proteome analysis might
reveal potentially responsive, activated target pathways not
uncovered by genome/transcriptome analyses. In a previous
study, we treated 4 PDX models bearing EGFR activating muta-
tions by multiple EGFR inhibitors56. Two models (PHLC137 and
192) (Fig. 7C-indicated by blue diamond) responded to Erlotinib,
Dacomitinib, Afatinib and Cetuximab, whereas the other two
models either did not, or only responded to cetuximab (PHLC148
and 164) (Fig. 7C-indicated by yellow star). Comparing the
proteome of the two responders vs. non-responders revealed VIM
expression significantly higher in the non-responders, consistent
with previous reports57, and CALML3 expression higher in
responders (Supplementary Fig. 7A). Another potential TKI tar-
get in NSCLC is fibroblast growth factor receptor 1 (FGFR1),
which is amplified in 20% of LUSC and known to be involved in
cell proliferation and survival. Indeed, 24% (14 of 58) of our
LUSC cases contain an amplification of 8p11.23 that includes
FGFR1(Supplementary Fig. 7B). However, we saw no significant
change relative to non-amplified samples in the levels of proteins
or protein-pY in these cases (Supplementary Fig. 7C). Consistent
with these observations, we tested the FGFR1 inhibitor BGJ398
for growth inhibition in four randomly selected FGFR1-amplified
tumors (PHLC-200, −274, −299, and −321), and found that in
all cases there was an initial minor shrinkage of tumors but
ultimately no inhibition of PDX tumor growth (Supplementary
Fig. 7D–G). These examples demonstrate the utility of the PDX
models to test therapeutic hypotheses including target validation
based on protein expression or pathway activation.

Differential stromal composition of LUAD proteotypes 1
and 3. Unsupervised hierarchical clustering of the stromal pro-
teome, which is of murine origin, and including proteins identified

in at least 70% of samples did not distinguish histological subtype
(Fig. 8A) or proteotype in LUSC (Fig. 8B). Interestingly, LUAD1
and LUAD3 had distinctive stromal proteomes (Fig. 8C), with
LUAD3 significantly associating with cluster iii (Fisher’s exact t-
test p-value= 3.6E-07) and LUAD1 significantly associating with
cluster i and ii (Fisher’s exact t-test p-value= 4.9E-06). LUAD2
did not significantly correlate with either of these clusters (Fisher’s
exact t-test p-value > 0.05), suggesting it does not establish or
maintain a distinct stromal composition. Stromal proteins sig-
nificantly differentially expressed between LUAD1 and LUAD3
were identified (Fig. 8D; Supplementary Data 2). The active
pathways enriched by significantly differential stromal proteome
are shown in Fig. 8E. LUAD1 was enriched for pro-inflammatory
pathways such as systemic lupus erythematosus in T-cell signaling,
and nitrogen oxide and reactive oxygen species production of
macrophages (Fig. 8E). LUAD3 was enriched for signaling of acute
phase response, leukocyte extravasation and B cell receptor, and
pathways involved in EMT such as signaling of integrin, actin
cytoskeleton, protein kinase A and Rho. Murine (i.e., stromal) pY
peptides were also compared between LUAD1 and LUAD3.
Tyrosine phosphorylation of cytosolic phospholipase A2
(pla2g4a), a key enzyme for generation of pro-inflammatory
eicosanoids was significantly higher in LUAD1 (Fig. 8H). Fcer1g,
Anax2, Fyb1 and Cav1 were significantly higher in LUAD3, where
Cav1-pY14 is known to facilitate metastasis58, Fyb1-pY559
is known to alter T-cell adhesion59 and Fcer1g is known to
regulate immune homeostasis60. Two of the top identified can-
didate targetable molecules of LUAD3 are LGALS1 and NT5E
(Supplementary Table 9), which have been associated with
immune evasion61,62. These observations suggest that signaling
from tumor cells involving proteins such as NT5E and LGALS1
in LUAD3 might influence remodeling of the stromal
microenvironment.
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Discussion
Our PDX resource included 137 models and provides insights
into lung cancer including the stratification of the major histo-
logical subtypes of LUAD and LUSC into proteotypes with
prognostic impact and associated with distinctive tumor and in
some instances stromal signatures of activated and targetable
pathways and processes. The PDX models, which represent
particularly aggressive tumors15, were comprehensively profiled
at several molecular levels including gene expression, gene copy
number variation, DNA methylation, exome mutations, and
tumor cell and stromal proteomes and pY-proteomes. Inter-
rogation of these datasets including comparison with primary
tumor profiles validated them as models of NSCLC. DNA
alterations linked to NSCLC outcome were represented in the
PDX models such as enrichment of KRAS mutations associated
with worse outcome, and bias against EGFR mutation associated
with better outcome. LUSC methylation subtype C1 was under-
represented where C2 was over-represented. Transcriptome-
based subtypes defined by analysis of primary NSCLC were also
present in the PDX models. Nevertheless, the PDX models will
have utility for the testing of hypotheses, for example related to
therapeutic vulnerabilities based on their genome, transcriptome
and methylation signatures that represent primary tumors.

The sequence-to-phenotype continuum Genome→Tran-
scriptome→Proteome→Cancer implies that the cancer pheno-
type is largely a product of the proteome. However, the analysis of
the PDX models, consistent with findings made with primary
tumors, indicates once again that cancer proteome remodeling is
largely unpredictable based on measures of gene or transcript.
The three LUAD and two LUSC proteotypes are associated with
significant differences in candidate biomarkers, protein-pY
modifications, activated signaling pathways and cellular pro-
cesses, and patient survival. Interestingly, proteotype LUAD2 was
found to be squamous-like, while proteotype LUSC1 appears
neuroendocrine-like. EGFR TKIs are currently one of few tar-
geted therapies for NSCLC4,63 and with a requisite for EGFR
activating mutations64,65. Amplification and protein expression of
WT EGFR are not consistent biomarkers for anti-EGFR
responsiveness66–71, and immunohistochemistry analysis of
EGFR protein can be unreliable72. Furthermore, we found that a
WT EGFR model (PHLC 134) was sensitive to the EGFR TKI
Afatinib. These observations, albeit made with a small sample set
illustrate the utility of the PDX models to investigate tumor
biology and therapeutic hypotheses, and the potential for pro-
teotype classification as a predictor of response.

The importance of stroma in tumor development and pheno-
types including response to treatment has been discussed exten-
sively. NSCLC-associated fibroblasts have been linked to
resistance to EGFR TKIs, and fibroblast activation protein-
positive fibroblasts have been implicated in immunotherapy
resistance73,74. Characterizing the stromal composition of a
tumor could therefore aid in clinical actions. The MS-based
proteome platform analyzes samples that have been digested into
peptides. Consequently, those peptides that differ between mouse
and human can be used to support the conclusion that the cog-
nate protein from that species has been identified. However, given
the high degree of sequence identity between the two species,
shared peptides are frequently seen that cannot be distinguished
as mouse or human. In these instances, based on common stra-
tegies used in the field, signals from shared peptides may be
attributed to the protein with the greater number of species-
specific peptide identifications. This approach supports determi-
nation of mouse/stroma and human/tumor content in PDX
samples. However, for any given protein, complementary analyses
such as immunocytochemistry and targetted, quantitative MS
may further inform on localization and relative abundance.

By leveraging the cross-species nature of the PDX proteome, we
were able to correct for discrepancies in tumor/stromal compo-
sition, which has not been possible with primary tumor analyses.
We did not discern significant differences between LUAD
and LUSC stromal proteomes, consistent with studies that
demonstrated almost no differences in their respective stromal
transcriptomes75. However, proteotypes LUAD1 and LUAD3
were found to have discernibly different stromal proteomes. This
suggests the proteotype-specific molecular signatures can recruit
distinct stromal compartments to the microenvironment. Similar
phenomena has been reported in breast cancer, where subtypes
identified among breast cancer PDXs using the tumor-specific
proteome can also be distinguished by stromal proteomes76.
Leukocyte extravasation, which is the general recruitment of
different stromal components such as monocytes, neutrophils
and lymphocytes was significantly enriched both at the total
proteome and pY-protein level in LUAD3, suggesting a higher
recruitment of leukocytes in this most aggressive proteotype. An
obvious drawback of our method was the use of subcutaneous
implantation of patient tumors in NOD-SCID mice that have a
compromised immune system. NOD-SCID mice have a reduced
innate immunity and nearly no adaptive immunity77,78.
Although, these immunodeficient features are necessary to pre-
vent tumor rejection, this limits the scope of stromal differences
that would usually be present in an immune-healthy individual.
This also makes NOD-SCIDs not the ideal model for testing of
immuno-modulatory treatments. In LUAD patients, immune
“hot” and “cold” subtypes were recently described12, where the
hot subtype was identified by their stronger signature for B and
T cells and macrophages, while also presenting stronger sig-
natures for immune inhibitory cells and processes12. We observed
that the hot subtype corresponds to the LUAD3 proteotype.
Another obvious limitation of the PDX models is that they are
not readily useful for comprehensive/systems type analyses of
gene dependencies or chemical screens.

The NSCLC PDX models, multi-omics datasets, and the
recognition of defined proteotypes represent invaluable resources
that may assist in the exploration of NSCLC biology and the pre-
clinical development of new treatments. We identified several
proteotype-associated candidate targets and drugs not con-
ventionally used in the clinic for treatment of NSCLC, although
some have been or are currently in clinical trials. This portends
the classification and treatment of cancers according to proteo-
type and guided by pre-clinical studies with patient-derived
model systems.

Data processing
Whole-exome sequencing quality control preprocessing.
Xenome (v1.0.1)79 was used to filter out mouse stromal reads by
aligning the reads to DNA of the NOD-SCID mouse., the remaining
reads were aligned to the human reference genome (hg19) using
Burrows-Wheeler Aligner (v0.7.12)80. Quality control, local realign-
ment of indel, base quality score recalibration (BQSR), duplicate
reads marking and further processing of the mapped reads were
performed using the standard Genome Analysis Toolkit (GATK)
pipeline (v3.4)81, samtools (v1.2)82 and Picard (v1.140) (https://
broadinstitute.github.io/picard/). The pipeline generated a single
Binary Alignment Map (BAM) file for each sample (either PDX or
matched normal) that includes reads, calibrated quantities, and
alignments to the genome.

DNA methylation quality control preprocessing. The R
packages of minfi (v1.6.0)83 and Illumina Human Methylation
450k manifest (v0.4.0) were used to processed the idat files. The
data was background corrected and normalized using the ssNoob

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29444-9 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1811 | https://doi.org/10.1038/s41467-022-29444-9 | www.nature.com/naturecommunications 11

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


method. The batch effects were assessed using the Source of
Variability and Principal Components approach in the sva
package. Quality control was performed to identify failed samples
(detection p-value > 0.05). The following probes were filtered out
prior to data analysis: 58,771 failed probes (detection p-value >
0.01); 43,250 mouse-related probes for potential contamination
from mouse; 8,440 probes on the x,y sex chromosomes to avoid
sex-related methylation biases; 12,128 probes with single-
nucleotide polymorphisms (SNPs) at CpG sites; and 22,517
cross-reactive probes. DNA methylation scores for each CpG site
were calculated as a beta (β) value (β= (M/(M+U)) in which M
and U indicate the mean methylated and unmethylated signal
intensities for each assayed CpG or CpH, respectively.

Gene expression data quantification. The data files were quan-
tified in GenomeStudio (Illumina). All the samples passed Illu-
mina sample dependent and independent QC Metrics. The data
files were loaded into the R package of lumi (v2.24.0)84. Data
from the individual platforms were log2 transformed, background
corrected, normalized using quantile normalization and quality
control. Batch effects were adjusted using ComBat, implemented
in the sva package (v3.20.0).

Copy number alterations data quantification. The data files
were quantified in GenomeStudio (Illumina), normalized against
controls, background subtracted, and GC wave corrected. The
signal intensity as Log2 R ratio (LRR) and B allele frequency
(BAF) values were used to derive copy number, purity and ploidy
of PDX with matched normal using ASCAT(v2.5, allele-specific
copy number analysis of tumors)85.

Database searching and quantification of total proteome. The
acquired raw data was searched against reviewed Uniprot Human
and Mouse Reference databases proteome using MaxQuant
search engine. For both search algorithms, the parent and frag-
ment mass tolerances were set to 20 ppm and 0.5 Da, respectively.
Only complete tryptic peptides with a maximum of two missed
cleavages were accepted. Sum of unique+razor peptides were
used for quantitation, with a minimum of 1 razor+unique pep-
tide required. Methionine oxidation and protein N-terminal
acetylation were included as variable modifications, while carba-
midomethylation was considered fixed modifications. Search
results were filtered using a strict false discovery rate (FDR) of
0.01. TMT reporter ions were quantified using MaxQuant
reporter ions quantifier node with an integration tolerance of 20
ppm, on the MS order of MS3.

There is a high degree of sequence redundancy in the
proteome. In bottom-up proteomics, this leads to situations
where often peptides cannot be uniquely associated with one
protein of origin. This issue is further complicated in mixed
species PDX samples where some shared peptide sequences are
identical in human and mouse. In MaxQuant’s ‘Unique+Razor’
strategy, this complexity is addressed by using unique peptides to

form distinct protein groups (i.e., human only or mouse only)
and with razor (i.e., shared) peptides contributing only to the
protein group with the greater number of peptide
identifications86 (Table 1). In situations where there are no
unique peptides for a protein, the shared peptides are still used to
form a protein group but since the specie-of-origin is ambiguous,
they are designated as Human/Mouse (Table 1).

Total proteome data normalization
Intra-TMT experiment group normalization. Samples were nor-
malized to the sample with the maximum sum intensity of each
TMT experiment group. Briefly, sum intensity of all protein for
each sample was measured. The sample with the maximum
intensity in each TMT group was identified. A conversion factor
is calculated which is then multiplied by all proteins of that
sample.

Inter-TMT experiment group normalization. To normalize TMT
groups to each other, internal reference scaling method was used
as previously described87. Briefly, the control channels containing
the pool of tumors (channel 126 and 131 of each batch) within
each TMT experiment were averaged and used to create reference
values per protein per each batch. The reference values for each
protein in each TMT group were then averaged (geometric
mean), and scaling factors calculated for each protein to adjust its
reference value to the geometric mean value was measured. These
scaling factors were then used to adjust the summed reporter ion
intensities for each protein in the remaining eight experimental
samples in each TMT experiment.

For tumor/stroma content normalization. To normalize tumor/
stroma content, two conversion factors, one for human-specific
proteins and one for murine-specific proteins, were calculated for
each sample. To calculate each conversion factor, the sum of total
intensities of human-specific proteins for all samples was divided
by the number of samples. Then, for each sample, this average
value was divided by the sum of total intensities of human-
specific proteins for that sample, yielding its conversion factor.
The same strategy was employed to calculate a conversion factor
for mouse-specific proteins. Normalized protein group values
were calculated as the product of measured intensities times the
sample-specifc conversion factor. Refer to Supplementary Data 1
for normalized values.

Database searching and quantification of phosphoproteome.
Raw MS data were searched with MaxQuant on human and
mouse database without match between runs and default para-
meters were used for peptide and protein search. FDR for protein
and peptide selection is less than 0.01. Phosphorylation of serine/
threonine/tyrosine is used for variable modifications. pY site
localization probability is higher than 0.75. MS data of CID and
HCD from the same sample were combined as different fractions.

Table 1 The possible scenarios for peptide assignment to Human or Mouse.

Human unique
peptides

Mouse unique
peptides

How razor peptides are assigned to a protein group:

Yes Yes Unique peptides used to report a quantification value for each human and mouse protein. Razor
peptides contribute only to the protein group with largest number of peptide identifications.

Yes No Unique and Razor peptides all used to report a value for Human protein group; no mouse reported.
No Yes Unique and Razor peptides all used to report a value for Mouse protein group; no human reported.
No No All razor peptides are used to report a Human/Mouse value for protein
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Data analysis
Genomic data analysis
Somatic mutation Calling. For the somatic mutations calling,
single-nucleotide variants (SNV) calling were using MuTect
(v1.0)88 and indels were using VarScan (v2.3.8)89. ANNOVAR90

were used to annotate all the mutations. For samples without a
matched normal, additional filtering was done by using public
databases from dbSNP (version 138 flagged), ExAC03 and
ESP6500. Tumor Mutation burden (TMB) of a PDX sample was
calculated by the number of non-synonymous somatic mutations
per mega-base in coding regions. The Oncoprint plots were
generated using significant mutated genes in lung adenocarci-
noma or squamous cell cancers reported from Campbell et al.
study32.

Copy number alterations analysis. Significant regions of aberra-
tions were identified using GISTIC(v.2.0.23)91. The gene-level
copy numbers were also obtained from GISTIC, and the gene was
considered as copy gain or loss if the gene-level CNV value were
larger than 0.3 or smaller than −0.3, respectively.

DNA methylation hierarchical clustering. Unsupervised clustering
using the top 4,000 most variable CpGs (in promoter region or
within 1500 bases of the transcription start site) defined by the
standard deviation was carried out using Hierarchical clustering
with Euclidean distance and linkage as ward.D2 in hclust of R
package.

DNA methylation 3D PCA. Unsupervised methylation analysis
was performed with dimensionality reduction approach and PCA
was performed after probe exclusion (according to methodology)
to understand the data with different tumor subtypes (Supple-
mentary Fig. 1C) and identify sample outliers using the Partek
Genomics Suite software (Partek, St. Louis USA).

Expression subtype detection. Wilkerson et al. suggested and
validated expression subtypes of lung adenocarcinoma (Terminal
Respiratory Unit, Proximal-Proliferative and Proximal-
Inflammatory) and lung squamous (Basal, Classical, Primitive
and Secretory) based on the gene expression characteristics6,7,31.
These gene expression subtypes are highly robust across different
cohorts and expression profile platforms. In our analysis, we used
the Wilkerson et al. public subtype predictor centroids to predict
the subtypes with a nearest centroid. The Pearson correlations
were calculated between the predictor centroids and PDXs or
TCGA using the centroids’ genes (505 genes for lung adeno-
carcinoma, 208 genes for lung squamous). The subtype prediction
was given by the centroid with the largest correlation value. We
also calculated the frequencies of the expression subtypes in PDX
models or TCGA. The subtype expression patterns were highly
concordant between our PDX models and TCGA (Supplementary
Fig. 1A, B).

Proteomic analysis
Proteotype assignment using consensus clustering. Consensus
clustering was performed using subset of tumor proteome
quantified in at least 70% of the samples for LUAD and LUSC
samples separately using ConsensusClusterPlus. Pearson correla-
tion for the distance metric and Average method for the linkage
algorithm, with 1000 resampling steps (epsilon= 0.8) was used
(Supplementary Fig. 3A, F). The optimal number of clusters was
identified using proportion of ambiguously clustered pairs
method, where the cumulative density frequency plot exhibits a
flat middle portion for the true number of k92 and clusters are at
least consisted of 3 samples (Supplementary Fig. 3B, C, G, H).

This method led to identification of 3 and 2 clusters for LUAD
and LUSC respectively, where each cluster had >0.8 cluster
consensus score indicating high stability of proteotypes (Supple-
mentary Fig. 3D, I)93.

Proteome hierarchical clustering. Proteome hierarchical clustering
was performed by using the subset of tumor (human) proteome
quantified in at least 70% of samples in the clustering (Figs. 4C
and 5A, B) and using the subset of stromal (mouse) proteome
quantified in at least 70% of samples in the clustering
(Fig. 7A–C). Protein expressions are log2 transformed and
z-score across respective samples. For sample (column-wise) and
protein (row-wise) clustering, Pearson correlation distance with
average linkage was used using Perseus software default
parameters.

Principal component and volcano analysis. Only a subset of tumor
proteome quantified in all samples were used for principal
component analysis. Only the two components with the highest
proportion of variance were picked for plotting the PCA plot
using Perseus software. Volcano analysis was performed for
proteins with detection in at least 70% of samples with indicated
FDR cut offs and s0= 0.1 using Perseus software.

Analysis of differentially expressed proteome and pathway.
Permutation-based FDR corrected two-tailed student’s t-test
(q-value < 0.05) between one subtype compared to others in that
histology type was performed on the entire proteome (human,
mouse and ambiguous) (Supplementary Data 2). These proteins
along with associated experimental expression and q-values were
inputted in ingenuity pathway analysis94. Resulting enriched
pathways (Supplementary Data 2) were further filtered based on
significance p-value < 0.05 and activity score as determined by
IPA z-score > or <0 (Figs. 6A, B and 8E).

Gene set score analysis. The gene set score of each pathway was
calculated by averaging the z-score value of all proteins that
enriched for the pathway for that sample, these values could then
be presented in heatmap format to show the expression pathway
per sample (Fig. 6A, B and 8E).

Phosphoproteome and pathway. A total of 564 and 484 pY sites
were quantified in LUAD and LUSC samples, respectively. Tyr-
osine phosphorylation was analyzed in a supervised manner for
each proteotype. pY signals for each pY site were divided by the
maximum signal measured for that site to present the values in a
relative manner compared to the maximum value of 1. Then, the
average of relative values for each pY site was used for supervised
clustering according to proteotypes. Phosphopeptides sig-
nificantly different by two-tailed student t-test (p-value < 0.05) in
one proteotype compared to the others were determined, and
used for Ingenuity Pathway Analysis (Supplementary Data 3)94.

Methods
The University Health Network (UHN) Human Research Ethics (09-0510-T) and
Animal Care (AUP603 for model establishment and AUP743 for drug study)
Committees approved this study protocol. Animal care followed the guidelines of
UHN Research Institutes’ policies and the guidelines of the Canadian Council on
Animal Care, and consistent with ARRIVE guidelines for study design.

Human subjects. A total of 500 patients were included in this study. The number
of NSCLC cases was determined by specimens that had excess tissues for research
between 2005 and 2014. Tumor specimens were collected at the Toronto General
Hospital (TGH-UHN) with informed consent from participants using The Uni-
versity Health Network (UHN) Human Research Ethics protocol 09-0510-T.
Human research followed the guidelines of Canada Tri-Council Policy Statement,
in accordance with Declaration of Helsinki (www.pre.ethics.gc.ca.). No participant
compensation was provided (Supplementary Tables 1, 2, 8).
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Clinical data annotation. Clinical data can be accessed and downloaded from
cBioPortal. The demographics, histopathological, stage and relevant clinical
information is summarized in Supplementary Table 2 and Supplementary Data 1.

Generation of PDXs in NOD-SCID mice. As previously described26, patient
tumor samples were divided into 2 mm pieces, mixed with 4 °C 10% Matrigel and
implanted into the subcutaneous flank tissue of male, age 4–6 weeks NOD.CB17-
Prkdcscid (NOD-SCID) mice. Mouse replicates in PDX studies were stratified
randomly to each group, to equally distribute tumor volumes and mouse body
weights. Tumor volume was calculated (V=W2 × L/2) from twice weekly mea-
surements for the length (L, largest diameter) and its perpendicular width (W),
including skin fold using a caliper. A humane endpoint was reached at tumor size
1.5 cm in largest diameter; this was not exceeded in this study. Mice were eutha-
nized and tumors are implanted/passaged serially into new NOD-SCID mice once
they reach 1–1.5 cm in diameter, as measured with calipers. This process was
repeated at least three times to establish a stable PDX. Harvested tumors were
divided equally for cryopreservation, quick freeze in liquid nitrogen and prepara-
tion of formalin‐fixed paraffin‐embedded tissue blocks. Comprehensive profiling of
PDXs was conducted from early passages 2–5.

PDX drug screens. PDX drug screens were performed using banked cryopreserved
PDX fragments that were thawed and implanted in donor male, age 4–6 weeks
NOD-SCID mice. (at passages <10), tumors were harvested at full size, and frag-
ments were generated and implanted in male mouse replicates for drug treatments.
When tumor volume replicates averaged 200 mm3, mice were randomized (n= 6/
group) for treatment with vehicle or anticancer agents. The pan-FGFR1 tyrosine
kinase inhibitor (TKI) BGJ398 was administered at 25 mg/kg/day, oral gavage, in a
suspension in PEG300/D5W (2:1, v/v) (0.5% hydroxyethyl-cellulose, 0.2% Tween
80, 99.3% distilled water). Afatinib is an irreversible EGFR/ErbB2/ErbB4 tyrosine
kinase inhibitor administered at 25 mg/kg/day, oral gavage, as a suspension in 0.5%
(w/v) methylcellulose suspension-0.4% Tween 80. Tumor sizes and mouse body
weights were measured twice weekly. Research grade drugs were purchased from
UHN-Shanghai Research & Development Co., Ltd (Shanghai, China).

Whole-exome sequencing sample preparation and data acquisition. PDXs
profiled for whole-exome sequencing included 122 models. For all DNA-based
profiling, DNA was isolated using a gSYNC™ DNA Extraction Kit (FroggaBio Cat#
GS100) following user guide directions. In brief, flash frozen tumor up to 25 mg of
fragments were dissociated with 200 μL of GST Buffer and 20 μL of Proteinase K
then vortex thoroughly and incubated at 60 °C overnight. This extraction method
was based on using a DNA spin column with buffers and centrifugation to remove
impurities, and finally eluting the purified DNA. The exome capture was per-
formed using the Agilent SureSelect Human All Exon 50Mb kit (Agilent Tech-
nologies, Santa Clara, CA) according to the manufacturer’s instructions. The
captured DNA of PDX models and their matched normal were sequenced on the
Illumina HiSeq 2000 platform (Illumina, San Diego,CA), and paired-end sequences
(2 × 101 bp) were generated for each sample.

DNA methylation sample preparation and data acquisition. PDXs profiled for
DNA methylation included 102 models. The Illumina Infinium HumanMethyla-
tion450k BeadChip array (Illumina, San Diego, CA, USA), which includes 485,512
CpG sites, was used for the interrogation of methylation profiles of PDX models.
Genomic DNA for each PDX was treated with sodium bisulfite using EZ DNA
Methylation Kit (Zymo, Irvine, CA). The bisulfite-converted DNA sample were
amplified, enzymatic fragmented and processed as specified by the manufacturer’s
instructions. The hybridized BeadArrays are scanned by the Illumina iScan array
scanner and then, raw intensities data (.idat) of both cy3 and cy5 were obtained
after scanning.

Gene expression sample preparation and data acquisition. PDXs profiled for
gene expression included 92 models. In brief as directed by user guide, RNA was
isolated from liquid nitrogen flash frozen PDX tumor fragments using TRIzol RNA
Isolation Reagents (Thermo Fisher Cat# 15596026). Fragments were lysed and
homogenized in TRIzol™ Reagent using 1 mL of TRIzol™ Reagent per 50–100 mg of
tissue and incubated for 5 min to allow complete dissociation of the nucleoproteins
complex. Then mixed with chloroform, 0.2 mL per 1 mL of TRIzol™ Reagent, and
incubated and centrifuged for phase separation. The aqueous phase containing
RNA was transferred to a new tube with 0.5 mL of isopropanol per 1 mL of TRIzol™
reagent used for lysis. The pellet was collected after centrifugation and resuspended
in 1 mL of 75% ethanol per 1 mL of TRIzol™ reagent used for lysis and pelleted and
resuspended in 20–50 µL of RNase-free water. RNA cleanup was performed using a
RNeasy Mini Kit (Qiagen Cat No. 74104) as directed in user guide. RNA of PDXs
was labeled and amplified using the human-specific Illumina Whole-Genome Gene
Expression Direct Hybridization or Whole-Genome DASL assay kit according to
the manufacturer’s protocol (Illumina). The labeled samples were hybridized to
HumanHT-12 v4.0 Gene Expression BeadChips, incubated at 58 °C for hybridi-
zation for 18 h. The BeadChips were then washed and stained as per the Illumina
protocol and scanned on the iScan (Illumina).

Copy number analysis sample preparation and data acquisition. PDXs profiled
for copy number variation included 112 models. DNA was extracted as described
above from each PDX or germline sample (their matched patient normal) was
hybridized to Illumina HumanOmni1-Quad or Infinium Omni2.5–8 BeadChips.
DNA samples were amplified, fragmented, and precipitated according to the
manufacturer’s protocol (Illumina). The precipitated DNA were hybridized
BeadChips, incubated at 48 °C for 18 h. The BeadChips were washed and the
hybridized oligos were subjected to single-base extension as per the Illumina
protocol and scanned on the iScan (Illumina).

Proteomic and phosphoproteomic sample preparation and data acquisition
Protein extraction and trypsinization. PDXs profiled at the proteome level com-
prised 133 models, which included 2 technical replicates, a model with 2 different
passages and 2 non-stable models. NSCLC PDX samples were weighted then sliced
thinly. Tumors were lysed using a 0.02 mL lysis buffer per mg of wet tissue (0.5 M
Tris pH 8.0, 50 mM NaCl, 2% SDS, 1% NP-40, 1% Triton X-100, 40 mM chlor-
oacetamide, 10 mM TCEP, 5 mM EDTA) and then were sonicated for 15 s twice.
The lysed samples were then heated at 95 °C for 20 min at 1000 rpm, then cooled to
room temperature for 10 min. To remove cellular debris, samples were spun at
20,000 × g for 5 min at 18 °C95. Protein concentration of the supernatant was
measured by tryptophan fluorescence assay96. Proteins were extracted using
methanol-chloroform protein precipitation and digested overnight at 37 °C with
1 μg trypsin/Lys-C mixture (Promega, Catalog No: V5073)97.

TMT labeling of peptides. After overnight digestion, peptide concentration was
measured using nanodrop at absorbance of 280 nm. As per manufacturer’s
instruction, 50 μg of each sample was labeled with 10-plex tandem mass tag
reagents (ThermoFisher Scientific, Catalog: 90110). Eight PDX samples were
grouped randomly and individually labeled with isobaric compounds (TMT10-
127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C), while two pooled mixtures of
all PDX samples were labeled with TMT10-126 or 131, to serve as normalization
controls95. Excess TMT label was quenched with 8% ammonium hydroxide prior
to TMT-labeled samples being pooled at a 1:1:1:1:1:1:1:1:1:1 ratio. The pooled
sample was then dried by vacuum centrifugation.

Fractionation by HPLC. The dried pooled sample was resuspended using 20 μL of
ddH2O and was fractionated to 60 fractions using high pH reversed phase HPLC at
4 °C with a flow rate of 1 mL/min using Waters 1525 binary HPLC pump98. The 60
fractions were then dried with vacuum centrifugation and resuspended in 100 µL of
0.1% formic acid and transferred to a 96-well plate. Then each fraction was loaded
into Evotip C18 trap column as per manufacturer’s instruction. Samples were
injected into Orbitrap Fusion Lumos MS using an Evosep One instrument using
30 samples per day setting.

Total proteome MS acquisition settings. For MS1 acquisition parameters, only ions
with 2–6 charge states were accepted. MS1 acquisition resolution was 120,000 with
automatic gain control (AGC) target value of 4 × 105 and maximum ion injection
time (IT) of 50ms for scan range of 550–1800m/z. For MS2, ions were isolated in
quadrupole by an isolation width of 2m/z. MS2 scans were performed in the linear
ion trap with maximum ion IT of 50ms, AGC target value of 1 × 104, and nor-
malized collisional energy (NCE) of 35 using the turbo scan rate. For MS3 scans, ions
were isolated in the quadrupole with an isolation width of 2m/z and MultiNotch
synchronous precursor selection MS3 scanning for TMT tags was used. Higher-
energy collisional dissociation activation was used for fragmentation of ions with
NCE of 65. Scans were then measured in the orbitrap using a 50,000 resolution for
scan range of 100–500m/z with AGC target value of 1 × 105, and maximum ion IT of
50ms. Dynamic exclusion of 65 s was used to permit more identification of peptides.

Tandem phospoho-tyrosine (pY) peptide enrichment by covalent bound
GST_Src_SH2 superbinder (sSH2). PDXs profiled at the pY level comprised 106
models which included 2 non-stable models. Total peptides were extracted as
described in total proteomics step and quantified by Pierce peptide quantification
kit (Pierce, Catalog No: 23275) according to manufacturer’s instructions. One mg
peptide of each sample was dried after trypsin digestion (Speed Vacuum) and
dissolved in 200 µL of dissolving buffer from Thermo High-Select™ Fe-NTA
Phosphopeptide Enrichment Kit. Phsopho-serine/threonine/tyrosine (pSTY) were
enriched according to manufacturer’s instructions. 95% of the final elution of pSTY
peptides were dried and dissolved in 500 μL of Affinity Purification (AP) buffer
(50 mM MOPS pH 7.2, 10 mM dibasic sodium phosphate, 50 mM NaCl). Fifty
micrograms of Src-SH2 superbinder was used to enrich phosphor-tyrosine peptides
according to our previous publication99. There were two improvements in the
current experiment compared with previous publication. The first is, instead of
using none-covalent bound His-Src-sSH2 fusion protein, GST-Src-sSH2 fusion
proteins were cross-linked to glutathione beads with dimethyl pimelimidate
(DMP). The second is using 60% of acetonitrile/0.1% trifluoroacetic acid39, instead
of 50 mM phenyl phosphate in AP buffer, to elute pY peptides from
SH2 superbinder beads. The enriched pY peptides were then dried, dissolved in
100 μL of 0.1% formic acid and divided onto two Evotip C18 trap column for MS/
MS analysis.
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MS analysis of pY peptide by CID and HCD-MS methods. pY peptides enriched
from PDX samples were analyzed by using an Orbitrap Fusion Lumos instrument.
Samples were loaded by using EVOSEP tips and analyzed with 44 min MS runs as
we have described previously98. Two separate LC-MS/MS runs were performed on
every sample, the first one collected collision-induced dissociation (CID)-MS/MS
spectra and the other one collected higher-energy collision dissociation (HCD)-
MS/MS spectra. The parameters used for MS data acquisition of CID-MS/MS and
HCD-MS/MS spectra were: (1) MS: top speed mode, cycle time= 3 s; scan range
(m/z)= 400–2000; resolution= 60,000; AGC target= 400,000; maximum injection
time= 100 ms; MS1 precursor selection range= 700–2000; included charge states
2–6; dynamic exclusion after n times, n= 1; dynamic exclusion duration= 10 s;
precursor priority=most intense; maximum intensity= 1E+ 20; minimum
intensity= 50,000; (2) CID-MS/MS: isolation mode= quadrupole; isolation win-
dow= 0.7; collision energy= 35%; detector type= Ion Trap; Ion Trap Scan
Rate= Rapid, AGC target= 10,000; maximum injection time= 35 ms; Multistage
Activation= True, Neutral loss mass = 97.9763; microscan= 1; (3) HCD-MS/MS:
isolation mode= quadrupole; isolation window= 0.7; collision energy= 30%;
stepped collision energy (%)= 5; detector type= orbitrap; resolution= 15,000;
AGC target= 50,000; maximum injection time= 35 ms; microscan= 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
PDX models are listed in the open global catalog of PDX models at the PDXFinder repository
(pdxfinder.org). PDX models generated in this study are available for research use with
institutional material transfer agreement. The mass spectrometry proteomics and
phosphotyrosine data generated in this study have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository100 with the dataset identifier PXD016579 for
total proteome and PXD016674 for phosphotyrosine. The gene expression data generated in
this study has been deposited to GEO with the dataset identifier of GSE166999. DNA
methylation data generated in this study has been deposited to EBI with the dataset identifier
of E-MTAB-10156 proteome. The raw whole-exome sequencing data generated in this study
are deposited to the European Genome-phenome Archive (https://ega-archive.org/) under
Dataset ID: EGAD00001008601. The data are available under restricted access due to laws to
protect the privacy of patients in alignment with University Health Network (UHN) Review
Ethics Board (REB) approvals and individual patient informed consent forms. Access to the
data can be obtained by qualified researchers as part of an academic or industry collaboration.
Requests should include a research proposal indicating the intended use of data and planned
analyses. Requests will be reviewed typically within two weeks by the UHN Data Access
Committee (DAC) and should be made by using the DAC ID: EGAC00001000912. There are
no time constraints on data access. Minimal essential PDX model characteristics have been
deposited to the PDX Finder repository (https://www.pdxfinder.org/source/PMLB/). The
publicly available DepMap sensitivity data28,29 used in this study are available through
DepMap portal [https://depmap.org/portal/download/]. The publicly available data generated
by Gillette et al.12 is available via CPTAC data portal [https://cptac-data-portal.georgetown.
edu/cptac/s/S056]. The publicly available data generated by Stewart et al.14 was deposited to
the ProteomeXchange Consortium via the PRIDE partner repository 79 with the dataset
identifier PXD010429. The publicly available database dbSNP (version 138 flagged) can be
found at https://ftp.ncbi.nlm.nih.gov/snp/, ExAC03 can be found at https://gnomad.
broadinstitute.org/ and ESP6500 can be found at https://evs.gs.washington.edu/EVS/. The
remaining data are available within the Article, Supplementary Information or Source Data
file. Source data are provided with this paper.
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