
Article https://doi.org/10.1038/s41467-023-37653-z

Data-driven analysis to understand long
COVID using electronic health records from
the RECOVER initiative

Chengxi Zang1, Yongkang Zhang1, Jie Xu2, Jiang Bian 2, Dmitry Morozyuk1,
Edward J. Schenck 3, Dhruv Khullar1, Anna S. Nordvig4,
Elizabeth A. Shenkman 2, Russell L. Rothman 5, Jason P. Block6,
Kristin Lyman7, Mark G. Weiner 1, Thomas W. Carton7, Fei Wang 1 &
Rainu Kaushal 1

Recent studies have investigated post-acute sequelae of SARS-CoV-2 infection
(PASC, or long COVID) using real-world patient data such as electronic health
records (EHR). Prior studies have typically been conducted on patient cohorts
with specific patient populations which makes their generalizability unclear.
This study aims to characterize PASC using the EHRdatawarehouses from two
large Patient-Centered Clinical Research Networks (PCORnet), INSIGHT and
OneFlorida+, which include 11million patients in NewYork City (NYC) area and
16.8 million patients in Florida respectively. With a high-throughput screening
pipeline based on propensity score and inverse probability of treatment
weighting, we identified a broad list of diagnoses and medications which
exhibited significantly higher incidence risk for patients 30–180 days after the
laboratory-confirmed SARS-CoV-2 infection compared to non-infected
patients. We identified more PASC diagnoses in NYC than in Florida regarding
our screening criteria, and conditions including dementia, hair loss, pressure
ulcers, pulmonary fibrosis, dyspnea, pulmonary embolism, chest pain,
abnormal heartbeat,malaise, and fatigue, were replicated across both cohorts.
Our analyses highlight potentially heterogeneous risks of PASC in different
populations.

The global COVID-19 pandemic from late 2019 has led to more than
620 million infections and 6.5 million deaths as of Oct 17, 20221.
Growing scientific and clinical evidence has demonstrated potential
post-acute and long-term effects of SARS-CoV-2 infection in
multiple organ systems2, including cardiovascular3, mental health4,
neurological5, and metabolic6 among other systems. Recently, several
retrospective observational cohort analyses have described post-acute

sequelae of SARS-CoV-2 infection (PASC) using real-world patient
data7–9. These studies typically start with a predefined list of PASC
symptoms and signs and then contrast their incidence risk or burden
in SARS-CoV-2 infected patients versus non-infected controls. Differ-
ent analytical pipelines have been utilized, such as causal inference7,
regression analysis10, and network analysis11. There are two major
challenges to these existing studies. First, the disease etiology and
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pathophysiology of PASC are complicated, and our current state of
knowledge is still far from complete. This means that a conventional
hypothesis-driven study design may miss potential PASC symptoms
and signs. Second, prior studies have typically been conducted on one
specific patient cohortwithout comparing different populations1–3. It is
unclear how generalizable the results are from these studies when
applied to the general patient population, and how PASC varies over
broad patient populations with different characteristics.

In this study, we aim to address these two challenges by devel-
oping a high-throughput computational screening pipeline to identify
potential PASC symptoms and signs using electronic health records
(EHR) from two large Patient-Centered Clinical Research Networks
(PCORnet)12: the INSIGHT network13 covering patients in the New York
City (NYC) metropolitan area and the OneFlorida+ network14 covering
patients fromFlorida.We startedwith a broad list of 137 potential PASC
diagnoses and 459 potential PASC medications (See Method for the
construction of both the diagnosis and medication lists). For each
diagnosis or medication, we built an outcome-specific cohort with
patients who were free of it at baseline, applied stabilized inverse
probability of treatment weighting (IPTW) to adjust for high-
dimensional hypothetical confounders collected from the baseline
period, and calculated its adjusted hazard ratio and excess burden in
the post-acute phase of the SARS-CoV-2 infection compared to non-
infected patients (See an illustration in Fig. 1 and details in the Method
section).Weonly focusedonnew incidences in the post-acute period in
this study because it provided a cleanway of defining PASCphenotypes
without complicated consideration of pre-existing conditions. We
found more PASC diagnoses and a higher risk of PASC in NYC than in
Florida: 38 diagnosis categories and 59 medications involving a wide
range of organ systemswere identified tobe associatedwith SARS-CoV-
2 exposure from the INSIGHT cohort. However, by applying the same
methodology for the OneFlorida+ cohort, we only found 11 diagnosis
categories and9medications, and themajority of themwere a subsetof
the findings from INSIGHT. The conditions replicated on both datasets
were dementia, hair loss, pressure ulcers, pulmonary fibrosis, dyspnea,
pulmonary embolism, chest pain, abnormal heartbeat, malaise, and
fatigue, and diagnosis codes U099/B948 (Post COVID-19 condition,
unspecified). These results highlighted the potential heterogeneity of
PASC over different patient populations and the need for replication
studies before robust conclusions about PASC can bemade. This study
is part of the NIH Researching COVID to Enhance Recovery (RECOVER)
Initiative, which seeks to understand, treat, and prevent the post-acute
sequelae of SARS-CoV-2 infection (PASC). For more information on
RECOVER, visit https://recovercovid.org/.

Results
Population statistics
We identified potential PASC conditions using two different cohorts.
The first cohort was built from the INSIGHT network13, which con-
tained 35,275 adult patients (age ≥ 20) with lab-confirmed SARS-CoV-2
infection who survived the first 30 days of infection fromMarch 2020
to November 2021 in NYC and 326,126 eligible non-infected controls.
Our second cohort was built from the OneFlorida+ network14 with
22,341 eligible lab-confirmed SARS-CoV-2 positive patients who sur-
vived the first 30 days of infection during the same period in Florida,
Georgia, and Alabama and 177,010 non-infected controls. To ensure
that patients were connected to healthcare systems (and thus available
for observation before and after their index encounters), we required
eligible patients to have at least one diagnosis record within three
years to one week before the index date and at least one diagnosis
record within 30 days to 180 days after the index date. We also
required no COVID-19-related diagnoses for the control patients (see
Methods for the definitions of index date and lab confirmations and
Fig. 1 for inclusion-exclusion cascade). We identified new-onset diag-
noses and medications for SARS-CoV-2 infected patients in excess of

control patients 30–180 days after the index date as potential PASC
conditions.

We summarized the baseline characteristics of both the INSIGHT
cohort and OneFlorida+ cohort in Table 1 (See more characteristics in
SupplementaryData 3) from information thatwas available onpatients
in clinical data; demographic information was collected from patients
when they registered for care within the healthcare systems. We
observed significant differences between the two cohorts regarding
age, gender, race, area deprivation index, and outbreak waves. The
INSIGHT cohort contained SARS-CoV-2 infected patients mainly from
the New York metropolitan area with the median Area Deprivation
Index (ADI, rankings from 1 to 100,with 1 and 100 indicating the lowest
and highest level of disadvantage)15 15 (6–24) in the SARS-CoV-2
infected patient group, indicating fewer disadvantaged neighbor-
hoods than the OneFlorida+ cohort whosemedian ADI was 58 (41–76).
Indeed, the OneFlorida+ cohort consisted of a mixture of urban, sub-
urban, and rural populations in Florida and selected cities in Georgia
and Alabama (see Methods). The median age of SARS-CoV-2 infected
patients in the INSIGHT cohort was 55 (38–68), older than the One-
Florida+ cohort with a median age of 50 (34–64). Plus, more female
SARS-CoV-2 infected patients were in the OneFlorida+ cohort (62.7%)
than in the INSIGHT cohort (58.6%). The INSIGHT cohort also had a
more diverse population with 34.7%white and 54.9% others (Asian and
others including American Indian or Alaska Native, Native Hawaiian or
other Pacific Islander,multiple races, etc.); theOneFlorida+ cohort had
a majority of patients identifying as White race (51.0%). Additionally,
there is a higher proportion of patients infected early in the pandemic
in the INSIGHT cohort (31.8% of all infected patients were fromMarch
2020 to June 2020) compared to theOneFlorida+ cohort (9.1% of cases
were from March 2020 to June 2020). Different temporal patterns of
new cases per month across two cohorts are illustrated in Supple-
mentary Fig. 1. The two networks also differed in care settings con-
nected to patient encounters and treatments utilized for infected
patients (e.g., more inpatient visits and more prescriptions of corti-
costeroids in the OneFlorida+ cohort than in the INSIGHT cohort).

Results from the INSIGHT cohort
We startedwith a list of 137 potentially PASC-related diagnostic groups
defined by ICD-10 diagnosis codes and CCSR categories (Supplemen-
tary Data 2) and 459 classes of medications grouped by their active
ingredients (See Method) to screen for potential PASC conditions. For
each of these diagnoses or medications, we built a condition-specific
cohort in which patients didn’t have the condition at baseline (Fig. 1)
and conducted a stabilized inverse probability of treatment weighting
for baseline covariates adjustment analysis following the pipeline
detailed in the Method section and summarized in Supplementary
Table 2 to estimate its incident risk in the post-acute period of SARS-
CoV-2 infected patients compared to non-infected controls over
180 days. Figure 2 summarizes potential PASC diagnoses (Fig. 2a) and
medications (Fig. 2b) identified from the INSIGHT cohort, spanning a
broad range of organ systems. We reported incident risks in the
adjusted hazard ratio (aHR) with 95% confidence intervals, along with
adjusted cumulative incidence (CIF) per 1000 patients in two com-
parison groups.

Nervous system. We observed several neurologic conditions that
exhibited higher risk in SARS-CoV-2 infected patients after acute
infection, including myopathy (1.72 [95% CI, 1.32–2.24]), dementia
(1.46 [95% CI, 1.29–1.65]), encephalopathy (1.46 [95% CI, 1.33–1.60]),
cognitive problems (1.44 [95% CI, 1.35–1.55]), polyneuropathies (1.32
[95% CI, 1.16–1.51]), sleep disorders (1.28 [95% CI, 1.19–1.38]), headache
(1.27 [95% CI, 1.17–1.37]), and anxiety (1.17 [95% CI, 1.09–1.26]). Besides,
the insomnia drug melatonin also showed a significantly higher risk of
use, in line with diagnoses of sleep disorders. Depression drugs que-
tiapine and mirtazapine also exhibited a higher risk of prescription.
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Skin. Certain skin symptoms also showed significantly higher risk in
the post-acute period, including hair loss (2.10 [95% CI, 1.84–2.39]),
pressure ulcers (1.96 [95% CI, 1.70–2.27]), dermatitis (1.21 [95% CI,
1.10–1.33]) and paresthesia (1.17 [95% CI, 1.09–1.26]), coupled with
relevant medications including witch hazel, collagenase, bacitracin,
and loratadine.

Respiratory system. Several pulmonary manifestations in the post-
acute phase were significant. These included pulmonary fibrosis
(2.49 [95% CI, 2.29, 2.72]), dyspnea (1.80 [95% CI, 1.72, 1.89]), acute
pharyngitis (1.41 [95% CI, 1.25–1.60]), chronic obstructive

pulmonary disease (COPD, 1.29 [95% CI, 1.15–1.44]), and atelec-
tasis (1.27 [95% CI, 1.15–1.40]). Besides, a large number of medi-
cations in line with these diagnoses also showed significantly
higher use, such as asthma or COPD drugs (e.g., vilanterol,
fluticasone, budesonide, levalbuterol, formoterol, etc.) and
cough suppressants (e.g., dextromethorphan, benzonatate,
guaifenesin, etc.).

Circulatory and blood. Identified cardiovascular manifestations
with a higher risk in the post-acute period were pulmonary embo-
lism (2.25 [95% CI, 1.96–2.59]), thromboembolism (1.64 [95% CI,
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Fig. 1 | Overall data-driven high-throughput screening framework. a Selection
of patients from the INSIGHT and OneFlorida+ EHR warehouses, March 2020 to
November 2021. b High-throughput construction of PASC-specific case and con-
trol groups that patients did not have target condition at baseline. c Study design.
The PASC outcomes were ascertained from day 30 after the SARS-CoV-2 infection
and the adjusted risk was computed 180 days after the SARS-CoV-2 infection.

d Adjustment for baseline covariates by using stabilized inverse probability of
treatment weighting (IPTW). e Likely PASC conditions were identified in the
INSIGHT and OneFlorida+ cohorts respectively. Identified PASC were compared
between the two cohorts. EHRelectronic health records, PASCpost-acute sequelae
of SARS-CoV-2 infection.

Article https://doi.org/10.1038/s41467-023-37653-z

Nature Communications |         (2023) 14:1948 3



1.47–1.84]), chest pain (1.55 [95%CI, 1.46–1.66]), abnormal heartbeat
(1.40 [95% CI, 1.32–1.49]), hypotension (1.34 [95% CI, 1.20–1.50]),
and heart failure (1.23 [95% CI, 1.12–1.35]), coupled with antic-
oagulant medications (e.g., apixaban, rivaroxaban, enoxaparin,
heparin, etc.) and beta-blocker metoprolol. We also observed a
higher risk of anemia (1.32 [95% CI, 1.24–1.41]) and ferric cation use
in the post-acute phase.

Endocrine. Identified endocrine, nutritional, and metabolic disorders
with higher risk were malnutrition (1.57 [95% CI, 1.43–1.72]), fluid and
electrolyte disorders (1.32 [95% CI, 1.23–1.41]), diabetes mellitus (1.27
[95% CI, 1.17–1.37]), and edema (1.23 [95% CI, 1.16–1.30]), coupled with
higher use of glucagon, insulin, and metformin.

Digestive system. Digestive system conditions with higher risks were
constipation (1.19 [95% CI, 1.11–1.28]) and abdominal pain (1.18 [95%CI,

1.12–1.24]). The associated medications included magnesium hydro-
xide, esomeprazole, and simethicone.

Genitourinary system. Cystitis (1.31 [95% CI, 1.15–1.49]) and acute
kidney failure (1.25 [95% CI, 1.15–1.36]), and associated tamsulosin,
showed higher risk in the post-acute period.

General or Musculoskeletal. General symptoms include malaise and
fatigue (1.64 [95% CI, 1.54–1.75]), fever (1.49 [95% CI 1.34–1.66]), dizzi-
ness (1.24 [95% CI 1.13–1.36]), joint pain (1.18 [95% CI, 1.12–1.24]), and
fibromyalgia (1.18 [95% CI 1.09–1.27]) showed significantly higher risk,
coupled with a higher risk of using ibuprofen, ketorolac, and acet-
aminophen. In addition, we also investigated two ICD-10 diagnosis
codes B948 (sequelae of other specified infectious and parasitic dis-
eases) and U099 (post-COVID-19 condition, unspecified), which
showed significantly higher risk (42.7 [95% CI, 28.9 63.2]).

Table 1 | Baseline characteristics of the lab-confirmed SARS-CoV-2 positive patients and SARS-CoV-2 negative patients in the
INSIGHT and OneFlorida+ cohorts, March 2020 to November 2021a

INSIGHT OneFlorida+

Characteristics SARS-CoV-2 Positive
(N = 35,275)

SARS-CoV-2 Negative
(N = 326,126)

SMDb SARS-CoV-2 Positive
(N = 22,341)

SARS-CoV-2 Negative
(N = 177,010)

SMDb

Median age (IQR)—years 55 (38–68) 57 (40–69) −0.09 50 (34–64) 57 (40–69) −0.27

Age group—no. (%)

20-<40 years 9529 (27.0) 77,403 (23.7) 0.08 7506 (33.6) 42,286 (23.9) 0.22

40-<55 years 7975 (22.6) 70,313 (21.6) 0.03 5473 (24.5) 37,555 (21.2) 0.08

55-<65 years 6965 (19.7) 66,361 (20.3) −0.02 4036 (18.1) 37,142 (21.0) −0.07

65-<75 years 5712 (16.2) 62,860 (19.3) −0.08 2929 (13.1) 34,601 (19.5) −0.17

75+ years 5094 (14.4) 49,189 (15.1) −0.02 2397 (10.7) 25,426 (14.4) −0.11

Sex—no. (%) Female 20,686 (58.6) 196,730 (60.3) −0.03 14,004 (62.7) 106,963 (60.4) 0.05

Male 14,586 (41.3) 129,360 (39.7) 0.03 8335 (37.3) 70,034 (39.6) −0.05

Race—no. (%) Asian 1736 (4.9) 17,439 (5.3) −0.02 275 (1.2) 2912 (1.6) −0.03

Black 7791 (22.1) 62,281 (19.1) 0.07 6504 (29.1) 35,381 (20.0) 0.21

White 12,233 (34.7) 139,512 (42.8) −0.17 11,398 (51.0) 105,521 (59.6) −0.17

Other 9844 (27.9) 69,406 (21.3) 0.15 3730 (16.7) 30,138 (17.0) −0.01

Missing 3671 (10.4) 37,488 (11.5) −0.03 434 (1.9) 3058 (1.7) 0.02

Ethnic group—no. (%)

Hispanic 10,658 (30.2) 73,522 (22.5) 0.17 4500 (20.1) 21,484 (12.1) 0.22

Not Hispanic 20,838 (59.1) 216,179 (66.3) −0.15 14,798 (66.2) 120,315 (68.0) −0.04

Unknown 3779 (10.7) 36,425 (11.2) −0.01 3043 (13.6) 35,211 (19.9) −0.17

Median ADI (IQR)—rank 15 (6–24) 13 (5–23) 0.03 58 (41–76) 53 (36–72) 0.19

BMI kg/m2 (IQR) 27 (21–32) 25 (1–30) 0.02 30 (25–35) 28 (24–34) 0.00

Follow-up days (IQR) 258 (163–418) 269 (145–388) 0.09 207 (109–367) 250 (122–409) −0.17

Cares in the past 3 years—no. (%)

Inpatient 0 25,717 (72.9) 278,784 (85.5) −0.31 12,838 (57.5) 112,480 (63.5) −0.12

Inpatient 1–2 6805 (19.3) 37,297 (11.4) 0.22 4614 (20.7) 33,658 (19.0) 0.04

Inpatient >=3 2753 (7.8) 10,045 (3.1) 0.21 4889 (21.9) 30,872 (17.4) 0.11

Corticosteroids Prescription 4999 (14.2) 28,915 (8.9) 0.17 4253 (19.0) 27,783 (15.7) 0.09

Immunosuppressant
Prescriptions

2110 (6.0) 10,761 (3.3) 0.13 1013 (4.5) 7281 (4.1) 0.02

Index time—no. (%)

03/20-06/20 11,235 (31.8) 53,988 (16.6) 0.36 2032 (9.1) 37,363 (21.1) −0.34

07/20-10/20 2018 (5.7) 111,409 (34.2) −0.76 6035 (27.0) 54,060 (30.5) −0.08

11/20-02/21 14,637 (41.5) 88,009 (27.0) 0.31 6254 (28.0) 38,536 (21.8) 0.14

03/21-06/21 5573 (15.8) 54,234 (16.6) −0.02 2315 (10.4) 27,985 (15.8) −0.16

07/21-11/21 1812 (5.1) 18,486 (5.7) −0.02 5705 (25.5) 19,066 (10.8) 0.39
aThe lab-confirmed SARS-CoV-2 positive and negative patients were identified by polymerase chain reaction (PCR) test or antigen test. Negative patients have further required no documented
COVID-19-related diagnoses at baseline. IQR denotes the interquartile range. The percentage may not sum up to 100 because of rounding. ADI, the Area Deprivation Index. BMI, Body Mass Index.
bA standardized mean difference (SMD) of >0.10 or <−0.10 indicates an important effect size difference between the two samples, otherwise, no significant difference is assumed.
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Results from the OneFlorida+ cohort and comparison with
INSIGHT
To better understand the heterogeneity and commonality of potential
PASC conditions over different populations, we replicated our analysis
on theOneFlorida+ cohort and compared the PASC risks inOneFlorida
+ versus INSIGHT. We summarized identified diagnoses (Fig. 2c) and
medications (Fig. 2d) from the OneFlorida+ cohort and further com-
pared these incident diagnoses (Fig. 3) and medications (Supplemen-
tary Fig. 3) with INSIGHT. The replicated conditions in both cohorts
were highlighted by ‡ symbols.

As shown in Fig. 2c, d, 11 PASC diagnostic conditions (including
U099/B948) and 9 medications were identified as significant in the
OneFlorida + , which were fewer than INSIGHT when using the same
screening criteria (method section). As shown in Fig. 3, the overall
adjusted hazard ratios were lower in the OneFlorida+ cohort than in

the INSIGHT cohort, indicating a generally lower relative risk of
potential PASC conditions in OneFlorida+ than in INSIGHT. For certain
PASC conditions, the associated aHR values in the INSIGHT cohort
exceed that in the OneFlorida+ cohort by more than 30%, such as
myopathy, encephalopathy, sleep disorders, anxiety, pulmonary
fibrosis, thromboembolism, anemia, heart failure, malnutrition,
malaise, and fatigue.

Nervous system. The neurologic condition also replicated from the
OneFlorida+ in the post-acute phase was dementia which showed aHR
1.43 [95%CI, 1.24–1.65] in OneFlorida+ versus 1.46 [95%CI, 1.29–1.65] in
INSIGHT.

Skin. The replicated skin symptoms included hair loss (2.24 [95% CI,
1.82–2.77] OneFlorida+ vs. 2.10 [95% CI, 1.84–2.39] INSIGHT) and
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Fig. 2 | Identified potential incident PASC conditions from the INSIGHT cohort
and the OneFlorida+ cohort, March 2020 to November 2021. a The risk of
incident diagnoses from INSIGHT. b The risk of incident medications from
INSIGHT. c The risk of incident diagnoses from OneFlorida+. d The risk of incident
medications from OneFlorida+. The incident risk was quantified by the adjusted
hazard ratios with 95% confidence intervals, and we also reported the adjusted
cumulative incidences per 1000 patients in both the SARS-CoV-2 positive and the
negative groups. The sequelae outcomes were ascertained from day 30 after the
SARS-CoV-2 infection and computed 180days after the SARS-CoV-2 infection. PASC
conditions were selected based on adjusted hazard ratio > 1, the aHR’s P-value

<8.39 × 10−5 (the Bonferroni-corrected significance threshold for multiple com-
parisons), and at least 100 identified cases in the positive group. The aHR and its
P-value were calculated by the Cox proportional hazard model and the Wald Chi-
Square test. The colors represent different organ systems. The replicateddiagnoses
and medications in the OneFlorida+ were marked by ‡ symbols. aHR adjusted
hazard ratio, CI confidence interval, CIF adjusted cumulative incidence function,
COPD Chronic obstructive pulmonary disease. The PASC diagnosis code U099/
B948was also replicated in both cohorts but not illustrated in aor c, with aHRs42.7
(95% CI, 28.9–63.2) and 39.8 (95% CI, 26.8–59.0) for INSIGHT and OneFlorida+,
respectively.
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pressure ulcers (1.75 [95% CI, 1.50–2.03] OneFlorida+ vs. 1.96 [95% CI,
1.70–2.27] INSIGHT).

Respiratory system. The replicated pulmonary manifestations were
pulmonary fibrosis (1.53 [95% CI, 1.38–1.70] OneFlorida+ vs. 2.49

[95% CI, 2.29, 2.72] INSIGHT) and dyspnea (1.41 [95% CI, 1.33, 1.50]
OneFlorida+ vs.1.80 [95% CI, 1.72, 1.89] INSIGHT). The replicated
medications included asthma or COPD drugs fluticasone, and cough
suppressants dextromethorphan, benzonatate, and guaifenesin (Sup-
plementary Fig. 3).

Results on INSIGHT Results on OneFlorida+
(Higher Risk)(Lower Risk)
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Circulatory and blood. The replicated cardiovascular conditions with
a higher risk in the post-acute period were pulmonary embolism (1.63
[95% CI, 1.39–1.92] OneFlorida+ vs. 2.25 [95% CI, 1.96–2.59] INSIGHT),
chest pain (1.27 [95% CI, 1.17–1.37] OneFlorida+ vs. 1.55 [95% CI,
1.46–1.66] INSIGHT), and abnormal heartbeat (1.17 [95% CI, 1.08–1.27]
OneFlorida+ vs. 1.40 [95% CI, 1.32–1.49] INSIGHT).

Endocrine. We observed replicated insulin use in both datasets, e.g.,
insulin glargine with aHR 1.30 [95% CI, 1.15–1.48] in OneFlorida+ versus
1.55 [95% CI, 1.41–1.71] in INSIGHT.

General or musculoskeletal. The replicated general symptoms
includemalaise and fatigue (1.21 [95%CI, 1.12–1.31] OneFlorida+ vs. 1.64
[95% CI, 1.54–1.75] INSIGHT), and PASC diagnosis code U099/B948
(39.8 [95% CI, 26.8 59.0] OneFlorida+ vs. 42.7 [95% CI, 28.9 63.2]
INSIGHT). The replicated medications included vitamin C, ibuprofen,
and azithromycin.

Stratified analysis
To further understand the heterogeneity of potential PASC con-
ditions over different subgroups, we conducted a comprehensive
stratified analysis to examine how identified diagnoses vary
across demographic (age, gender, race) groups, baseline pre-
existing conditions, disease severity in the acute phase according
to healthcare utilizations (outpatient versus inpatient), and dif-
ferent infection waves, on both the INSIGHT and OneFlorida+
cohorts. We also studied the subpopulation that had no docu-
mented comorbidities (a tailored list of the Elixhauser
comorbidities16 and related drug categories, details provided in
the Method section) or PASC-like symptoms (our PASC diagnosis
screening list) at baseline, referred to as the healthy population.

For each subgroup analysis, we built the infected subpopulation
and its control subpopulation and re-estimated the stabilized IPTW
weights for adjustment. Here we quantified PASC risk by the excess
burden per 1000 patients17, which is defined as the difference between
the adjusted cumulative incidences (at 180 days after baseline) of a
specific condition in the SARS-CoV-2 infected patient subpopulation
versus the control subpopulation. We considered death after 30 days
after the infection as a competing risk. Figure 4 and Supplementary
Fig. 2 summarized the subgroup excess burden of PASC in INSIGHT
and OneFlorida+ respectively, which are further described below. See
the adjusted cumulative incidence of PASC diagnoses in the infected
group in Supplementary Fig. 4 and 5. Of note, all the following sub-
group analysis results were interpreted in terms of adjusted excess
burdens (See the stratified results in terms of adjusted hazard ratios in
Supplementary Fig. 12 and 13).

Acute phase severity. General respiratory symptoms and signs
(Fig. 3) demonstrated increasing burdens by settings (e.g., dys-
pnea from 40.1 excess cases per 1000 patients compared to
control patients in the outpatient setting to 89.9 in the inpatient
setting). Other potential PASC diagnoses that followed the same
trend included pulmonary fibrosis (7.8–34.1), dementia (2.3–5.1),
hair loss (6.4–11.5), pulmonary embolism (2.7–10.6), chest pain
(19.2–24.4), abnormal heartbeat (14.7–19.9), and malaise and
fatigue (15.6–27.4). We further investigated two PASC-related

ICD-10 diagnosis codes, U099 (post-COVID-19 condition, unspe-
cified) and B948 (sequelae of other specified infectious and
parasitic diseases), which also showed an increasing burden from
3.9 in the outpatient setting to 14.2 in the inpatient setting. All the
above-mentioned trends were further replicated in the One-
Florida+ cohort (Supplementary Fig. 2).

Age groups. We partitioned patients into two groups according to
their age (<65 and≥65). Potential PASCconditions that had thehighest
excess burden in <65 groups were dyspnea, chest pain, abnormal
heartbeat, malaise, and fatigue in both cohorts. Potential PASC con-
ditions with the highest excess burden in the ≥ 65 groups included
dyspnea, pulmonary fibrosis, dementia, pressure ulcers, pulmonary
embolism, malaise, and fatigue, among others; all of these conditions
had a higher excess burden among those ≥65 compared to <65 in both
the cohorts.

Gender and race. Higher excess burdens in male patients included
dyspnea, pulmonary fibrosis, chest pain, malaise, and fatigue in both
two cohorts. Problems including hair loss demonstrated higher excess
burdens for female patients. Black patients had higher excess burdens
of chest pain than white patients in the INSIGHT and higher excess
burdens of pressure ulcers in the OneFlorida+.

Baseline pre-existing conditions. Overall, we observed a higher
excess burden (quantified by the difference of cumulative incidences)
in patients with any baseline pre-existing conditions in Elixhauser
comorbidity groups (See Method) than in patients without any asses-
sed comorbidities or PASC-like symptoms (denoted as healthy
patients). There were also varying excess burdens of different poten-
tial PASC conditions associated with patients with different pre-
existing conditions. For example, patients with coronary artery disease
(CAD), chronic kidney disease (CKD), or chronic pulmonary disease
(CPD) had higher burdens of pulmonary fibrosis, malaise, and fatigue.
Even for healthy patients without documented baseline Elixhauser
comorbidities, we observed incident dyspnea, pulmonary fibrosis, and
chest pain burdens in both two cohorts, and diabetes burden in the
INSIGHT cohort.

Differentwaves.We further stratified the excess burdenofPASCsover
different waves associated with different SARS-CoV-2 variants. As
shown in Supplementary Fig. 1, we defined three waves March 1, 2020,
to September 30, 2020, October 1, 2020, to May 31, 2021, and June 1,
2021, to November 30, 2021. The most common SARS-CoV-2 geno-
types prevalent in the 1st and 3rd waves were the ancestral strain and
the Delta variant respectively, and the 2nd was a mixture of the Alpha
variant and others, according to the CDC18. We summarized the results
in Supplementary Fig. 6. We found the first two waves contributed to
the most significant PASC burdens in the INSIGHT and all three waves
for the OneFlorida+. The dyspnea condition was consistently sig-
nificant over three waves and across the two cohorts.

Negative controls
We employed negative outcome controls19,20 in both the INSIGHT and
OneFlorida+ cohorts to rule out potential residual confoundings. We
examined the adjusted risk of a range of clinical outcomes (e.g., injury

Fig. 3 | Comparison of the PASC risks in the INSIGHT cohort versus in the
OneFlorida+ cohort, fromMarch 2020 to November 2021. The incident risk was
measured by the adjusted hazard ratios (aHR) with 95% confidence intervals as
shown in the main panel. The adjusted cumulative incidences (CIF) per 1000
patients in both the SARS-CoV-2 positive group and the negative group were also
reported. The PASC conditions identified in both datasets were marked by ‡ sym-
bols. The color panels represent different organ systems, including (from top to

bottom): the nervous system, skin, respiratory system, circulatory system, endo-
crine and metabolic, digestive system, genitourinary system, and other signs. The
PASC outcomes were ascertained from day 30 after the SARS-CoV-2 infection and
all the adjusted risk measures were computed 180 days after the SARS-CoV-2
infection. The aHRs of PASC diagnosis code U099/B948 were not illustrated here.
COPD, Chronic obstructive pulmonary disease. PASC, post-acute sequelae of SARS-
CoV-2 infection.
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due to external causes and neoplasms-related outcomes) where no
association was expected with SARS-CoV-2 infection based on existing
knowledge. We followed the same procedure as in screening potential
PASC conditions and estimated the adjusted risk in both exposure
groups. We found no significant association between any of the
negative outcomes and SARS-CoV-2 infection after the acute phase as
shown in Supplementary Table 1.

Sensitivity analysis
To test the robustness of our results, we conducted a series of sensi-
tivity analyses. Firstly, we investigated how the identified PASC con-
ditions will change when using different screening criteria in the
context of multiple comparisons. Here, we considered the false dis-
covery rate-based method (threshold was 0.05)—Benjamini–Yekutieli
method (BY)21, which is less strict than the Bonferroni correction
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approach we used in our main analysis. By using the BY method, in
addition to our identified PASC conditions reported in the main text,
we found other seven potentially significant PASC diagnoses (cerebral
ischemia, acute myocardial infarction, pulmonary heart disease,
myocarditis, nausea, Gastro-esophageal reflux disease, genitourinary
problems) from the INSIGHT and one (acute pharyngitis) PASC diag-
nosis from theOneFlorida + .We further investigated how sensitive the
final PASC conditions are if we lift the constraints of at least 100
identified cases in the SARS-CoV-2 group. We only found one addi-
tional condition “foot drop” from INSIGHT. We summarized the
additional PASC conditions identified in these sensitivity analyses in
Supplementary Fig. 7 and Supplementary Data 4–5. Overall, only acute
pharyngitis was replicated across two cohorts, and these additional
conditions showed higher risk in the INSIGHT than in the OneFlorida+.
In addition, if using less conservative BYcorrection, we still cannot find
any statistically significant negative signals (adjusted hazard ratio <1)
from our initial screen list on the INSIGHT cohort (Supplemen-
tary Data 4).

We also investigated how the PASC risks in two cohorts will
change if we change our baseline covariates modeling. First, we
adjusted for additional baseline covariates by capturing the baseline
SARS-CoV-2 vaccination status. We categorized baseline vaccination
status into fully vaccinated, partially vaccinated, and no evidence of
vaccination (See the population characteristics and the covariates
definition in Supplementary Table 4). We replicated our primary ana-
lyses on two cohorts by adjusting for these additional covariates. As
shown in Supplementary Fig. 8, adjusting for these additional baseline
vaccination covariates had little impact on the adjusted hazard ratios,
largely becausenearly half of the studypatients got infectedbefore the
vaccine was available (early December 2020) and more than 90% of
populations had no evidence of vaccination recorded in the EHR sys-
tems (Supplementary Table 4). Second, instead of categorizing the
index day into different periods in our primary analysis, we further
adjusted for indexday as a continuous variable using the cubicB-spline
model22,23. We compared aHR using different modeling of index day
(categorization vs. cubic B-spline) in Supplementary Fig. 9, and we
found similar aHRs and got the same set of PASC conditions identified
from both datasets as the primary analysis (Supplementary Fig. 9,
conditions marked by ‡ symbols). Third, we compared nonlinear PS
modeling as a sensitivity analysis and linearPSmodeling in our primary
analysis. Specifically, we adopted the gradient boosting decision trees
for modeling PS (Method Section)24, and we reported aHR in Supple-
mentary Fig. 10. Again, consistent results in terms of aHR and repli-
cated PASC conditions were observed.

Lastly, different PASC risk patterns might derive from sample size
differences between the two cohorts. To rule out this, we down-
sampled the INSIGHT cohorts to have the sample number of patients
as the OneFlorida+ and replicated our primary analyses on the down-
sampled cohorts. Specifically, we downsampled the SARS-CoV-2
positive group in the INSIGHT cohort from 35,275 to 22,341, and the
negative group from 326,126 to 177,010, leading to the same number
of patients as in the OneFlorida+ cohort. We compared the aHR when
using the downsampled cohorts versus using the original cohort in
Supplementary Fig. 11. Again, we observed the same PASC riskpatterns

and got the same set of replicated PASC conditions as the primary
analysis (Supplementary Fig. 11, conditions marked by ‡ symbols).

Discussion
In this study, we developed a data-driven approach to identify a
broad spectrum of clinical abnormalities (incident diagnoses and
medication use) experienced by SARS-CoV-2 infected patients who
survived beyond the first 30 days of the infection. The clinical EHRs
from two large PCORnet clinical research networks, INSIGHT, and
OneFlorida+, were leveraged in our study to investigate the hetero-
geneity of potential PASC conditions over different patient popula-
tions. This differentiates our study fromprior studies that focused on
a specific patient population (e.g., Al-Aly et al.7. focused on the US
veteran population with 87.91% males). There are also several studies
focusing on a more discrete set of potential PASC conditions such as
mental health problems9,25, cardiovascular problems8, diabetes26, and
kidney problems27 among others. All these studies investigated a
single dataset.

With a screening pipeline based on high-throughput trial emula-
tions and stabilized IPTW weights-based adjustment, we identified a
broad spectrumof diagnoses andmedicationuse that exhibitedhigher
adjusted hazard ratios and excess burdens in SARS-CoV-2 infected
patients in the post-acute period compared to non-infected patients.
These diagnoses and medications spanned a wide range of organ
systems (Fig. 2), suggesting that PASC is a multi-organ disease. Diag-
noses with high adjusted hazard ratios included respiratory problems
(e.g., dyspnea, pulmonary fibrosis, atelectasis, COPD), dermatologic
problems (e.g., hair loss, paresthesia, pressure ulcers, and dermatitis),
cardiovascular problems (e.g., pulmonary embolism, thromboembo-
lism, chest pain, abnormal heartbeat, and heart failure), nervous sys-
tem problems (e.g., encephalopathy, dementia, sleep disorders,
encephalopathy, cognitive problems, polyneuropathies, myopathies,
and anxiety), and general symptoms (e.g., malaise, fatigue, fever,
fibromyalgia, dizziness, joint pain, and U099/B948 codes). In addition
todiagnoses,we alsoobserved increased incident prescription risk in a
diverse set of medications, including asthma drugs (e.g., vilanterol
trifenatate and fluticasone furoate), cough drugs (e.g., dex-
tromethorphan and benzonatate), anticoagulants (e.g., apixaban,
heparin, and aspirin), diabetic drugs (e.g., insulin and metformin),
drugs for constipation (e.g., magnesium hydroxide), drugs for vomit-
ing (e.g., trimethobenzamide), pain medications (e.g., menthol, ibu-
profen, and acetaminophen), drugs for treating skin problems (e.g.,
witch hazel and collagenase), and insomnia drugs (e.g., melatonin).
These conditions and medications showed a higher incidence of
diagnosis or use after infection than the non-infected control group,
suggesting that these couldbe likely post-acute sequelae of SARS-CoV-
2 infection (PASC) conditions.

We have also performed detailed stratified analyses on the
adjusted excess burden of different potential PASC diagnoses over
different groups defined by age, sex, race, acute severity of SARS-CoV-
2 infection, baseline comorbidity conditions, and temporal waves
considering different SARS-CoV-2 variants of concerns. Our results
showed that, in both the INSIGHT and OneFlorida+ cohorts, hospita-
lized patients demonstrated more excess cases of potential PASC

Fig. 4 | Stratified analysis of adjusted excess burden of post-acute sequelae of
SARS-CoV-2 infection (PASC) over different subgroups, the INSIGHT cohort,
fromMarch 2020 toNovember 2021. The adjusted excess burden is measured by
the difference in the adjusted cumulative incidence per 1000 between two expo-
sure subgroups. Subgroups were stratified by their acute severity status, age
groups, gender, race groups, and baseline pre-existing conditions. Different color
panels represent different organ systems, including (from top to bottom): the
nervous system, skin, respiratory system, circulatory system, blood-forming
organs, endocrine and metabolic, digestive system, genitourinary system, and
general signs. CAD coronary artery disease, CKD chronic kidney disease, CPD

chronic pulmonary disease, T2D diabetes type 2, Healthy: no documented pre-
existing conditions and no PASC-like symptoms at baseline. Two ICD-10 diagnosis
codes B948 (sequelae of other specified infectious and parasitic diseases) and
U099 (post-COVID-19 condition, unspecified) were also used to compare general
post-acute sequelae of SARS-CoV-2 infection in different groups. The conditions
with their aHRs’ P-value < 8.39 × 10−5 (the Bonferroni-corrected significance
threshold) were highlighted in red squares. The PASC conditions also identified in
OneFlorida+ were marked by ‡ symbols. The fraction of the subgroup population
was shown at the top.
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diagnoses and medications (compared to non-infected controls) than
non-hospitalized patients, especially for respiratory conditions. Older
patients also hadhigher excess cases of PASC conditions than younger
patients, as did female and non-white patients. These observations
were consistent with prior studies7,17. Patients with co-morbidities had
a higher incidence and number of putative post-acute SARS-CoV-2
conditions. Furthermore, the distribution of post-acute conditions
varied across distinct co-morbidities. We observed that dyspnea con-
sistently showed the highest excess burden across all patients
regardless of co-morbidity status. Patients with baseline cardiac pro-
blems (arrhythmia and coronary heart disease), diabetes, and chronic
kidney disease (CKD) demonstrated higher burdens of a more diverse
set of potential PASC conditions than other comorbidity groups.
Patients without pre-existing conditions at baseline had higher dys-
pnea, chest pain, diabetes, malaise, and fatigue burdens compared
with control patients.

Weobserved heterogeneity after replicating the same analysis to
the OneFlorida+ cohort. Overall, aHRs on all potential PASC diag-
noses identified from the INSIGHT cohort were higher than in the
OneFlorida+ cohort. In particular, rates of pulmonary fibrosis and
thromboembolism were 50% higher in the INSIGHT cohort than in
the OneFlorida+ cohort. In addition, 38 diagnoses and 59 medica-
tions were identified as potential PASCs in the INSIGHT cohort
compared to the 11 diagnoses and 9 medications identified in the
OneFlorida+ cohort. The conditions replicated on both datasets were
dementia, hair loss, pressure ulcers, pulmonary fibrosis, dyspnea,
pulmonary embolism, chest pain, abnormal heartbeat, malaise, and
fatigue. Potential reasons accounting for this heterogeneity of PASC
conditions include distinct patient characteristics and different
periods of infections which could have led to differential use of
therapeutics and vaccination that could alter the trajectory of PASC.
The SARS-CoV-2 infected patients in the OneFlorida+ cohort were
younger (median age 50 (34–64)) than those in the INSIGHT cohort
(median age 55 (38–68)). Younger adults are at lower risk for PASC
than older adults. Patients in the OneFlorida+ cohort were alsomuch
more socially disadvantaged on average. Their median ADI ranking
valuewas almost four times higher than themedian ADI of patients in
the INSIGHT cohort. Disadvantaged social conditions can be asso-
ciated with delayed or no care access and initiation of treatment for
PASC conditions; therefore, OneFlorida+ patientsmight be less likely
to present for care during a relatively short post-acute phase, leading
to an undercount of potential PASC conditions andmedication use in
that population. Disadvantaged social conditions can also be asso-
ciated with poorer baseline conditions even in non-infected patients,
leading to nonsignificant excess burden between infected and non-
infected groups in the OneFlorida+ cohort.

The treatment standard for COVID-19 evolved over time28,29. For
example, therewas a demonstrable higher use of corticosteroids in the
Florida cohort compared with the NYC cohort. Patients who received
timely and appropriate treatment for COVID-19 in the acute phase
could be less likely to develop PASC in the post-acute phase. Early
evidence showed that vaccinations for COVID-19 significantly reduced
the likelihood of getting PASC conditions30. It should be noted that
NYC had a higher incident burden of SARS-CoV-2 infection prior to the
widespread availability of vaccinations in December 2020. In com-
parison, OneFlorida+ had a high burden of incident SARS-CoV-2
infections after December 2020.

Our study has several strengths. First, this study examined
PASC in a large population of general adult patients using a data-
driven approach to identify a broad list of potential PASC. Sec-
ond, this study incorporated EHR data from two large-scale clin-
ical research networks covering patients from distinct geographic
regions in the US with very different characteristics, allowing us
to highlight the heterogeneity of PASC manifestations in terms of
diagnoses and medications over two different populations

thereby improving generalizability. Third, from March 2020 to
November 2021 (the enrollment period of our study), the US went
through COVID-19 waves associated with different SARS-CoV-2
virus variants demonstrating different epidemiological and clin-
ical characteristics. Our INSIGHT and OneFlorida+ cohorts con-
tained robust patient populations in New York and Florida,
representing the different waves of SARS-CoV-2 infected cases in
the US. This temporal difference is another important factor
accounting for the different observations from the two cohorts,
in addition to their different demographic and geographic
characteristics.

Existing studies with comparable sample sizes are the study from
Al-Aly et al.7,17, which focused on the veteran (VA) population with
mostly males (90.5%), and Cohen et al.31. focusing on older patients
(age ≥ 65) enrolled in the Medicare Advantage plan (administrative
claims). Comparedwith the VA study, we found several new conditions
including dementia, pulmonary fibrosis, and pulmonary embolism,
which were not reported in the VA study. In addition, we also found
differences in terms of adjusted excess burden per 1000 patients
between our studies and the VA’s, e.g., hair loss (7.8 vs. 5.2 vs. 0.2
(INSIGHT vs. OneFlorida+ vs. VA, adjusted excess burden per 1000)),
dyspnea (61.1 vs. 41.2 vs. 28.8), chest pain (22.0 vs. 15.8 vs. 13.8),
abnormal heartbeat (18.1 vs. 10.2 vs. 7.85), and malaise and fatigue (23
vs. 12.5 vs. 13.6). We further compared some replicated conditions in
both our study and Cohen’s Medicare study based on the subpopula-
tion with age greater than or equal to 65, including dementia (11,4 vs.
15.4 vs. 13.6 (INSIGHT vs. OneFlorida+ vs. Medicare, an excess burden
per 1000, age ≥ 65 subgroup)), pulmonary embolism (8.4 vs. 7.8 vs.
9.4), abnormal heartbeat (16.5 vs. 5.5 vs. 16.4),malaise and fatigue (32.0
vs. 17.2 vs. 44.5). In addition, our study followed patients till November
2021, longer than the VA study (till May 2021)7,17 or the Cohen’s study
(till December 2020)31.

There are also several limitations. First, our study was based on
observational data analysis, and patients’ assignments to particular
exposure groups were not randomized. Although we have tried to
balance high-dimensional hypothetical confounders and obtained
consistent results from several negative outcome control analyses
across two datasets, there is still a possibility that chance finding
could exist and it is challenging to draw causal conclusions from
observational data analysis. Hopefully, the conclusions from our
study can serve as effective hypotheses to trigger future biological
mechanistic studies. Second, our study included the patient popu-
lation from the NYC and Florida areas, which may not be repre-
sentative of other geographical regions of the US or other countries.
Third, the PASC is currently defined in the RECOVER protocols as
“ongoing, relapsing, or new symptoms, or other health effects
occurring after the acute phase of SARS-CoV-2 infection” (https://
recovercovid.org/). Our study only studied incident events, and the
worsening and relapsing conditions were left for future investiga-
tions. Fourth, the way these CCSR categories were defined may not
reflect the actual co-occurring risk of the individual conditions con-
tained in each in the context of PASC. In addition, our study period
was from March 2020 to November 2021, which did not include
patients infected during the phase dominated by the Omicron var-
iants of SARS-CoV-2. Lastly, our main analyses did not include
information on vaccination status in our primary analyses and we left
it as our future focus.

In conclusion, this study demonstrated that adult patients sur-
viving beyond 30 days of their SARS-CoV-2 infection exhibited high
incident risks and burdens across a broad range of conditions and
signs. Our findings verified that PASC is a complex condition involving
multiple organ systems. There was surprising geographic hetero-
geneity of PASC as well as patient sub-group heterogeneity. This study
provides additional insights into our understanding of PASC and
highlights the need for further research to support the diagnosis,
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prevention, and treatment of the post-acute sequelae of SARS-CoV-2
infection.

Methods
Data
This study used two large-scale de-identified real-world EHR datasets
(RWDs) from the INSIGHT Clinical Research Network (CRN)13 and the
OneFlorida+ CRN14. The INSIGHT CRN contained longitudinal clinical
data of approximately 12 million patients in the New York City
metropolitan area, and the OneFlorida+ CRN contained the EHR data
of nearly 15million patients from Florida and selected cities in Georgia
and Alabama. The use of the INSIGHT data was approved by the
Institutional Review Board (IRB) of Weill Cornell Medicine following
NIH protocol 21-10-95-380 with protocol title: Adult PCORnet-PASC
Response to the Proposed Revised Milestones for the PASC EHR/
ORWD Teams (RECOVER). The use of the OneFlorida+ data for this
study was approved under the University of Florida IRB number
IRB202001831. All EHR used in this study were appropriately dei-
dentified and thus no informed consent from patients was obtained.

High-throughput screening for potential post-acute sequelae of
SARS-CoV-2 (PASC)
To systematically identify potential PASCs, we examined a total of 596
incident diagnoses (Supplemental Data 2) and medication use (Sup-
plemental Data 4) in the SARS-CoV-2 infected patients from 31 days to
180 days after their acute infection. For each incident diagnostic
category or medication use, we constructed an outcome-specific
cohort including both SARS-CoV-2 infected patients and non-infected
patients who did not have the corresponding diagnostic category or
medication use at baseline and assessed its incident risk in the post-
acute phase (see Fig. 1 for a graphical illustration of our pipeline). Thus,
leveraging RWDs, we evaluated the impact of SARS-CoV-2 infection (as
exposures) in the post-acute period using each target outcome, lead-
ing to 596 independent analyses, aiming to generate PASC hypotheses
in a high-throughput and data-drivenmanner. The key components of
our high-throughput screening framework are summarized in Sup-
plementary Table 2 and detailed as follows.

Eligibility criteria andexposure strategies.We includedpatientswith
at least one SARS-CoV-2 polymerase-chain-reaction (PCR) or antigen
laboratory test between March 01, 2020, and November 30, 2021, for
both cohorts. Other eligibility criteria included an age of at least 20
years old, at least one diagnosis code within three years to seven days
before the index date (referred to as the baseline period), and at least
one diagnosis code from 31 days to 180 days after the index date
(referred to as the post-acute phase or follow-up period), to ensure
that patients were connected to the healthcare system and were being
observed during the study period. Two exposure groups were the
SARS-CoV-2 infected group and the non-infected group. The SARS-
CoV-2 infected group included patients with a positive SARS-CoV-2
PCR or antigen laboratory test. The index date of the infected group
was defined as the date of the first documented positive PCR or anti-
gen test. The non-infected group included patients whose SARS-CoV-2
PCR or Antigen tests were all negative throughout the entire study
period with no documented COVID-19-related diagnoses. The index
date for patients in the non-infected group was defined as the date of
the first negative PCRor antigen test. See Supplementary Data 1 for the
list of COVID-19-related LOINC laboratory codes and ICD-10 diagnosis
codes used for cohort selection.

Group assignment and baseline covariates. Patients in the two
exposure groups, namely the SARS-Cov-2 infected group and the non-
infected group, were assumed exchangeable after adjusting for
high-dimensional baseline covariates as hypothetical confounders.
The collected baseline covariates included age (categorized into

20–39 years, 40–54 years, 55–4 years, 65–74 years, 75–84 years, 85
years and older), gender (female, male, other/missing), race (Asian,
Black or African American, White, other, missing), ethnicity (Hispanic,
not Hispanic, other/missing). The race and ethnicity were self-
reported. The national-level area deprivation index (ADI) was used to
capture the socioeconomic disadvantage of patients’ residential
neighborhoods15. We used a 9-digit zip code to link to the national ADI
percentiles (ranked from 1 to 100). We imputed the missing ADI value
with the median ADI per site. The ADI ranks from 1 to 100, with 1 and
100 indicating the lowest and highest level of disadvantage15. Health-
care utilization wasmeasured as the number of inpatients, outpatient,
and emergency encounters (0 visits, 1 or 2 visits, 3 or 4 visits, and 5 or
more visits for each encounter type) respectively. In addition, periods
(March 2020—June 2020, July 2020—October 2020, November 2020—
February 2021, March 2021—June 2021, July 2021—November 2021) of
the index date were used to account for potentially different stages of
the pandemic. The body mass index (BMI) was categorized into
underweight (<18.5 kg/m2), normal weight (18.5 kg/m2–24.9 kg/m2),
overweight (25.0 kg/m2– 29.9 kg/m2), obesity (≥30.0 kg/m2), and
missing according to the CDC guideline for adults32.

We also collected awide range of baseline comorbidities based on
a tailored list of the Elixhauser comorbidities16 and related drug cate-
gories, including alcohol abuse, anemia, arrhythmia, asthma, cancer,
chronic kidney disease, chronic pulmonary disorders, cirrhosis, coa-
gulopathy, congestive heart failure, chronic obstructive pulmonary
disease, coronary artery disease, dementia, diabetes type 1, diabetes
type 2, end-stage renal disease on dialysis, hemiplegia, HIV, hyper-
tension, hypertension and type 1 or 2 diabetes diagnosis, inflammatory
bowel disorder, lupus or systemic lupus erythematosus, mental health
disorders, multiple sclerosis, Parkinson’s disease, peripheral vascular
disorders, pregnant, pulmonary circulation disorder, rheumatoid
arthritis, seizure/epilepsy, severe obesity (BMI > = 40 kg/m2), weight
loss, Down’s syndrome, other substance abuse, cystic fibrosis, autism,
sickle cell, corticosteroid drug prescriptions, immunosuppressant
drug prescriptions. Patients were defined as having a condition if they
had at least two corresponding diagnoses documented in the three
years before the index event.

Follow-up period. We followed each patient from 31 days after his/her
index date until the day of the first target outcome, documented
death, loss of follow-up in the database, 180 days after the baseline, or
the end of our observational window (December 31, 2021), whichever
came first.

Diagnosis categories for screening potential PASC conditions. We
examined an initial list of potential adult PASC diagnostic outcomes
for screening, which contained 137 diagnostic categories. A team of
clinicians built our initial screening list based on the Clinical Classifi-
cations Software Refined (CCSR) v2022.1 covering all the 66,534 ICD-
10-CM Diagnoses, and removed codes that cannot be attributed to
COVID-19 (e.g., HIV, tuberculosis, infection by non-COVID causes,
neoplasms, injury due to external causes), and systematically added
parent codes (e.g., the first 3-digits of ICD-10 codes) of potential PASC
diagnosis codes. The full list of our investigative diagnosis codes is
provided in Supplementary Data 2 and includes 6466 codes.

Medications for screening potential PASC conditions. We examined
an initial list of potential adult PASC medication outcomes for
screening, which contained 459 drug categories classified by their
active ingredients. We collected real-world drug prescription data
from our EHR datasets, mapped drugs into their active ingredients,
and selected drug ingredients prescribed for at least 100 patients in
the SARS-CoV-2 positive group, which led to 434 active drug ingre-
dients. We further considered another 25 categories of medications
used during treatment for COVID-19, including anti-platelet therapy,

Article https://doi.org/10.1038/s41467-023-37653-z

Nature Communications |         (2023) 14:1948 11



aspirin, colchicine, corticosteroids, dexamethasone, and heparin,
which were potentially identified by both prescription records and
procedure records.

Contrasts of PASC outcomes. Adjusted hazard ratio with 95% con-
fidence intervals and excess burden for each incident PASCdiagnosis or
medicationwere calculated at the end of the follow-up period. Adjusted
cumulative incidence for each exposure group was also reported.

High-throughput screening pipeline for PASC. We systematically
examined the 137 diagnosis categories and 459medication ingredients
using our pipeline shown in Fig. 1.

Statistical analyses for high-throughput hypotheses generation
Inverse probability of treatment weighting for adjustment. We built
a propensity score (PS) model—the probability of assignment of a
particular exposure group conditioned on baseline covariates—for
each target outcome. Based on the estimated PS values, we then used
stabilized inverse probability of treatment weighting (IPTW)33 to re-
weight patients in exposure and control groups, aiming to balance the
two groups on baseline covariates after re-weighting. If we use X, Z to
represent the observed baseline covariates and the assignment of
exposure (Z = 1) and control groups (Z = 0), the PS is defined as
PθðZ = 1∣XÞ and the stabilized IPTW is shown in Eq. (1).

w=
Z*PðZ = 1Þ
PθðZ = 1∣XÞ +

ð1� Z Þ*PðZ =0Þ
1� PθðZ = 1∣XÞ ð1Þ

To deal with potentially large weight and thus large variability of
estimated effects, we adopted the stabilized IPTW, which shrinks the
conventional IPTWby a smaller-than-1 factor P(Z). We further trimmed
extreme weights beyond their 1st or 99th percentiles to control for
potentially large weights to reduce variability34. We used standardized
mean difference (SMD) to quantify the goodness-of-balance of cov-
ariates over two groups as shown in Eq. (2) and used SMD < 0.1 as the
threshold for balancing diagnostics. The SMD was calculated before
and after IPTW re-weighting, and the results are provided in Supple-
mentary Data 4 and 5.

SMDðX1,X0Þ=
E½X1� � E½X0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVarðX1Þ+VarðX0ÞÞ=22
p ð2Þ

We used logistic regression with the L2 penalty term for PS
calculation, with the optimal regularization strength determined
through grid searchover hyper-parameter space (10−2, 10−1.5, 10−1, 10−0.5,
1, 100.5, 101, 101.5, 102, and no penalty). We have shown in our previous
study that a better PS model can be selected by considering
both the goodness-of-balance performance and the goodness-of-fit
performance35. Here, we show details of the cross-validation pipeline
for PS model training, selection, and validation in Supplementary
Table 3, which can achieve better goodness-of-balance performance
compared with the PS model selected by other machine learning
model selection strategies in trial emulations35.

Statistical analysis for outcome contrasts. The adjusted hazard ratio
(aHR) was estimated by Cox proportional hazard model with the
abovementioned stabilized IPTW weights with trimming 1st and 99th
extreme values. The cumulative incidence was estimated by the Aalen-
Johansen model36 considering death to be a competing risk for the
target outcomes, adjusted by the same IPTW weights as used in aHR.
The excess burden was defined as the difference in adjusted cumula-
tive incidences in different exposure groups.

Screening criteria for likely PASC conditions. To reduce the chance
of false positive discovery, we adhered to the following screening
criteria: Only diagnoses and medications with (1) adjusted hazard

ratios larger than 1, (2) P-value < 8.39 × 10−5 (significance level cor-
rected by Bonferroni method, namely 0:05

596 , for multiple comparisons)
will be retained as likely PASC conditions. Further, we required a
minimumnumberof PASCcases that appeared at least 100 times in the
post-acute period of the SARS-CoV-2 infected group in each
emulated trial.

Sensitivity analyses. First, we investigated to what extent the identi-
fied PASC conditions will change by using different correction meth-
ods for the multiple comparisons problems. The Bonferroni method
(BF) controls the familywise error rate (FWER), namely the probability
of making one or more false discoveries, which is a very stringent
method, leading to fewer discoveries. We also considered the false
discovery rate-based method (FDR)—Benjamini–Yekutieli method
(BY)21—which is less stringent than the FWER-based method and
requires no assumptions about the correlations of different tests. We
also checked how the results will change by further lifting the criterion
which required at least 100 cases in the SARS-CoV-2 infected group. In
addition, we also check significant conditions with aHR <1. Second, we
considered different baseline covariates modeling, including (a)
adjusting for additional baseline vaccination status, (b) modeling
index day by the cubic B-spline method using 7 spline basis functions
of polynomial order 322,23, and (c) modeling propensity score by using
(non-linear) gradient boosting decision trees24. Third, we investigated
the potential impact of sample size difference by replicating the ana-
lyses on a downsampled INSIGHT cohort, which had the same number
of patients as in the OneFlorida+. The best gradient-boosting decision
tree model was selected from a set of models defined by hyper-
parameters including maximum depth (3, 4, 5), learning rate (0.01,
0.26, 0.51, 0.76), max number of leaves in one tree (5, 20, 35), and the
minimal number of samples in one leaf (100, 200, 300), using the
cross-validation algorithm as detailed in Supplementary Table 3.

Subgroup analysis and negative outcome controls. The subgroup
analysis was conducted by stratifying patients (in both SARS-CoV-2
infected and non-infected groups) by their age, race, gender, the
severity of acute infection (outpatient or inpatient), and pre-existing
conditions. We included a population with no documented pre-
existing conditions or PASC-like symptoms at baseline, denoted as
healthy. We also stratified patients by different waves to check the
potential heterogeneity in different variants of concerns. To explore
the possible existence of residual confounding, we estimated the
adjusted hazard ratio of non-PASC outcomes following negative out-
come control framework19,20.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The INSIGHT data can be requested through https://insightcrn.org/.
The OneFlorida+ data can be requested through https://
onefloridaconsortium.org. Both the INSIGHT and the OneFlorida+
data are HIPAA-limited. Therefore, data use agreements must be
established with the INSIGHT and OneFlorida+ networks.

Code availability
For reproducibility, our codes are available at https://github.com/
calvin-zcx/pasc_phenotype37. We used Python 3.9, python package
lifelines-0.2666 for survival analysis, and scikit-learn-0.2318 for
machine learning models.
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