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Revealing core-valence interactions in
solution with femtosecond X-ray pump
X-ray probe spectroscopy
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Femtosecond pump-probe spectroscopy using ultrafast optical and infrared
pulses has become an essential tool to discover and understand complex
electronic and structural dynamics in solvated molecular, biological, and
material systems. Here we report the experimental realization of an ultrafast
two-color X-ray pump X-ray probe transient absorption experiment per-
formed in solution. A 10 fs X-ray pump pulse creates a localized excitation by
removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide
complexes. Following the ensuing Auger–Meitner cascade, the second X-ray
pulse probes the Fe 1s→ 3p transitions in resultant novel core-excited elec-
tronic states. Careful comparison of the experimental spectra with theory,
extracts +2 eV shifts in transition energies per valence hole, providing insight
into correlated interactions of valence 3d with 3p and deeper-lying electrons.
Such information is essential for accuratemodeling andpredictive synthesis of
transition metal complexes relevant for applications ranging from catalysis to
information storage technology. This study demonstrates the experimental
realization of the scientific opportunities possible with the continued devel-
opment of multicolor multi-pulse X-ray spectroscopy to study electronic
correlations in complex condensed phase systems.

Femtosecond (fs) pump–probe spectroscopy is now used extensively
in the optical and infrared (IR) regimes to understand complex che-
mical phenomena in the condensed phase following the development
of high intensity, commercially available, and tunable ultrafast laser
systems. In these widely used experiments, the pump pulse initiates a
non-equilibrium process in the excited-state (or ground-state) of the
system of interest, and the delayed probe pulse monitors the time

evolution of the system. For example, optical transient spectroscopy
experiments measure signatures of evolving electronic states follow-
ing photoexcitation in complex systems1,2. On the other hand,
transient IR experiments measure structural dynamics and non-
equilibrium vibrational relaxation in photo-excited systems3,4. Femto-
second pump–probe spectroscopy in the condensed phase has
resulted in new discoveries in the fields of biology, chemistry, and
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material science. The pump–probe experiments have served as pre-
cursors to coherent nonlinear multidimensional techniques that are
now used extensively to map charge and energy transfer pathways in
complex systems5,6. An important limitation, however, is that fs optical
and IR spectra are only indirectly sensitive to valence charge dis-
tributions across specific atomic sites.

The advent of third generation synchrotrons and the develop-
ment of table-top X-ray sources has resulted in the development of
transient X-ray techniques for measuring the X-ray absorption and
emission spectra of core electrons in solvated complexes following
photoexcitation with an optical pump pulse7–11. X-ray spectroscopy is
an element-specific probe of electronic and atomic structure and fs
X-ray pulses from X-ray free electron lasers (XFELs) are allowing
researchers to routinely measure X-ray absorption and emission
spectra of ultrafast photochemical processes in solution12–16. Optical
pump X-ray probe experiments have also enabled researchers to
measure coherently coupled electronic and atomic motions and
ultrafast electron delocalization in complex photochemical phenom-
ena in solution17–20.

The generation of tunable, high intensity, time-delayed, femto-
second X-ray pulse pairs has been recently demonstrated at various
XFELs around the world21–25. These technological developments have
enabled X-ray pump X-ray probe experiments studying nuclear and
electronic dynamics at different atomic sites in small molecules in the
gas phase through various electron ionization detection schemes26–28.
Two-pulse X-ray photon correlation techniques have measured non-
equilibrium structure correlations on short length scales in solutions
and solids29–35. Additionally, nonlinear light matter interactions with
intense X-ray pulses have resulted in seeded stimulated emission sig-
nals at the Mn K-edge in concentrated solutions36.

Recently, we proposed and theoretically modeled a novel
approach to measure core-valence electronic correlations in solvated
chemical systems via ultrafast X-ray pump X-ray probe (XPXP) tran-
sient absorption spectroscopy, using the transition metal complex,
K4Fe

II(CN)6, as a model system37. X-ray pump pulses were used to
create a localized (element-specific) excitation consisting of a 1s core
hole in the Fe atom.Weused a combination of atomic electroncascade
calculations and excited-state time-dependent density functional the-
ory (TDDFT) calculations to predict changes in the X-ray probe
transmission near the Fe K-edge following the X-ray pump interaction.
Our work found several spectral features below the Fe K-edge
absorption edge that reported on the ligand-field splitting and che-
mically relevant 3p and 3d electron interactions.

This paper is the experimental realization of our previous theo-
retical work described above37, presenting an XPXP transient absorp-
tion experiment of molecules in solution. The measured XPXP
transient absorption spectra combined with simulations directly
measure the oxidation state dependent electronic cascade pathways
and the chemically relevant 3p–3d valence interaction strengths in FeII

and FeIII hexacyanoferrates dissolved inwater. This study also serves as
an experimental demonstration of the feasibility of two-color XPXP
transient absorption, paving the way for multi-pulse nonlinear multi-
dimensional X-ray spectroscopy in solution.

Results
Implementation of the XPXP experiment
Figure 1a depicts the generation of an energy tunable ~10 fs X-ray pulse
pair, separated by a time delay (τ) coincident on a thin liquid jet
(250 µm) containing an aqueous solution of either K4Fe

II(CN)6 or
K3Fe

III(CN)6
38. The X-ray pump pulse (7.2 keV, blue dashed line in

Fig. 1c) ionizes the sample by removing a 1s electron from the Fe atom.
The energy of the X-ray pump pulse is chosen to ensure that fluctua-
tions in its photon energy or spectral shape do not influence the
character of the initially prepared ionized state in the Fe complex.
Figure 1b provides an example of an Auger-Meitner electron cascade

and we stress that this is only one of a multitude of possible pathways
explored by the system following the interaction with the X-ray pump
pulse. The representative cascade pathway in Fig. 1b proceeds in
experimental time as follows: (1) a pump photon ejects a 1s electron to
the continuum, (2) a Kα fluorescence event fills the 1s hole and emits a
photon, (3) an Auger–Meitner decay fills the new 2p hole while
removing a 3p electron, (4) Coster–Kronig decay fills the 3s hole,
ejecting a 3dt2g electron, resulting in an electron configuration of [Ne]
3s23px=53dt2gy=4. Following the Auger–Meitner electronic cascade (5),
the second X-ray pulse centered at 7.06 keV probes the ensemble of
resultant core-electronic excited states containing 3p holes. The
transmitted X-ray probe pulse is spectrally resolved to measure the
transient X-ray absorption spectrum (see Fig. 1a, c).

Prediction of transient core-excited electronic states probed in
the XPXP experiment
To predict the transient core-excited electronic states created in the
X-ray probe’s spectral window (7060± 10 eV) following the removal of
a 1s core electron in the Fe atom by the X-ray pump pulse, we per-
formed an electron cascade Markov-chain Monte Carlo (MC-MC) cal-
culation, as described previously37. These calculations serve as a
starting point for understanding the spectral features observed in this
XPXP experiment. Figure 2 shows the time evolution of [Ne]
3s23p53dt2gy electronic configurations in the FeII (solid lines) and FeIII

(dashed lines) atomic systems produced by the MC-MC simulations in
the first 100 fs after ionization of a 1s electron. These electronic states
are the most probable (~20%) among all states populated at the time-
scale probed in our experiment. Identically colored lines represent
states that have lost an equivalent number of electrons from the
valence through Auger–Meitner events (NAuger) as indicated in the
legend of Figure 2. For example, the solid and dashed blue lines
(NAuger=0) in Fig. 2 correspond to the initial 3d6 and 3d5 configurations
for FeII and FeIII atoms, respectively. Interestingly, we note that the
probability of observing the [Ne]3s23p53dt2g6 state of the FeII system
decays to zerowithin 1 fs. Given theexperimental X-ray pulsedurations
of ~10 fs, we expect the largest contributions from 3p5 core-excited
states with 0, 1, and 3 Auger–Meitner events (NAuger = 0, 1, and 3)
depending on the starting oxidation state of the Fe atom. The relative
contributions of each of the core-excited states to themeasured XPXP
transient absorption spectrum depend on their calculated prob-
abilities plotted in Fig. 2. The probabilities in Fig. 2 are on the same
order of magnitude as those calculated from experimentally deter-
mined fluorescence yields of the Fe atom39, and discussed in Supple-
mentary Note 4. The MC-MC simulations also predict the average
oxidation state during thefirst 10 fs of the electronic cascade tobe 3d4.2

and 3d3.8 for the FeII and FeIII systems, respectively (see Supplementary
Note 3). Combining all the information gleaned from the electron
cascade calculations, we would expect to observe the following in the
transient XPXP signal: (i) two or three spectral features representing
1s→ 3p transitions to distinct electronic states for the FeII and FeIII

samples, and (ii) a lack of the 1s→ [Ne]3s23p53dt2g6 transition in the
FeII data.

Femtosecond XPXP signal measures core-valence interactions
Figure 3 displays the XPXP signal as a change in transmission of the
X-rayprobe spectrum following 1s excitationof the Fe atom inaqueous
solutions of K4Fe

II(CN)6 or K3Fe
III(CN)6 complexes by the X-ray pump

pulse. The data are measured at a nominal delay time of 0 fs between
the two 10 fs X-ray pulses. Both plots display the presence of transient
1s→ 3p absorption features as two negative spectral features, blue
shifted from themolecular Fe Kβ energy (7058 eV and 7059 eV for FeII

and FeIII molecular complexes respectively, vertical dashed lines in
Fig. 3). These transitions are a result of new core-excited electronic
states with 3p holes formed following the initial steps of an
Auger–Meitner cascade (see Fig. 1b for an example of electron

Article https://doi.org/10.1038/s41467-023-39165-2

Nature Communications |         (2023) 14:3384 2



cascade). The XPXP data were processed by separately averaging and
subtracting the X-ray pumped and unpumped probe spectra to pro-
duce the change in transmission (ΔT/T) data and error bounds in Fig. 3.
Individual X-ray shots exhibiting abnormal characteristics in intensity
or spectral distributionwere excluded from the analysis. Details on the
processing of the raw data are provided in Supplementary Note 2.
The XPXP signal is dependent on the X-ray pump and probe pulse
fluence and the XPXP transient absorption signal is absent in pure
water (see Supplementary Figs. 3 and 6).

The spectral features in the XPXP signal are fit using Gaussian
lineshapes. Thebestfit is plotted as solid lines in Fig. 3a, b, and thepeak
amplitudes, positions and linewidths extracted from the fit are listed in
Supplementary Table 2. From the fits, we determine that the XPXP
transient signals in FeII and FeIII complexes exhibit two 1s→ 3p transi-
tions at ~7060 and ~7062 eV. The peaks in the transient difference
XPXP spectra from the FeII and FeIII complexes are blue-shifted from
the peak of the Kβ X-ray emission signals (Supplementary Fig. 8) by 1.9
and 1.2 eV respectively. The fits reveal that the overall transient signal
in the FeII complex is blue shifted by 0.35 eV with respect to the FeIII

signal. We note that this shift is within the 0.4 eV resolution of the
detection spectrometer. The widths of all the 1s→ 3p transmission
peaks in the transient XPXP spectra for both samples are ~2 eV. These
widths are determined by the non-radiative lifetime of the 3p hole and
are narrower compared to the width of the Kβ emission peak, which is
determined by the shorter lifetime of the 1s hole. The narrower peaks
in the XPXP spectra make it easier to resolve individual core-excited
electronic states. We compare the intensities of the spectral features
by their integrated peak areas (Supplementary Table 2) and find that
for the FeII sample, the peak at ~7060 eV is 15% more intense than the

peak at ~7062 eV. In the case of the FeIII sample, the peak at ~7060 eV is
3% more intense than the peak at ~7062 eV. Assuming similar dipole
strengths for all 1s→ 3p transitions, the integrated area of each peak
corresponds to the relative population of that particular 3p state in the
sample of interest.We also observe that the transitions in theXPXP FeIII

data show overall greater intensity by 10% of the observed transitions
relative to the FeII data andwe attribute this to an initial additional hole
in the 3dt2g orbital. Our observations are in agreement with previous
calculations on the generalized case of 3p vacancy dependent M-edge
spectroscopy40. In summary, the 1s→ 3p XPXP transient absorption
spectra for the FeII and FeIII complexes show remarkable similarities in
the peak positions, integrated areas, and lineshapes.

To aid the interpretation of the data shown in Fig. 3, we perform
TDDFT calculations of 1s→ 3p X-ray absorption spectra for a variety of
reference electronic configurations on separate geometries for both
FeII and FeIII compounds following our previously published compu-
tational approach37. Additional computational details are provided in
Supplementary Note 5. Figure 4a, b show calculated 1s→ 3p transitions
in core-excited states with specific electronic configurations. The
TDDFT calculation reports that eachprogressive hole in the 3d valence
shell produces a corresponding shift in the 1s→ 3p energy gap. From
Fig. 4, we note that in the [Ne]3s23p53dt2gy configurations, each addi-
tional hole in the t2g orbital corresponds to a + 2 eV shift of the 1s→ 3p
calculated transition. This shift serves as an indirect reporter on the
strength of the 3p–3d interactions in the molecular complex under
investigation. The TDDFT calculations reveal that 1s→ 3p transitions
for states with electronic configurations of the type [Ne]3s23px<53dt2gy

are shifted ~6 eV to the blue of the experimental Kβ emission peak.
Further, we see that the peak from the 1s→ [Ne]3s23p53dt2g6

(b)

7.04 7.06 7.08 7.10 7.12 7.14 7.16 7.18 7.20 7.22
0

1

Energy (keV)

(c)

(a)

X-ray pumpK-edge absorption 
Transient 1s→3p 
absorption (x 100)

K� fluorescence
(x100)

N
or

m
al

iz
ed

 In
te

ns
ity

 

1s→π*

1s→3d(eg)

Undulators

Chicane 
delay7.2 keV

τ

ePix 10 K
detector

7.04 7.06 7.08 (keV)

1

3p

2p

3s

2s

1s

[Ne] 3s2 3px 3dt2gy  

1

2

3

4

3

4

5

1 2 3 4 5

eg

t2g

τ→

Fe CC

C

CC

C

N
N

N

N
N

N

3-/4-

Undulators
Liquid jet 
sample

Si 220
crystal

KB
mirrors

7.06 keV

τ

Fig. 1 | Overview of the XPXP experiment. a Experimental layout. Both the
7.20 keV X-ray pump (blue) and the 7.060 keV X-ray probe (red) are generated
collinearly by separate undulators from the same electron bunch (black circle).
Insertion of a chicane delay allows for the pump–probe timing (τ) to be controlled.
Both X-ray pulses are focused onto the thin liquid jet by a pair of Kirkpatrick–Baez
(KB) mirrors to a spot size of 100nm. The transmitted X-ray spectra are measured
using an analyzer crystal and an X-ray detector (ePix 10K). b Example of an
Auger–Meitner cascade in the iron complexes following removal of an Fe 1s elec-
tron. The example shows that the 1s hole is quickly filled by various processes
(labelled 2–4) including fluorescence, Auger–Meitner decay, and Coster–Kronig
decay events. The resultant electronic states have an electronic configuration of

[Ne]3s23px3dt2gy. After delay time, τ, the X-ray probepulse, resonantwith the 1s→ 3p
transitions interrogates the core electronic excited states formed following the
X-ray pump interaction. c Equilibrium ground state Fe K-edge X-ray absorption
spectrum and Kβ X-ray emission spectrum of a 500mM aqueous solution of
K4Fe

II(CN)6. The X-ray absorption reference spectrum (solid black, normalized to
the post-edge) displays weak pre-edge features of 1s→ 3deg and 1s→π* transitions
characteristic of an Fe(II) complex as described in ref. 38. Transient 3p absorption
features measured by the X-ray probe pulse are shown in red. See Supplementary
Note 4 for further details on the treatment of the X-ray absorption, emission
spectra, and transient signals.
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configuration for the FeII species (starred in Fig. 4a), would be located
around the peak of the Kβ emission line.

Combining the electron cascade (Fig. 2) and the TDDFT (Fig. 4)
calculations, we assign the peaks at 7060 and ~7062 eV in the FeII and
FeIII XPXP transient absorption spectra (Fig. 3) to 1s→ [Ne]3s23p53dt2g5

and 1s→ [Ne]3s23p53dt2g4 transitions, respectively. Both the MC-MC
electron cascade simulations and the TDDFT calculations confirm that
the valence-hole-free state in the FeII complex does not survive past the
nominal 1s core lifetime, and the observed transitions in both com-
plexes originate from similar core-excited states. From the integrated
area of the peaks in the XPXP data, we observe that the electron cas-
cade in the FeIII complex generates more highly ionized states in the
relative populations of t2g5 and t2g4 states compared to the electron
cascade in the FeII complex. A comparison of the TDDFT calculations
and the XPXP experimental data reveals that excited states with con-
figurations of [Ne]3s23px<53dt2gy are not formed in this experiment,
confirmed by the lack of observed transitions above the signal to noise
in Fig. 3 for X-ray probe energies greater than 7063 eV. We note that
several factors could contribute to the lack of observing 3px<5 holes in
this XPXP experiment including (i) data collection at zero nominal
delay between the X-ray pump and probe pulses, limiting the time-
frame for electron cascade evolution, and (ii) contribution to the
electron cascade by the surrounding ligand or solvent electrons
resulting in an effective quenching of the solute’s electron cascade
signal by decreasing the 3px<5 lifetime. We consider the possibility that
the peaks seen in the XPXP experimental signal could arise from the
splitting of the 3p5 configurations via spin–orbit interactions. In
reference calculations of 3p5 configurations, the 3p spin–orbit

coupling was computed to be ~1.3 eV for both FeII and FeIII complexes,
in agreementwith previously published data on transitionmetal ions41.
Given that the 3p spin–orbit coupling is less than the linewidth and the
energy separation of the observed peaks in the XPXP transient spectra
shown in Fig. 3, we confirm the assignment of the observed peaks to
1s→[Ne]3p53dt2g5 and 1s→[Ne]3p53dt2g4 transitions in solvated FeII and
FeIII complexes. Our combined femtosecond XPXP experimental data
and simulation protocol provide a direct experimental measure of the
~2 eV blue-shift of the 1s→ 3p dipole transition as a function of the
number of 3d holes in solvated Fe complexes.

Discussion
Measuring the time-evolution of core–valence interactions in transi-
tion metal complexes is crucial for controlling electronic correlations
in molecules and materials being developed for catalytic, magnetic,
and information storage applications. The XPXP experiment reported
here is sensitive to the 3p–3d Coulomb and valence interactions as a
function of the electronic configuration, oxidation, and spin state of
the Fe atom in solvated molecules. By directly probing core-to-core,
dipole-allowed, 1s→ 3p transitions, our data reports on both the 1s
relaxation and the 3p–3d interactions (Supplementary Fig. 10).

In the novel core-excited electronic states produced by the X-ray
pump, core and valence electrons rearrange and relax due to the
constantly changing electrostatic shielding in the Fe atom, which
includes shifts from 3p–3d and 3d–3d Coulomb and valence exchange
interactions, crystal field interactions and spin–orbit interactions.
These interactions are encoded in numerous transitions connecting
the typical K- (1s), L- (2p), or M- (3p) edges via X-ray absorption and
emission spectra of transition metal complexes measured at syn-
chrotrons, XFELs and with table-top HHG-based sources (see Fig. 5)42.
At the K-edge, Kβ fluorescenceXES probes the 3p–3d exchange energy
through the relative intensities of the spectral features sensitive to spin
and 3d occupancy43–45. Similarly, L-edge spectroscopy has been
used extensively to monitor the covalency, spin, and back-bonding
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in transition metals46–49and M-edge spectra directly measure 3p→ 3d
transitions50. The extraction of core electronic state-specific informa-
tion from equilibrium and optically-pumped X-ray absorption
spectroscopy (XAS) and XES spectral features at the K-, L- andM-edges

is limited given the lifetime broadening of 1s and 2p core holes51 and or
further complicated by many possible dipole-allowed transitions to a
dense continuum of valence states. Furthermore, the temporal reso-
lution of transient XAS is limited by the lifetime of the valence excited
state and the pulse duration of the optical pumppulse. In contrast, the
time-resolution of XPXP experiments can be shorter given the avail-
ability of few fs X-ray pulses at XFELs.

In this XPXP study, our ability to extract microscopic information
from the 1s→ 3p spectral features is theoretically limited by the 3p non-
radiative lifetime broadening and experimentally by the spectrometer
(0.40 eV)52 resolution and the 10 fs temporal widths of the X-ray pump
and X-ray probe pulses. Given that the temporal profiles of the X-ray
pulses are much longer than the core-hole-lifetime of the 1s electron
ionized by the X-ray pump pulse, the transient XPXP absorption
spectra probe a near static population of core-excited states with
varying 3d holes.With the generation of tunable attosecond hardX-ray
pump and probe pulses, the XPXP experiment described here could
measure transient absorption spectra prior to Auger–Meitner decay
and would be uniquely sensitive to tracking specific core-excited
electronic states, time-dependent 3p−3d electronic correlations, and
the time-evolution of pure valence electronic coherences with atomic
specificity.

The interpretation of the experimental XPXP transient absorption
spectra in this study relies on the MC-MC simulation of the electron
cascade in isolated FeII and FeIII atoms to model the effect of the
X-ray pump pulse and the TDDFT calculations of the 1s→ 3p5 transi-
tions for a select group of core-excited states in [FeII(CN)6]

4− and
[FeIII(CN)6]

3− complexes. Despite the atomic nature of the electron
cascade calculations and the single excitation nature of TDDFT cal-
culations, we are able to predict and measure core hole relaxation
manifesting in3p and3d transition energies as a function of the 3dhole
density. We stress that the successful demonstration of a fs XPXP
experiment of a solvated molecular system, as shown here, increases
the urgency of developing theoretical tools to accurately model multi-
pulse X-ray-matter interactions with complex molecules in solution.
Such calculations will be crucial for understanding how electronic
correlations, spin–orbit, ligand–field, and solute-solvent interactions
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are manifested in XPXP transient absorption spectra of core-excited
molecular complexes in solution.

Along with theoretical developments, experimental develop-
ments in generating intense, multi-color, time-delayed, attosecond
pulse-pairs in the hard X-ray regime will result in an extension of the fs
XPXP spectroscopy presented here to a coherent multidimensional
nonlinear X-ray experiment on molecular complexes in solution. An
analogy is the development of third-order nonlinear coherent multi-
dimensional optical and IR spectroscopy to measure couplings
between excitonic states and anharmonic vibrations, respectively,
following the establishment of femtosecond optical pump–probe and
IR pump–probe and transient grating experiments. Mukamel and co-
workers have proposed several coherentmultidimensional techniques
in the X-ray regime to elucidate coherent electronic charge and energy
transfer pathways53–55. With the availability of tunable attosecond hard
X-ray pulses, it will be possible to create and collapse coherences
within the 1s core-hole-lifetime, generating opportunities for investi-
gating the coherences between specific core-excited electronic states
of complex systems in solution.

Methods
Experimental methods
Experiments were conducted in the Coherent X-ray Imaging (CXI)
hutch at the Linac Coherent Light Source56. We utilize a pulse gen-
eration scheme similar to that used previously36, utilizing the split
undulator method57. Two collinear X-ray pulses ( ≈ 60 μJ/pulse, 10 fs)
were generated in a series of undulators from a single electron bunch
with a chicane delay controlling the experimental time delay (τ)
between the two pulses. As shown in Fig. 1 a, the electron bunch is
inefficiently lased in the first half of the undulators to produce the
7.20 keV pump pulse. The remaining electron energy is utilized in the
second half of the undulators to produce the lower energy 7.06 keV
probe pulse. Data shown here are restricted to τ =0 fs during the
overlap of the pump and probe pulses on the sample. The spectro-
meter calibration was performed by inserting a channel cut mono-
chromator upstream at the XPP endstation58. Themonochromatorwas
tuned to multiple energies in the 7.06 keV region which showed up as
valleys, missing spectral frequencies, in the resolved probe spectrum
on the ePix 10 K detector59.

We measure the transmission of the probe pulse as a function of
pumpfluence, achievedbymeasuring two focal conditions of theX-ray
beams on the sample. In the first condition, we position the sample jet
at the focus of the two beams. The second condition is achieved with
the sample positioned upstream (Δz = +2mm) to reduce the fluence of
both pulses by increasing the spot size (~10 Rayleigh lengths from
focus)60. As the response to this technique is linear with respect to the
fluence of each pulse, small perturbations in the focal area create a
quartic drop in signal strength. Calculations estimating the signal
strength with this experimental design are detailed in Supplemen-
tary Note 1.

The two focal conditions serve as “pump on” and “pump off”
conditions as neither pulse can be uniquely blocked or eliminated
without drastically impacting the energy, intensity, and temporal
profile of the other pulse. The fact that both pulses are generated from
the same electron bunch creates an intrinsic link between the char-
acter and intensity of the two pulses. Future experiments will take
advantage of a non-collinear generation geometry, generating pulses
from distinct electron bunches, enabling direct chopping of the pump
pulses either bymechanicalmeans or through electron bunch control.
Data are collected at 120Hz, alternating 36,000 shots (5min) in each
focal condition. Total shot counts for each spectrum are provided in
Supplementary Table 1.

The complexes, potassium ferrocyanide (K4[Fe
II(CN)6]) and

potassium ferricyanide (K3[Fe
III(CN)6]), were purchased from Sigma

Aldrich and used without further purification. Aqueous 500mM

solutions were prepared by dissolving these complexes in ultrapure
water. AnHPLC pumpwas used to flow the solutions through a 250 µm
(inner diameter) capillary. A catcher placed below the capillary refed
the pump to enable closed loop recirculation of the sample. The focus
spot size was ≈100 nm60,61. Beam throughput was measured to be 3%.
Assuming half of the beam is in the focal volume62, the fluence from
each pulse at the sample measured 1.1×1018W/cm2. Data are further
filtered based on correlated intensity measures as specified in the
Supplementary Note 2.

Computational methods
Theoretical approaches for the on-the-fly Monte Carlo simulation of
the electron cascade63–65, and TDDFT calculations of the 3p hole state
spectral signatures66,67 have been outlined in previous work and are
described in the Supplementary Note 5. The present work builds upon
previous work via the consideration of the FeIII electron cascade and in
contrasting it with that of the FeII cascade.

Data availability
The data shown in Figs. 2 and 3 are provided as Source data
files. Source data are provided with this paper.
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