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Genome-wide mutational signatures in low-
coverage whole genome sequencing of cell-
free DNA

Jonathan C. M. Wan 1, Dennis Stephens1, Lingqi Luo1, James R. White 1,2,
Caitlin M. Stewart 1,4,5, Benoît Rousseau 1, Dana W. Y. Tsui3,6 &
Luis A. Diaz Jr. 1

Mutational signatures accumulate in somatic cells as an admixture of
endogenous and exogenous processes that occur during an individual’s
lifetime. Since dividing cells release cell-free DNA (cfDNA) fragments into
the circulation, we hypothesize that plasma cfDNA might reflect muta-
tional signatures. Point mutations in plasma whole genome sequencing
(WGS) are challenging to identify through conventional mutation calling
due to low sequencing coverage and low mutant allele fractions. In this
proof of concept study of plasma WGS at 0.3–1.5x coverage from 215
patients and 227 healthy individuals, we show that both pathological and
physiological mutational signatures may be identified in plasma. By
applying machine learning to mutation profiles, patients with stage I-IV
cancer can be distinguished from healthy individuals with an Area Under
the Curve of 0.96. Interrogating mutational processes in plasma may
enable earlier cancer detection, and might enable the assessment of
cancer risk and etiology.

Earlier detection of cancer improves the likelihood of eligibility for
effective treatments such as surgery, resulting in a greater chance of
survival, reduced morbidity, and less expensive treatment1. Liquid
biopsies are increasingly being utilized for non-invasive cancer
detection, prognostication, and treatment monitoring2. Current
methods for early detection using circulating tumor DNA (ctDNA)
detect features of the tumor in plasma, which can be linked to the
etiology and type of cancer, such as point mutations3,4, copy number
alterations5,6 ormethylationpatterns7. Other features in plasmamay be
related to the biology of cfDNA, such as fragmentation patterns of
cfDNA from cancer cells8,9.

Mutational processes are ongoing in somatic cells throughout the
lifetimeof an individual10,11. Endogenous processes (such as aging), and
exogenous exposures (such as smoking) both cause distinct

mutational signatures in the genomes of somatic cells12,13. Since
dividing cells release DNA fragments into the circulation as cell-free
DNA (cfDNA)2,14, withmultiple tissues represented15, cfDNAmay reflect
mutational signatures of somatic tissues. By applying a personalized
sequencing method, it was shown that despite the limited depth, low-
coverageWGScontains pointmutation signals atpatient-specific loci16.

Conventionally, somatic mutation signature extraction from
cancer tissue whole-genome sequencing (WGS) has been performed
on mutation calls from matched tumor and normal samples at mod-
erate sequencing depth12,17. In low-coverage WGS data, somatic and
germline mutations are likely to be indistinguishable by allele fraction
alone, precluding the use of per-locus allele fraction-based germline
filters16,18. Conventional mutation calling approaches, which require
multiplemutant reads to support the call19, may not be used. Evenwith
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high sequencing depths of WGS, dilution of mutant DNA in wild-type
cfDNA would still result in many true mutation loci being observed
with one mutant read at best when ctDNA fractions are low16,20. This is
due to the long tail of low allele fractionmutations in the tumor being
occasionally sampled in plasma.

Here, we show an approach called Pointy, which enables the
analysis of genome-wide mutational signatures from low-coverage
plasma WGS (0.3–1.5× depth). We demonstrate single-base sub-
stitution (SBS) signature profiling and sample classification using a
combination of signature extraction and machine learning (Fig. 1).
Germline sequencing is not performed to maximize scalability,
and we implement methods to mitigate technical and biological
noise. We identify mutational signatures in the plasma of indivi-
duals with and without cancer, which may be leveraged for early
cancer detection.

Results
Characterizing and normalizing Pointy data
Wedeveloped apipeline to extractpointmutations from low-coverage
plasma WGS called Pointy (“Methods” and Supplementary Fig. 1). We
first explored a cohort of patients with stage IV colorectal cancer (CRC,
n = 16), many of whom had mismatch repair deficiency (MMR-D) and/
or microsatellite instability21 (MSI). Healthy controls from the same
cohort were used (n = 19). Each library was sequenced to a median of
31.0 × 106 reads, with a median duplication rate of 0.37%. Data were
downsampled to a target of 0.3× (10M paired-end reads), which
resulted in a median of 10.0 × 106 reads. Samples with fewer than 90%
of the target number of reads were not evaluated (n = 2). A median of
79.3%of genomic positions had zero coverage, and 14%of bases had 1×
coverage, equating to a mean coverage of 0.28× (95% confidence
interval (CI) 0.26–0.29×, Supplementary Fig. 2a).

In this study, error-suppression by read collapsing of duplicates is
limited by the low duplication rate of WGS (<0.5% duplication rate,
Supplementary Fig. 2b). Instead, we utilized error-suppression filters
based on previous work16,20, as follows: minimum base quality (BQ)
threshold of 30, mean BQ threshold of 30, requiring mutations to be
present in both read 1 (R1) and read 2 (R2), and mapping quality (MQ)
threshold of 60. After applying these filters, amean of 9886mutations
per sample was retained, prior to SNP filtering (95% CI 8782–10,990,
Supplementary Fig. 2c).

The samples from the PGDX cohort were sequenced in two bat-
ches from the same sequencing instrument, so we explored data from
healthy individuals for batch effects. In healthy samples, there was no
significant difference in the mean number of mutations between bat-
ches (9049 vs. 10,089, p =0.47, two-sided Wilcoxon test, Supple-
mentary Fig. 3a). However, Principal Component Analysis (PCA) of SBS
profiles revealed a difference in mutation profile (Supplementary
Fig. 3b), which may arise from differences in GC-bias between
sequencing runs (Supplementary Fig. 3c). We identified a significant
difference in the mean contribution of PC2 per sample (unadjusted
p =0.022, two-sided Wilcoxon test, Supplementary Fig. 3d). The lar-
gest contributors to PC2 were contexts at the extremes of GC content
(Supplementary Fig. 3e). Therefore, the GC bias for each sample was
determined, as was the average GC profile of the sequencing batch,
which was combined to normalize the SBS profile of each sample
(“Methods”). This approach is analogous to GC-correction methods
used to correct whole-genome copy-number5,22 or fragmentation
profiles9. After GC-correction, there were no significant differences in
any PC between the two sequencing runs (unadjusted p >0.05, two-
sidedWilcoxon test, Supplementary Fig. 3f). In Supplementary Fig. 3g,
we show high cosine similarities between samples even without GC-
correction, which increased significantly following GC-correction
(0.995 vs 0.999, p < 2.2 × 10−16, two-sided Wilcoxon test). Differences
in SBS profile with and without GC-correction are shown in Supple-
mentary Fig. 3h.

Following GC-bias normalization, cancer patient plasma samples
and healthy controls showed SBS mutation profiles that had a cosine
similarity of 0.999 (95% CI 0.999–0.999, Supplementary Fig. 4a),
although this included SNPs. Samples from cancer patients showed
significantly more point-mutated reads compared to healthy controls
(median 11,786, vs. 9322, p = 0.028, two-sided Wilcoxon test, Supple-
mentary Fig. 4b).

Detection of mutational signatures in CRC plasma
Mutational signatures were fitted to mutation profiles after back-
ground subtraction (“Methods”), i.e. for each sample, for each SBS
context, the median number of mutations in controls was subtracted
(“Methods”). Sequencing artifact signatures were included in the
database used for signature fitting to minimize the misattribution of
mutations to biologically relevant signatures.

We assessed the sensitivity and specificity of signature fitting in
silico. Between 10 and 1000 mutations belonging to each SBS sig-
nature were spiked into a randomly selected control sample, repeated
100 times (Supplementary Methods). The contribution of each sig-
nature was assessed pre- and post-spike. Across all SBS signatures, the
mean sensitivity of spiking was 38% for 10mutations and 93% for 1000
mutations (Supplementary Fig. 5a). An example control SBS profile is
shown following each spike-in (Supplementary Fig. 5b). Signatures
whose profiles were concentrated in few SBS contexts, such as SBS1
and SBS2, were more efficiently fitted to than flat signatures such as
SBS5 (Supplementary Fig. 5c).

To assess the performance of signature recovery in the setting of
multiple signatures, we iteratively spiked in signatures and simulta-
neously spiked in SBS1 at a ratio of 1:1 or 10:1 (Supplementary Fig. 5d
and Supplementary Methods). At a 1:1 ratio of spike-in of both sig-
natures, there was no impact on signature fitting. However, when 10×

PGDX
Stage IV colorectal cancer 
and healthy 
(Georgiadis et al. 2019)

DELFI
Stage I-IV multiple cancer
types and healthy
(Cristiano et al., 2019)

Plasma
WGS

Machine 
learning
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Signature
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Classification

Pointy overview 
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and library
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Point mutation
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Fig. 1 | Study outline and characterization of Pointy data. cfDNA libraries were
generated from plasma samples from patients with cancer and healthy individuals
from two independent cohorts. Whole-genome sequencing (WGS) was performed
to 0.3–1.5× coverage (Supplementary Data 1). Mutational signatures were extracted
from these data, enabling signatureprofiling and sample classification (“Methods”),
tested in two independent cohorts.
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more SBS1 mutations were spiked in compared to the signature of
interest, the rate of on-target signature fitting was reduced in multiple
signatures (Benjamini–Hochberg corrected p < 0.05), especially in
signatures with low cosine similarity to SBS1 (linear regression
p = 1.5 × 10−9). In contrast, signatureswith high similarity to SBS1 gained
mutations directly from SBS1 (q >0.05). We show the extent of false
positive signature fitting in the context of a singly spiked signature in
Supplementary Fig. 6, where the proportion of mutations that were
misattributed ranged from 1.7% with 10mutations spiked, to 0.1% with
1000 mutations spiked.

In CRC samples, the largest contributor to plasma Pointy sig-
natures were SBS1 (aging) and SBS54 (probable SNP contamination),
which comprised a median of 339 (13.0%) and 379 (15.0%) mutations,
respectively (Fig. 2a and Supplementary Data 2). Compared to healthy
individuals, CRC patient plasma showed significantly greater con-
tributions of multiple signatures, including SBS1 and SBS21
(Benjamini–Hochberg (BH) adjusted p = 0.036, one-sided Wilcoxon
test, Fig. 2a). The latter is consistent with previously detected micro-
satellite instability (MSI) in these patients21.

Given the role of aging and MSI in this CRC cohort, we studied
aging and MSI signatures, including SBS1, SBS5, SBS20, and SBS21.
Both aging andMSI signatures had significantly higher contributions in
the plasma of patients with CRC (Fig. 2a, b), and remained significant
when iteratively downsampled to 10M reads 50 times (Supplementary
Fig. 7). We tested whether these plasma signature contributions cor-
related with both ctDNA fraction and tumor mutation burden (TMB).
ctDNA fraction was determined by ichorCNA5 and tumor mutation
burden was determined by targeted panel sequencing of plasma21.
Multiple aging and MSI-associated signatures showed a significant
correlation with ctDNA fraction (Fig. 2c) and TMB (adjusted
p ≤0.05, Fig. 2d).

To detect individual signatures per sample, signature detection
was performed (“Methods”). The healthy samples were used as a panel
of normals, with a threshold of 95% specificity for detection of each
signature. Aging signatures were detected in 10 out of 16 (62.5%)
patients, and MSI signatures in 11 out of 16 (69.0%, Fig. 2e). Patients
with MSI-H tumors had significantly greater SBS20 and SBS21 con-
tributions than controls, whereas patients with MSS tumors were non-
significantly different (Supplementary Fig. 8).

Signatures identified in CRC patient samples were compared
against signatures fitted to targeted sequencing mutation calls on the
same samples21 (SupplementaryMethods). Both approaches identified
aging and MSI signatures, with 77.6% agreement across all signatures
(Supplementary Fig. 9). Targeted sequencing identified SBS15 (Sup-
plementary Fig. 9a), which was not detected with 95% specificity in
Pointy data. We suggest that SBS15 mutations may have been mis-
attributed to SBS1 given their high cosine similarity (Supplementary
Fig. 9b), combinedwith the relatively low sensitivity of Pointy for SBS15
from spike-in benchmarking (Supplementary Fig. 5a).When the cluster
of similar signatures identified in Supplementary Fig. 9b (namely, SBS1
and SBS6) were excluded from signature fitting, SBS15 could be
observed (Supplementary Fig. 9c–e). Germline subtraction and muta-
tion calling would likely improve the resolution of signature profiling,
although this would conventionally require 1–2 orders of magnitude
greater sequencing17,20.

SNP subtraction and signature fitting. Signature fitting was repeated
on the same Pointy data with SNP subtraction. Following SNP sub-
traction, SBS1´ (SBS1´ = SBS1 with SNP subtraction) and SBS5´ were
assigned amedian of zeromutations each (Supplementary Fig. 10a and
Supplementary Data 3). We hypothesized that the SNP database con-
tained aging mutations, which had been subtracted from Pointy data.

To assess the bias introduced by SNP-subtraction, the SBS profile
of the aggregated SNPs from the 1000 Genomes database23 was gen-
erated (Supplementary Fig. 10b). We confirmed that the majority

of SNPs fitted SBS1 (12.1%) and SBS5 (63.2%, Supplementary Fig. 10c).
Despite the mutation profile bias introduced by SNP subtraction,
removal of mutated reads at SNP sites reduced the cosine similarity
between the SBS profiles of cases and controls to a mean of 0.982
using bootstrapping with 50 iterations (95% CI 0.982–0.983, Supple-
mentary Fig. 10d), compared to 0.999 when SNPs were retained (95%
CI 0.999–0.999, Supplementary Fig. 4a). Together, these data suggest
that SNP-subtracted data may be more suited to cancer classification,
whereas SNP-retained data may provide a less biased profile of fitted
signatures.

Colorectal cancer detection
We next sought to classify samples into cancer vs. healthy based on
their SBSmutation profile. Tomaximize the signal-to-noise ratio, SNPs
were subtracted. Then, SBS´ (SNP-subtracted) mutation profiles
underwent dimensionality reduction using Principal Component
Analysis (PCA), and the principal components of SBS profiles (analo-
gous to mutational signatures) were used for machine learning clas-
sification (Methods).

PCA showed separation of cases and controls based on two
Principal Components, particularly in PC2 (Fig. 3a). As SNP-subtracted
data were used, few mutations were fitted to aging signatures due to
the bias introduced by SNP-subtraction (Supplementary Fig. 10a). PC1
and PC2 from SNP-subtracted data were both significantly correlated
with ctDNA fraction (p <0.0076, Fig. 3b). The signature contributions
to PC1 and PC2 were assessed, which showed SBS8´ was the greatest
contributor to PC2 (Fig. 3c). The SBS1 signature contribution was sig-
nificantly correlated with SBS8´ (Pearson r = 0.63, p = 5.6 × 10−5,
Fig. 3d), suggesting aging mutations were being fitted to SBS8´ when
SNPs were subtracted.

To classify samples as either cancer or healthy, we used SBS
mutation profiles as input to a machine learningmodel. Four methods
were tested, including xgboost24, random forest (RF), support vector
machine (SVM), and logistic regression. For each condition, nested
ten-fold cross-validation was performed, repeated 10 times (“Meth-
ods”). First, we assessed whether raw SNP-subtracted 96-SBS profiles
could be used as input to the xgboost model, or if dimensionality
should be reduced. Raw mutation input resulted in an AUC of 0.82
(95% CI 0.71–0.90, Supplementary Fig. 11a), whereas PCA-transformed
input gave an AUC of 0.92 (95% CI 0.88–0.97, Supplementary Fig. 11b).
Across all models, with SNPs subtracted, a median AUC of 0.96 was
reached (range 0.92–0.98, Supplementary Fig. 11b–e), with
the RF model performing best (AUC 0.98, 95% CI 0.90–1.00). Adding
ichor ctDNA fraction to the model improved the AUC of the RF model
to 1.00 (95% CI 1.00–1.00, Supplementary Fig. 11f), which was selected
for subsequent analyses. We confirmed this result with ten-fold cross-
validation, repeated 500 times (AUC 0.99, 95% CI 0.95–1.00, Fig. 3e).
To assess the effect of downsampling, we iteratively downsampled the
data to 10M reads 50 times, confirming a mean AUC of 0.97 (95% CI
0.90–1.00, Supplementary Fig. 11g).

To confirm the enhanced signal-to-noise ratio following removal
of SNPs from Pointy data, classification was performed using RF with
SNPs retained, which showed an AUC of 0.65 (95% CI 0.53–0.76, Sup-
plementary Fig. 11h). We also quantified the effect of error-suppres-
sion, i.e., requiring mutations to be supported in both F and R mate
pairs vs. being supported in either ForRonly. This showeda significant
increase in AUC associated with error suppression (0.93 without vs.
0.98 with error-suppression, p =0.004, Wilcoxon test, Supplementary
Fig. 11d, i). Therefore, for subsequent analyses for cancer detection, we
processed data by using (a) SNP-subtraction, (b) PC-transformation,
(c) error-suppression, and (d) detection using an RF model
(“Methods”).

Signature detection in plasma across multiple cancer types. We
next applied Pointy to the Cristiano et al.9 plasmaWGS dataset to test
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this approach across multiple cancer types. This cohort consisted of
stage I–IV NSCLC (n = 37), stage I–III breast cancer (n = 48), stage I–IV
CRC (n = 27), stage I–IV, 0 and X gastric cancer (n = 27), stages I, III, and
IV ovarian cancer (n = 26), stage I–III pancreatic cancer (n = 34), and
206 individualswithout cancer. Sampleswereanalyzedacrossmultiple

sequencers (Supplementary Fig. 12a), which showed batch differences
in SBS profile in healthy individuals despite correction for GC-bias
(Supplementary Fig. 12b). Therefore, cases were compared against
controls from the same sequencer. Data were processed similarly to
the previous cohort, with downsampling to 10M reads.
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Fig. 2 | Signature profiling in stage IV colorectal cancer (CRC). a The number of
mutations fitted to each signature is shown for plasma WGS data from healthy
controls (n = 19, shown in red) and individuals with stage IV CRC (n = 16, shown in
blue). Background subtraction was performed, and SNPs were retained (“Meth-
ods”). The potential etiology of each signature is listed12,45. Boxplots represent the
median, upper and lower quartiles and whiskers indicate 1.5× IQR. One-sided Wil-
coxon tests were performed, and Benjamini–Hochberg (BH)-corrected p values (q)
are shown. APOBEC apolipoprotein B mRNA-editing enzyme. b Boxplots of aging
and MSI signature contributions in healthy individuals (n = 19) and patients with
CRC (n = 16). Mutation counts are background-subtracted (“Methods”). One-sided
Wilcoxon tests were performed, and adjusted p values (q) are shown. Boxplots
represent the median, upper and lower quartiles, and whiskers indicate 1.5× IQR.
c One-sided Pearson correlations between tumor fraction and background-

subtracted mutation count for aging and MSI signatures are shown for healthy
individuals (n = 19, shown in red) and patients with CRC (n = 16, shown in blue).
Adjusted p values (q) are shown. The gray shaded area indicates the 95% CI of the
fitted linear model. d One-sided Pearson correlations between tumor mutation
burden (TMB) andmutation countper signatureare shown for eachpatient (n = 16).
Adjusted p values (q) are shown. The gray shaded area indicates the 95% CI of the
fitted linear model. e Heatmap of selected aging and MSI signatures detected in
CRC plasma samples with 95% specificity (n = 16, “Methods”). Detected signatures
in each sample are indicated in red, non-detected signatures are shown in blue.
Samples are annotated with ichorCNA ctDNA fraction andmicrosatellite instability
status (MSI)21. Source data are provided as a Source data file. MSS microsatellite
stable.
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Signaturefittingwasperformedwith SNPs retained, as before, and
all signature contributions are shown in Supplementary Data 4. Sig-
natures previously identified in tumors by Alexandrov et al.12 for each
cancer type were used for signature detection with 95% specificity.
Across the cohort, the proportion of patients with ≥1 signature

detected ranged from 0.85 in NSCLC to 0.38 in pancreatic cancer
(bootstrapped median, 100 iterations, Fig. 4a). By stage, the rate of
detection of ≥1 signature ranged from 0.70 in stage I disease to 0.75 in
stage IV disease (bootstrappedmedian, 100 iterations, Fig. 4b). Across
all cancer types tested, none showed a significant correlation between

Fig. 3 | Cancer detection in stage IV colorectal cancer (CRC). a SNP-subtracted
mutation profiles from 0.3× WGS of plasma from healthy individuals (n = 19) and
patients with stage IV CRC (n = 16) were used as input for Principal Component
Analysis (PCA).Healthy and cancer samples are shown in red andblue, respectively.
PC principal component. b PC1 and PC2 were correlated against ctDNA fraction
determinedby ichorCNA.Both PCs showed significant correlation (PC1, p =0.0043;
PC2, p =0.0076, two-sided Pearson correlation). Healthy and cancer samples are
shown in red and blue, respectively. The gray shaded area indicates the 95% con-
fidence interval of the fitted linearmodel. c The signature contributions to PC1 and
PC2 were assessed by fitting signatures to the SBS profile of each PC. Signature
contributions to each PC are shown as proportions. SBSn´ indicates SNP-

subtractedmutation data fitted to SBSn, where n is an integer. PC1 is shown in red,
PC2 is shown in blue. d In samples from healthy individuals (n = 19) and patients
with stage IV CRC (n = 16), SBS1 contribution was significantly correlated with
SBS8´ (p = 5.6 × 10−5, two-sided Pearson correlation). Healthy and cancer samples
are shown in red and blue, respectively. The gray shaded area indicates the 95%
confidence interval of the fitted linear model. e A random forest model was used to
classify cancer samples (n = 16) vs. healthy (n = 19) using SNP-subtracted mutation
profiles. Ten-fold nested cross-validation repeated 500 times was used. Each
iteration is shown. A Receiver Operating Characteristic curve is shown (AUC 0.99,
95% CI 0.95–1.00). Source data are provided as a Source data file. AUC area under
the curve, CV cross-validation.
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ichorCNA ctDNA fraction and the total number of plasma mutations
following correction for multiple testing (Supplementary Fig. 12c).
However, this correlation is limited by the ability to quantify ctDNA
fractions in this cohort: only amedian of 11.4%of sampleswasdetected
using ichorCNA with a 95% specificity threshold.

In patients with stage I–IV colorectal cancer, plasma signatures
were detected in 21 out of 27 patients (78%, Fig. 4c). Aging signatures

were detected in 12 (44%), APOBEC signatures in 14 (51%), and MSI
signatures in 11 out of 27patients (41%). In stage I–IVNSCLC, signatures
known to be associated with lung cancer12 and tobacco exposure18

were assessed. APOBEC signatures were the most prevalent signature
detected (in 24 out of 37 samples, 65%), followedby aging (21 out of 37,
57%, Fig. 4d). SBS4 was observed in 3 out of 37 samples (8%), all of
which were in stage IV disease. In patients with breast cancer, plasma

Fig. 4 | Signature profiling of the DELFI cohort. a Boxplots showing the pro-
portion of patients from the DELFI cohort (n = 199) with at least one signature
detected inplasma.Data are split by cancer type. Signatures relevant to each cancer
typewere assessed for detection with 95% specificity using 10M reads (“Methods”).
Data were bootstrapped with 100 iterations. Boxplots show the bootstrapped
median, upper and lower quartiles, and whiskers indicate 1.5× IQR. Outliers are
shown as points. NSCLC non-small cell lung cancer. b Boxplots showing the pro-
portion of patients with stage I–IV disease from the DELFI cohort (n = 197) with at
least one signature detected in plasma are shown. Data are split by cancer stage.

Boxplots show the bootstrapped median, upper and lower quartiles, and whiskers
indicate 1.5× IQR.Outliers are shown aspoints. c–hHeatmapofdetected signatures
for stage I–IV colorectal cancer (n = 43), stage I–IV NSCLC (n = 27), I–III breast
cancer (n = 48), stage I–IV, 0, and X gastric cancer (n = 27), I–IV ovarian cancer
(n = 26), stage I–III pancreatic cancer (n = 34). Detected signatures within a sample
are shown in red, undetected signatures are shown in blue. Cancer type, disease
stage, and ctDNA fraction are annotated. Source data are provided as a Source
data file.

Article https://doi.org/10.1038/s41467-022-32598-1

Nature Communications |         (2022) 13:4953 6



signatures were detected in 67% (Fig. 4e); aging signatures were the
most frequent (27 out of 48, 56%), followed by APOBEC signatures (16
out of 48, 33%). In patients with gastric cancer, APOBEC signatures
were the most prevalent (11 out of 27, 41%), and evidence of MSI sig-
natures was found in 22% (Fig. 4f). Two patients with stage 0 disease
were included from theDELFI cohort, identifying anAPOBEC signature
in plasma in one case. In patients with stage I–IV ovarian cancer, aging
signatures were the most frequent (9 out of 36, 35%, Fig. 4g). In
patientswith stage I–III pancreatic cancer,APOBEC signatureswere the
most frequently detected (11 out of 35, 31%), althoughoverall detection
rates were low (Fig. 4h).

The ratio between short (<150 bp) to long mutant fragments
(>150 bp) was assessed as a quality control metric (Supplementary
Methods). Patients with CRC, NSCLC, and breast cancer showed
significantly shorter fragments than healthy controls (q < 0.005,
two-sided Wilcoxon test, Supplementary Fig. 12d). These findings
of short ctDNA fragments are consistent with the previous
literature8,25. cfDNA from patients with pancreatic and gastric
cancer were non-significantly longer in fragment size compared to
healthy individuals (q = 0.53). There was a significant correlation
between ichorCNA tumor fraction and short:long fragment ratio
(Pearson r = 0.41, p = 6.9 × 10−8).

Given the high prevalence of SBS2 mutations detected with 95%
specificity in ref. 9 sequencing data, we tested whether sequencing
noise might contribute to SBS2 mutations. To quantify noise, we uti-
lized the discordantmutations in the overlapping region of paired-end
sequencing reads in each sample (Supplementary Fig. 12e). Dis-
cordance in mutations between overlapping R1 and R2 reads likely
arise from sequencing noise20, whereas true mutations would be pre-
sent in both R1 and R2. The number of discordant mutations per
sample was constant across each of the SBS contexts of SBS2 in
patients with NSCLC compared to healthy individuals (q > 0.05, Sup-
plementary Fig. 12f), suggesting that SBS2 calls are unlikely to arise
from sequencing noise.

Aging signatures in healthy individuals
Given the predominance of aging/clock-like signatures in Pointy
data, we explored their relationship with chronological age in
healthy individuals. Individuals with cancer were not used for this
analysis to exclude tumor cells as a source of aging mutations. We

expected the magnitude of any relationship to be small based on
previous estimates of aging mutation rates18, combined with
recent evidence for aging signatures varying between tissues26.
One hundred and fifty-nine healthy individuals’ plasma data arising
from the same sequencer from ref. 9 study were used. Data were
downsampled to 50M reads (1.5×) WGS, GC-normalized, and sig-
natures fitted with SNPs retained. The age range of healthy indi-
viduals in this cohort was 49–75 years old, with a median age of 54
(Supplementary Data 5). Clock-like mutational signatures27 (SBS1
and SBS5) were compared against chronological age using SNP-
retained data. Both SBS1 and SBS5 showed a significant correlation
with biological age (p < 0.022, one-sided Pearson correla-
tion, Fig. 5).

To explore aging signals in other SBS signatures, signatures
that were significantly correlated with SBS1 were identified as
putative aging-correlated signatures (Supplementary Fig. 13a).
These additional SBS1-correlated signatures were then compared
against the chronological age of each healthy individual. Following
correction for multiple testing, 13 further signatures showed a
significant correlation with chronological age (q < 0.05, one-sided
Pearson correlation, Supplementary Fig. 13b). With SNP-
subtracted data, no mutations fitted to SBS1´ in this case due to
bias introduced by SNP-subtraction (Supplementary Fig. 14a).
Nonetheless, SBS2´, SBS30´, SBS33´, and SBS46´ mutation counts
were significantly correlated with age (q < 0.02, Supplementary
Fig. 14b). These data suggest that agingmutationsmay be detected
in the plasma of healthy individuals, both in SBS1 and SBS1-
correlated signatures, though the latter may be due to mis-
attribution of agingmutations to other signatures due to signature
similarity or biased fitting due to SNP removal.

Cancer classification across cancer types
For all cancer types in the individual batch from the cohort in ref. 9
cancer detection and classification to cancer types were performed
using SNP-subtracted SBS profiles. ichorCNA ctDNA fractions were
included in eachmodel, as before. Samples were downsampled to 25M
(0.75×) reads and nested ten-fold cross-validation was used, repeated
500 times (“Methods”). For overall detection across all cancer types
and stages (n = 199), an AUC of 0.96 was achieved (95% CI 0.94–0.98,
Fig. 6). Across all stages, the AUC values were 0.99 for NSCLC (95% CI
0.97–1.00), 0.99 for breast cancer (95% CI 0.98–1.00), 0.98 for CRC
(95%CI 0.96–0.99), 0.92 for gastric cancer (95%CI 0.84–0.98), 1.00 for
ovarian cancer (95% CI 0.99–1.00), 0.88 for pancreatic cancer (95% CI
0.81–0.94, Supplementary Fig. 15a–f). Detection rates of patients
across all stages was high (Supplementary Fig. 15g–j), as follows: stage
I, AUC 0.96 (95% CI 0.90–1.00); stage II, AUC 0.95 (95% CI 0.92–0.98);
stage III, AUC 0.97 (95% CI 0.93–0.99); stage IV, AUC 0.97 (95% CI
0.95–0.99). Detection rates by stage and cancer type with specificity
set to 95% are shown in Supplementary Fig. 15k.

Based on differences observed in PC1 and PC2 between samples
using PCA (Supplementary Fig. 15l), we assessed whether samples
could be classified into individual cancer types. We selected patient
samples sequenced on the same sequencer from the DELFI study
(n = 70, Supplementary Methods). Healthy samples were excluded.
Classification of individual cancer types achieved a median balanced
accuracy of 0.80 (95% CI 0.52–0.89).

Lastly, we assessed the generalizability of this approach across
cohorts, as patients with CRC were common to both cohorts (Sup-
plementary Methods). We identified evidence of batch effect affecting
SNP-subtractedmutation profiles of healthy controls between the two
studies (Supplementary Fig. 16a), despite using quality filters and GC-
bias correction. This may be due to differences in sample collection
location, as cases were collected across multiple academic sites, with
controls in the former study sourced from a commercial site9,21. To
mitigate this, we pooled healthy and CRC patient samples across the
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Fig. 5 | Profiling aging signatures in healthy individuals. One hundred and fifty-
nine healthy individuals’ plasma WGS data (50M reads) from the study in ref. 9
study, sequenced on the same machine, were used to explore the relationship
between aging signatures in plasma and chronological age. We correlated known
aging/clock-like27 signatures (SBS1 and SBS5) against age. Both signatures showed a
significant positive correlationwith age (one-sided Pearson test). Adjusted p values
(q) are shown. The gray shaded area indicates the 95% confidence interval of the
fitted linearmodel. All putative aging-correlated signatures are correlated with age
in Supplementary Figs. 13 and 14. Source data are provided as a Source data file.
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two studies in equal numbers to allow training acrossbatches. Ten-fold
nested CVwas performed using RF, resulting in anAUC of 0.93 (95%CI
0.87–0.96, Supplementary Fig. 16b).

Discussion
In this study, we identified mutational signatures in low-coverage
plasma WGS in two independent datasets. Both exogenous and
endogenousmutational processes were identified in plasma, including
aging, smoking, APOBEC, and MSI signatures. We demonstrated sen-
sitive cancer detection using these plasma signatures. Additionally, in
healthy individuals, an age-correlated mutational signature was iden-
tified in plasma, consistent with previous findings in human
tissues11,13,18,28.

This study has notable limitations. We carried out this analysis
with low-coverage WGS without matched germline samples, which
improves the scalability of the approach but limits sensitivity for sig-
nature detection. This is particularly relevant for signature fitting,
where the resolution for low-abundance and similar signatures was
hampered by noise. Performing germline sequencing with low cover-
age sequencing alone would be of limited benefit: if 0.3× WGS (10M
reads) were used to sequence a matched germline, only 13% of SNPs
would be identified in the germline with 1 mutant read each. Germline
calling conventionally requires >15× coverage17,20, representing a 1–2
order of magnitude increase in sequencing, and would also need to be
performed for healthy individuals to enable comparison. Future stu-
dies using deep sequencing in plasma and matched germline samples
are needed to fully characterize circulating signatures.

To mitigate noise, we leveraged machine learning for the classi-
fication of samples and used quality filters (“Methods”). Differences in
noise profile observed between control samples arising from

independent studies highlight the importance of validation of this
approach on a larger scale acrossmultiple cohorts. In the future, error-
suppression using read collapsing may be employed, for example, by
combining Pointy with laboratory methods to increase duplication
rates29. Evenwith error-suppression, plasma signature profilesmay still
appear different from tumor signature profiles due to the effects of
sampling error in plasma: low-frequency tumor mutational signatures
may be missed, similar to the lower representation of heterogeneous
tumor mutations in plasma30.

Although subject to technical and biological noise, this proof-of-
concept study of low-coverage plasma WGS provides an insight into
circulating signatures in cfDNA and their potential utility in oncology.
Deeper sequencing in future would enable the exploration of plasma
signatures with greater detail. These signatures, whose exposuresmay
be operative both before and during cancer development10,13, might be
used for earlier cancer detection. Sensitivity may be boosted further
through utilizing ensemble machine learning approaches that com-
bine mutational signatures with other parameters, such as cfDNA
fragmentation patterns, fragment ends31,32, and/or preferred end co-
ordinates33. Lastly, deeper exploration of circulating mutational sig-
natures in healthy individuals might enable the evaluation of cancer
risk and the etiology of cancers.

Methods
Patient and sample characteristics
In this study, cfDNA WGS data were analyzed from a total of 215
patients and 227 healthy control individuals across two cohorts (Sup-
plementaryData 1). For the initial cohort (PGDX), 16 patientswith stage
IV CRC provided plasma samples following written informed consent
for research use as part of clinical trial NCT01876511. This protocol was
approved by the Johns Hopkins Institutional Review Board21,34. Plasma
samples from 21 healthy control individuals were procured through
BioIVT21.

We next studied 199 patients and 206 healthy control individuals
from the DELFI9 dataset following approval from their Data Access
Committee (DAC). Samples in this cohort were obtained under Insti-
tutional Review Board approved protocols, with informed consent
from all participants for research use at participating institutions9.
Patients with the following cancer types were included from the DELFI
study: CRC (n = 27), gastric (n = 27), NSCLC (n = 37), ovarian (n = 26),
breast (n = 48), and pancreatic (n = 34). Only pre-treatment timepoints
from the DELFI study were used. For this proof-of-concept study, no
blinding or randomization was performed.

Plasma sample preparation and sequencing
Plasma whole-genome library preparation was performed as
described in refs. 21 and 9. Briefly, for both cohorts, cell-free DNA
(cfDNA) was extracted from plasma using the QIAamp Circulating
Nucleic Acid Kit. Libraries were prepared with 5–250 ng of cfDNA
using the NEBNext DNA Library Prep Kit. Whole-genome libraries
were sequenced using 100 bp paired-end runs on HiSeq 2000/
2500 sequencers (Illumina).

Whole-genome sequencing data processing
An overview of the pipeline used is shown in Supplementary
Fig. 1. Raw FASTQ files were trimmed using trimmomatic (version
0.39)35 in paired-end mode, with the following settings: all reads
were cropped to 100 bp (CROP: 100), Illumina sequencing adap-
tors were removed (ILLUMINACLIP: 2:30:10:2:keepBothReads),
leading and trailing 3 bp were trimmed if they were low quality
(LEADING: 3, TRAILING: 3), and reads with an average base quality
<30 were removed (AVGQUAL: 30). For public datasets, where
BAM files were provided, we converted each BAM file to FASTQ
using Bedtools (version 2.28.0) bamtofastq prior to running
trimmomatic.

False positive rate

10–fold nested CV, AUC = 0.96 (95% CI: 0.94–0.98)
T

ru
e 

po
si

tiv
e 

ra
te

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Fig. 6 | Cancer detection across cancer types. Receiver Operating Characteristic
(ROC) curve for sample classification from the DELFI cohort, which included 199
individuals with cancer and 206 healthy individuals. A random forest model using
ten-fold nested cross-validation with 500 iterations was used to classify samples as
either healthy or cancer. This cohort consisted of stage I–IV NSCLC (n = 27); stage
I–III breast cancer (n = 48); stage I–IV CRC (n = 27); stages I–IV, 0 and X gastric
cancer (n = 27); stage I–IV ovarian cancer (n = 26); and stage I–III pancreatic cancer
(n = 34). All ROC curves from 500 iterations are shown. Classification performance
by individual cancer type and stage is shown in Supplementary Fig. 15. Source data
are provided as a Source data file. AUC area under the curve; CI confidence interval;
CV cross validation.
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Trimmed FASTQ files were aligned to the hg38 genome using
BWA (version 0.7.15) mem, sorted and indexed with samtools (version
1.7), and duplicates marked and removed with Picard (version 2.19.0)
MarkDuplicates. Indel realignment was performed with GATK (version
3.8). Each BAM was downsampled using Picard (version 2.19.0)
DownsampleSam to either 10M reads (PGDX cohort - signature pro-
filing and classification; DELFI cohort - signature profiling), 25M reads
(DELFI cohort - classification), or 50M reads (DELFI cohort - signatures
in healthy individuals, Supplementary Data 1). BAM files with <90% of
the target number of reads for downsampling were excluded. To
maximize the quality of the mapped reads, downsampled BAMs were
intersected with UCSC tracks WindowMasker36 and RepeatMasker to
remove repeats, then were intersected to retain only regions in the
GATK WGS calling regions BED from the GATK hg38 resource bundle.
Reads with secondary mapping positions were removed with grep.
Reads with a fragment length of zero were removed with awk, as were
reads with any supplementary alignments.

Each BAM file was converted to SAM using samtools (version 1.7)
and then filtered using awk to retain mutant reads containing a single
point mutation only. Samtools mpileup (version 1.7) was used to iden-
tify point mutations, considering only reads with a mapping quality of
60 (-q) and considering mutations only if they had a minimum base
quality of 30 (-Q). Indels were removed from the mutation VCF using
grep. ANNOVAR (version 2018-04-16) was used to annotate variants
using RefSeq37 and dbSNP 15138. Mutations were annotated as being
either concordant, i.e., supported by both R1 and R2 of the same mate
pair, or discordant. Annotated and filtered VCFs were read into R (ver-
sion 4.1.2) and mutations were annotated with single base substitution
contexts using the MutationalPatterns package (version 1.10.0)39 and
processed with dplyr (version 1.0.8) and plyr (version 1.8.7).

For all samples, the sequencer ID was obtained from the read
header in the FASTQ file using a custom shell script. To minimize
sequencer-specific batch effects on signature profile analysis and
sample classification, all downstream analyses were batched by
sequencer, with patient samples being controlled by healthy indivi-
duals on the same sequencer. Two sequencer IDswere excludeddue to
few samples or only healthy samples being present (Supplementary
Fig. 12a).

GC normalization
AGC-normalization stepwasperformed to correct for differences inGC
profile between samples. First, a GC profile was first determined for
each downsampled BAM file. GC bias metrics were generated using
Picard (version 2.19.0) CollectGcBiasMetrics with a WINDOW_SIZE of
300bp based on previous literature on GC bias in cfDNA40. Next, GC
profiles for all samples belonging to the same sequencer IDwere loaded
intoR, and ageneralized additivemodel (GAM)was used to generate an
averaged profile for the batch, using ggplot2 (version 3.3.5) geom_s-
mooth() using method= “gam” and formula = “y ~ s(x, bs = “cs”).” Sup-
plementary Fig. 3c shows GC profiles for samples sequenced on two
runs from the same sequencer, plus the GAM averaged GC profile.

The averaged GC profile was used to normalize the mutation
counts of all samples, based on the GC content of each mutated read,
as follows: a customR scriptwasused to annotate allmutations in each
sample with their associated GC sequence content, rounded to the
nearest 1%. The number of mutations in each GC content % bin was
normalized relative to the averaged GC profile of that batch, aiming to
mitigate differences in GC bias.

Mutational signature profiling and detection in patient samples
For analysis ofmutational signatures in patient plasma samples in both
cohorts, a 96-SBS mutation profile was generated for each sample, as
described above. For each of the 96 SBS contexts in all samples (cases
and controls), the median number of background mutations in
that SBS context in control samples was subtracted. Background

subtraction was performed relative to control samples sequenced on
the same sequencer.

Mutational signatures were fitted to 96-SBS mutation profiles
using the fit_to_signature() function from MutationalPatterns (version
1.10.0)39; SBS signatures published by Alexandrov et al.12 were used as
the reference signature matrix. This function finds “the optimal non-
negative linear combination of mutation signatures to reconstruct the
mutation matrix”39. Mutations that had been annotated as SNPs were
retained for analysis of signature profiles, as we showed that removal
of SNPs on these data can distort signature fitting processes due to
high contributions of aging mutations among SNPs (Supplementary
Fig. 10). After signature fitting, a matrix of signature contributions for
each sample was generated.

To determine whether the signature contribution in an individual
sample was significantly above background, we set 95% specificity
thresholds for signature detection/calling based on values in control
samples. Bootstrapping with 100 iterations in controls was used to
generate each 95% specificity threshold.

Mutational signature profiling in healthy individuals
For signature profiling in healthy individuals from the DELFI study, all
healthy individuals sequenced on the sequencer named HISEQ were
analyzed (n = 159). Signature fitting was performed as above, except
background subtraction was not performed (as all samples were con-
trols). Signature contributions were correlated against healthy indivi-
duals’ chronological age from DELFI metadata and visualized using
ggplot2 (version 3.3.5) and ggpubr (version 0.4.0).

Sample classification
For sample classification, SNPs were subtracted to maximize sig-
nal:noise. 96-SBS mutation matrices were used as input. For all
samples, PCA was used to reduce dimensionality using the stats
package in R, and Principal Components with <1% variability were
removed as a feature selection step. For each sample, a matrix of
PCs, annotated with ichorCNA ctDNA fraction, was used as input
for the classification model. Samples were classified using con-
trols from the same study and from the same sequencer. For
sample classification to either healthy or cancer, we tested mul-
tiple classification methods using a nested ten-fold cross-valida-
tion method41, repeated 10 times, using: xgboost, Random Forest
(RF), Support Vector Machine (SVM) and Logistic Regression.
Nested k-fold cross-validation develops a new model on each
training set, with testing on the held-out fold, and has been
suggested to be robust to limited sample size41,42. CreateFolds()
from the caret package (version 6.0–90) was used to generate
balanced folds for each round of cross-validation.

xgboost (version 1.5.2.1) was used in R with the default
parameters and nrounds = 100. randomForest (version 4.6–14)
was used in R with the default parameters and ntree = 500. For
SVM, svm() from the e1071 package (version 1.7.9) was used with
default settings. For logistic regression, glm() from the stats
package (version 4.1.2) was used with default settings. Following
each iteration of cross-validation, a Pointy score for each sample
was generated, ranging from 0 to 1 (higher represents more likely
to be cancer). Classification performance characteristics were
determined using the ci.cvAUC function from the cvAUC package
(version 1.1.0) in R, using Pointy scores from all iterations as
input. Random Forest showed the highest performance (Supple-
mentary Fig. 11) and was selected for use for sample classifica-
tion with nested 10-fold cross-validation with 500 iterations.
Median Pointy scores are shown in Supplementary Data 1. Pointy
scores from all iterations from all samples from each study were
used as input into ci.cvAUC() to generate AUC values for each
iteration by cancer type and stage (Fig. 3e and Supplemen-
tary Fig. 15).
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Classification of cancer type
For classification of samples to individual cancer types, cancer samples
from the DELFI cohort one sequencer was used (HWI-D00837). Plasma
WGSdataweredownsampled to 25M reads. For each sample, PCswere
extracted from the 96-SBS mutation matrix belonging to each sample
(as before), and these were used as input into a random forest classi-
fier. Samples were classified to any of the cancer types present in the
dataset using nested ten-fold cross-validation, repeated 10 times. This
classifier generates a probability of matching the sample to each class
(i.e., cancer type), and the highest scoring class was chosen as the
predicted class. In the event of ties between classes, these were
resolvedusing ties.method = “last”. The classificationperformancewas
assessed using a confusion matrix from the caret package (version
6.0–90) in R.

ctDNA fraction quantification using ichorCNA
For all plasma and tumor samples, the ctDNA fraction (termed as the
tumor.fraction)was calculated using ichorCNA (version0.2.0)5, using a
window size of 1mb (--window), minimum quality of 20 (--quality),
across all autosomes and sex chromosomes (--chromosome), with a
maximum copy number of 3 (--maxCN). A panel of normals was not
used; instead, ichorCNA was run across all healthy control samples
within each batch. Detection thresholds for ichorCNA were deter-
mined in the DELFI cohort using a 95% specificity threshold of ctDNA
fractions in healthy individuals in that cohort.

Fragmentation analysis
To analyze the fragment size of Pointy mutations, insert sizes were
obtained from the SAM file belonging to each sample. Each raw
mutation matrix containing concordant mutations (i.e., present in
both F and R mate pairs) was annotated with the insert sizes from the
SAM file using a custom R script. Fragments with an insert size
>1000bp were excluded. A short:long fragment size ratio was calcu-
lated for each sample using a threshold of 150 bp for short fragments.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Plasma whole-genome sequencing data have been deposited at the
European Genome-phenomeArchive (EGA), which is hosted by the EBI
and the CRG, under accession number EGAS00001006377. Sequence
data from the Cristiano et al.9 study were previously deposited at the
EGA, under accession number EGAD00001005339. Further informa-
tion about EGAcan be found on https://ega-archive.org “The European
Genome-phenome Archive of human data consented for biomedical
research”43. The sequencing data are available under restricted access
to comply with patient consent for data sharing, access can be
obtained by approval via their respective Data Access Committees via
the EGA. The following public databases were used to annotate
mutations: 1000 Genomes23, RefSeq37, and dbSNP 15138. Source data
are provided with this paper.

Code availability
Code used in the Pointy pipeline is available for academic research
purposes only44 at https://doi.org/10.5281/zenodo.6666951. Code is in
a restricted-access repository; users are required to agree to the
license terms and conditions prior to approval. We aim to respond to
data access requests within 5 working days.
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